linux/drivers/iio/adc/mcp3911.c

597 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Microchip MCP3911, Two-channel Analog Front End
*
* Copyright (C) 2018 Marcus Folkesson <marcus.folkesson@gmail.com>
* Copyright (C) 2018 Kent Gustavsson <kent@minoris.se>
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/trigger.h>
#include <asm/unaligned.h>
#define MCP3911_REG_CHANNEL0 0x00
#define MCP3911_REG_CHANNEL1 0x03
#define MCP3911_REG_MOD 0x06
#define MCP3911_REG_PHASE 0x07
#define MCP3911_REG_GAIN 0x09
#define MCP3911_GAIN_MASK(ch) (GENMASK(2, 0) << 3 * (ch))
#define MCP3911_GAIN_VAL(ch, val) ((val << 3 * (ch)) & MCP3911_GAIN_MASK(ch))
#define MCP3911_REG_STATUSCOM 0x0a
#define MCP3911_STATUSCOM_DRHIZ BIT(12)
#define MCP3911_STATUSCOM_READ GENMASK(7, 6)
#define MCP3911_STATUSCOM_CH1_24WIDTH BIT(4)
#define MCP3911_STATUSCOM_CH0_24WIDTH BIT(3)
#define MCP3911_STATUSCOM_EN_OFFCAL BIT(2)
#define MCP3911_STATUSCOM_EN_GAINCAL BIT(1)
#define MCP3911_REG_CONFIG 0x0c
#define MCP3911_CONFIG_CLKEXT BIT(1)
#define MCP3911_CONFIG_VREFEXT BIT(2)
#define MCP3911_CONFIG_OSR GENMASK(13, 11)
#define MCP3911_REG_OFFCAL_CH0 0x0e
#define MCP3911_REG_GAINCAL_CH0 0x11
#define MCP3911_REG_OFFCAL_CH1 0x14
#define MCP3911_REG_GAINCAL_CH1 0x17
#define MCP3911_REG_VREFCAL 0x1a
#define MCP3911_CHANNEL(ch) (MCP3911_REG_CHANNEL0 + (ch) * 3)
#define MCP3911_OFFCAL(ch) (MCP3911_REG_OFFCAL_CH0 + (ch) * 6)
/* Internal voltage reference in mV */
#define MCP3911_INT_VREF_MV 1200
#define MCP3911_REG_READ(reg, id) ((((reg) << 1) | ((id) << 6) | (1 << 0)) & 0xff)
#define MCP3911_REG_WRITE(reg, id) ((((reg) << 1) | ((id) << 6) | (0 << 0)) & 0xff)
#define MCP3911_REG_MASK GENMASK(4, 1)
#define MCP3911_NUM_CHANNELS 2
#define MCP3911_NUM_SCALES 6
static const int mcp3911_osr_table[] = { 32, 64, 128, 256, 512, 1024, 2048, 4096 };
static u32 mcp3911_scale_table[MCP3911_NUM_SCALES][2];
struct mcp3911 {
struct spi_device *spi;
struct mutex lock;
struct regulator *vref;
struct clk *clki;
u32 dev_addr;
struct iio_trigger *trig;
u32 gain[MCP3911_NUM_CHANNELS];
struct {
u32 channels[MCP3911_NUM_CHANNELS];
s64 ts __aligned(8);
} scan;
u8 tx_buf __aligned(IIO_DMA_MINALIGN);
u8 rx_buf[MCP3911_NUM_CHANNELS * 3];
};
static int mcp3911_read(struct mcp3911 *adc, u8 reg, u32 *val, u8 len)
{
int ret;
reg = MCP3911_REG_READ(reg, adc->dev_addr);
ret = spi_write_then_read(adc->spi, &reg, 1, val, len);
if (ret < 0)
return ret;
be32_to_cpus(val);
*val >>= ((4 - len) * 8);
dev_dbg(&adc->spi->dev, "reading 0x%x from register 0x%lx\n", *val,
FIELD_GET(MCP3911_REG_MASK, reg));
return ret;
}
static int mcp3911_write(struct mcp3911 *adc, u8 reg, u32 val, u8 len)
{
dev_dbg(&adc->spi->dev, "writing 0x%x to register 0x%x\n", val, reg);
val <<= (3 - len) * 8;
cpu_to_be32s(&val);
val |= MCP3911_REG_WRITE(reg, adc->dev_addr);
return spi_write(adc->spi, &val, len + 1);
}
static int mcp3911_update(struct mcp3911 *adc, u8 reg, u32 mask, u32 val, u8 len)
{
u32 tmp;
int ret;
ret = mcp3911_read(adc, reg, &tmp, len);
if (ret)
return ret;
val &= mask;
val |= tmp & ~mask;
return mcp3911_write(adc, reg, val, len);
}
static int mcp3911_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
return IIO_VAL_INT;
default:
return IIO_VAL_INT_PLUS_NANO;
}
}
static int mcp3911_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
switch (info) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*type = IIO_VAL_INT;
*vals = mcp3911_osr_table;
*length = ARRAY_SIZE(mcp3911_osr_table);
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
*type = IIO_VAL_INT_PLUS_NANO;
*vals = (int *)mcp3911_scale_table;
*length = ARRAY_SIZE(mcp3911_scale_table) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int mcp3911_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mcp3911 *adc = iio_priv(indio_dev);
int ret = -EINVAL;
mutex_lock(&adc->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = mcp3911_read(adc,
MCP3911_CHANNEL(channel->channel), val, 3);
if (ret)
goto out;
*val = sign_extend32(*val, 23);
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_OFFSET:
ret = mcp3911_read(adc,
MCP3911_OFFCAL(channel->channel), val, 3);
if (ret)
goto out;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
ret = mcp3911_read(adc, MCP3911_REG_CONFIG, val, 2);
if (ret)
goto out;
*val = FIELD_GET(MCP3911_CONFIG_OSR, *val);
*val = 32 << *val;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = mcp3911_scale_table[ilog2(adc->gain[channel->channel])][0];
*val2 = mcp3911_scale_table[ilog2(adc->gain[channel->channel])][1];
ret = IIO_VAL_INT_PLUS_NANO;
break;
}
out:
mutex_unlock(&adc->lock);
return ret;
}
static int mcp3911_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int val,
int val2, long mask)
{
struct mcp3911 *adc = iio_priv(indio_dev);
int ret = -EINVAL;
mutex_lock(&adc->lock);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
for (int i = 0; i < MCP3911_NUM_SCALES; i++) {
if (val == mcp3911_scale_table[i][0] &&
val2 == mcp3911_scale_table[i][1]) {
adc->gain[channel->channel] = BIT(i);
ret = mcp3911_update(adc, MCP3911_REG_GAIN,
MCP3911_GAIN_MASK(channel->channel),
MCP3911_GAIN_VAL(channel->channel, i), 1);
}
}
break;
case IIO_CHAN_INFO_OFFSET:
if (val2 != 0) {
ret = -EINVAL;
goto out;
}
/* Write offset */
ret = mcp3911_write(adc, MCP3911_OFFCAL(channel->channel), val,
3);
if (ret)
goto out;
/* Enable offset*/
ret = mcp3911_update(adc, MCP3911_REG_STATUSCOM,
MCP3911_STATUSCOM_EN_OFFCAL,
MCP3911_STATUSCOM_EN_OFFCAL, 2);
break;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
for (int i = 0; i < ARRAY_SIZE(mcp3911_osr_table); i++) {
if (val == mcp3911_osr_table[i]) {
val = FIELD_PREP(MCP3911_CONFIG_OSR, i);
ret = mcp3911_update(adc, MCP3911_REG_CONFIG, MCP3911_CONFIG_OSR,
val, 2);
break;
}
}
break;
}
out:
mutex_unlock(&adc->lock);
return ret;
}
static int mcp3911_calc_scale_table(struct mcp3911 *adc)
{
struct device *dev = &adc->spi->dev;
u32 ref = MCP3911_INT_VREF_MV;
u32 div;
int ret;
u64 tmp;
if (adc->vref) {
ret = regulator_get_voltage(adc->vref);
if (ret < 0) {
return dev_err_probe(dev, ret, "failed to get vref voltage\n");
}
ref = ret / 1000;
}
/*
* For 24-bit Conversion
* Raw = ((Voltage)/(Vref) * 2^23 * Gain * 1.5
* Voltage = Raw * (Vref)/(2^23 * Gain * 1.5)
*
* ref = Reference voltage
* div = (2^23 * 1.5 * gain) = 12582912 * gain
*/
for (int i = 0; i < MCP3911_NUM_SCALES; i++) {
div = 12582912 * BIT(i);
tmp = div_s64((s64)ref * 1000000000LL, div);
mcp3911_scale_table[i][0] = 0;
mcp3911_scale_table[i][1] = tmp;
}
return 0;
}
#define MCP3911_CHAN(idx) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = idx, \
.scan_index = idx, \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OFFSET) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_separate_available = \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_type = { \
.sign = 's', \
.realbits = 24, \
.storagebits = 32, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec mcp3911_channels[] = {
MCP3911_CHAN(0),
MCP3911_CHAN(1),
IIO_CHAN_SOFT_TIMESTAMP(2),
};
static irqreturn_t mcp3911_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct mcp3911 *adc = iio_priv(indio_dev);
struct device *dev = &adc->spi->dev;
struct spi_transfer xfer[] = {
{
.tx_buf = &adc->tx_buf,
.len = 1,
}, {
.rx_buf = adc->rx_buf,
.len = sizeof(adc->rx_buf),
},
};
int scan_index;
int i = 0;
int ret;
mutex_lock(&adc->lock);
adc->tx_buf = MCP3911_REG_READ(MCP3911_CHANNEL(0), adc->dev_addr);
ret = spi_sync_transfer(adc->spi, xfer, ARRAY_SIZE(xfer));
if (ret < 0) {
dev_warn(dev, "failed to get conversion data\n");
goto out;
}
for_each_set_bit(scan_index, indio_dev->active_scan_mask, indio_dev->masklength) {
const struct iio_chan_spec *scan_chan = &indio_dev->channels[scan_index];
adc->scan.channels[i] = get_unaligned_be24(&adc->rx_buf[scan_chan->channel * 3]);
i++;
}
iio_push_to_buffers_with_timestamp(indio_dev, &adc->scan,
iio_get_time_ns(indio_dev));
out:
mutex_unlock(&adc->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_info mcp3911_info = {
.read_raw = mcp3911_read_raw,
.write_raw = mcp3911_write_raw,
.read_avail = mcp3911_read_avail,
.write_raw_get_fmt = mcp3911_write_raw_get_fmt,
};
static int mcp3911_config(struct mcp3911 *adc)
{
struct device *dev = &adc->spi->dev;
u32 regval;
int ret;
ret = device_property_read_u32(dev, "microchip,device-addr", &adc->dev_addr);
/*
* Fallback to "device-addr" due to historical mismatch between
* dt-bindings and implementation
*/
if (ret)
device_property_read_u32(dev, "device-addr", &adc->dev_addr);
if (adc->dev_addr > 3) {
return dev_err_probe(dev, -EINVAL,
"invalid device address (%i). Must be in range 0-3.\n",
adc->dev_addr);
}
dev_dbg(dev, "use device address %i\n", adc->dev_addr);
ret = mcp3911_read(adc, MCP3911_REG_CONFIG, &regval, 2);
if (ret)
return ret;
regval &= ~MCP3911_CONFIG_VREFEXT;
if (adc->vref) {
dev_dbg(dev, "use external voltage reference\n");
regval |= FIELD_PREP(MCP3911_CONFIG_VREFEXT, 1);
} else {
dev_dbg(dev, "use internal voltage reference (1.2V)\n");
regval |= FIELD_PREP(MCP3911_CONFIG_VREFEXT, 0);
}
regval &= ~MCP3911_CONFIG_CLKEXT;
if (adc->clki) {
dev_dbg(dev, "use external clock as clocksource\n");
regval |= FIELD_PREP(MCP3911_CONFIG_CLKEXT, 1);
} else {
dev_dbg(dev, "use crystal oscillator as clocksource\n");
regval |= FIELD_PREP(MCP3911_CONFIG_CLKEXT, 0);
}
ret = mcp3911_write(adc, MCP3911_REG_CONFIG, regval, 2);
if (ret)
return ret;
ret = mcp3911_read(adc, MCP3911_REG_STATUSCOM, &regval, 2);
if (ret)
return ret;
/* Address counter incremented, cycle through register types */
regval &= ~MCP3911_STATUSCOM_READ;
regval |= FIELD_PREP(MCP3911_STATUSCOM_READ, 0x02);
return mcp3911_write(adc, MCP3911_REG_STATUSCOM, regval, 2);
}
static void mcp3911_cleanup_regulator(void *vref)
{
regulator_disable(vref);
}
static int mcp3911_set_trigger_state(struct iio_trigger *trig, bool enable)
{
struct mcp3911 *adc = iio_trigger_get_drvdata(trig);
if (enable)
enable_irq(adc->spi->irq);
else
disable_irq(adc->spi->irq);
return 0;
}
static const struct iio_trigger_ops mcp3911_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
.set_trigger_state = mcp3911_set_trigger_state,
};
static int mcp3911_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct mcp3911 *adc;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->spi = spi;
adc->vref = devm_regulator_get_optional(dev, "vref");
if (IS_ERR(adc->vref)) {
if (PTR_ERR(adc->vref) == -ENODEV) {
adc->vref = NULL;
} else {
return dev_err_probe(dev, PTR_ERR(adc->vref), "failed to get regulator\n");
}
} else {
ret = regulator_enable(adc->vref);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, mcp3911_cleanup_regulator, adc->vref);
if (ret)
return ret;
}
adc->clki = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(adc->clki)) {
if (PTR_ERR(adc->clki) == -ENOENT) {
adc->clki = NULL;
} else {
return dev_err_probe(dev, PTR_ERR(adc->clki), "failed to get adc clk\n");
}
}
ret = mcp3911_config(adc);
if (ret)
return ret;
if (device_property_read_bool(dev, "microchip,data-ready-hiz"))
ret = mcp3911_update(adc, MCP3911_REG_STATUSCOM, MCP3911_STATUSCOM_DRHIZ,
0, 2);
else
ret = mcp3911_update(adc, MCP3911_REG_STATUSCOM, MCP3911_STATUSCOM_DRHIZ,
MCP3911_STATUSCOM_DRHIZ, 2);
if (ret)
return ret;
ret = mcp3911_calc_scale_table(adc);
if (ret)
return ret;
/* Set gain to 1 for all channels */
for (int i = 0; i < MCP3911_NUM_CHANNELS; i++) {
adc->gain[i] = 1;
ret = mcp3911_update(adc, MCP3911_REG_GAIN,
MCP3911_GAIN_MASK(i),
MCP3911_GAIN_VAL(i, 0), 1);
if (ret)
return ret;
}
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mcp3911_info;
spi_set_drvdata(spi, indio_dev);
indio_dev->channels = mcp3911_channels;
indio_dev->num_channels = ARRAY_SIZE(mcp3911_channels);
mutex_init(&adc->lock);
if (spi->irq > 0) {
adc->trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name,
iio_device_id(indio_dev));
if (!adc->trig)
return -ENOMEM;
adc->trig->ops = &mcp3911_trigger_ops;
iio_trigger_set_drvdata(adc->trig, adc);
ret = devm_iio_trigger_register(dev, adc->trig);
if (ret)
return ret;
/*
* The device generates interrupts as long as it is powered up.
* Some platforms might not allow the option to power it down so
* don't enable the interrupt to avoid extra load on the system.
*/
ret = devm_request_irq(dev, spi->irq, &iio_trigger_generic_data_rdy_poll,
IRQF_NO_AUTOEN | IRQF_ONESHOT,
indio_dev->name, adc->trig);
if (ret)
return ret;
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
mcp3911_trigger_handler, NULL);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id mcp3911_dt_ids[] = {
{ .compatible = "microchip,mcp3911" },
{ }
};
MODULE_DEVICE_TABLE(of, mcp3911_dt_ids);
static const struct spi_device_id mcp3911_id[] = {
{ "mcp3911", 0 },
{ }
};
MODULE_DEVICE_TABLE(spi, mcp3911_id);
static struct spi_driver mcp3911_driver = {
.driver = {
.name = "mcp3911",
.of_match_table = mcp3911_dt_ids,
},
.probe = mcp3911_probe,
.id_table = mcp3911_id,
};
module_spi_driver(mcp3911_driver);
MODULE_AUTHOR("Marcus Folkesson <marcus.folkesson@gmail.com>");
MODULE_AUTHOR("Kent Gustavsson <kent@minoris.se>");
MODULE_DESCRIPTION("Microchip Technology MCP3911");
MODULE_LICENSE("GPL v2");