fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/* netfs cookie management
|
|
|
|
*
|
|
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* See Documentation/filesystems/caching/netfs-api.rst for more information on
|
|
|
|
* the netfs API.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define FSCACHE_DEBUG_LEVEL COOKIE
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
struct kmem_cache *fscache_cookie_jar;
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
static void fscache_cookie_worker(struct work_struct *work);
|
|
|
|
static void fscache_unhash_cookie(struct fscache_cookie *cookie);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
|
|
|
|
#define fscache_cookie_hash_shift 15
|
|
|
|
static struct hlist_bl_head fscache_cookie_hash[1 << fscache_cookie_hash_shift];
|
|
|
|
static LIST_HEAD(fscache_cookies);
|
|
|
|
static DEFINE_RWLOCK(fscache_cookies_lock);
|
|
|
|
static const char fscache_cookie_states[FSCACHE_COOKIE_STATE__NR] = "-LCAFWRD";
|
|
|
|
|
|
|
|
void fscache_print_cookie(struct fscache_cookie *cookie, char prefix)
|
|
|
|
{
|
|
|
|
const u8 *k;
|
|
|
|
|
|
|
|
pr_err("%c-cookie c=%08x [fl=%lx na=%u nA=%u s=%c]\n",
|
|
|
|
prefix,
|
|
|
|
cookie->debug_id,
|
|
|
|
cookie->flags,
|
|
|
|
atomic_read(&cookie->n_active),
|
|
|
|
atomic_read(&cookie->n_accesses),
|
|
|
|
fscache_cookie_states[cookie->state]);
|
|
|
|
pr_err("%c-cookie V=%08x [%s]\n",
|
|
|
|
prefix,
|
|
|
|
cookie->volume->debug_id,
|
|
|
|
cookie->volume->key);
|
|
|
|
|
|
|
|
k = (cookie->key_len <= sizeof(cookie->inline_key)) ?
|
|
|
|
cookie->inline_key : cookie->key;
|
|
|
|
pr_err("%c-key=[%u] '%*phN'\n", prefix, cookie->key_len, cookie->key_len, k);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fscache_free_cookie(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
if (WARN_ON_ONCE(test_bit(FSCACHE_COOKIE_IS_HASHED, &cookie->flags))) {
|
|
|
|
fscache_print_cookie(cookie, 'F');
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
write_lock(&fscache_cookies_lock);
|
|
|
|
list_del(&cookie->proc_link);
|
|
|
|
write_unlock(&fscache_cookies_lock);
|
|
|
|
if (cookie->aux_len > sizeof(cookie->inline_aux))
|
|
|
|
kfree(cookie->aux);
|
|
|
|
if (cookie->key_len > sizeof(cookie->inline_key))
|
|
|
|
kfree(cookie->key);
|
|
|
|
fscache_stat_d(&fscache_n_cookies);
|
|
|
|
kmem_cache_free(fscache_cookie_jar, cookie);
|
|
|
|
}
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
static void __fscache_queue_cookie(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
if (!queue_work(fscache_wq, &cookie->work))
|
|
|
|
fscache_put_cookie(cookie, fscache_cookie_put_over_queued);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fscache_queue_cookie(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_cookie_trace where)
|
|
|
|
{
|
|
|
|
fscache_get_cookie(cookie, where);
|
|
|
|
__fscache_queue_cookie(cookie);
|
|
|
|
}
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
/*
|
|
|
|
* Initialise the access gate on a cookie by setting a flag to prevent the
|
|
|
|
* state machine from being queued when the access counter transitions to 0.
|
|
|
|
* We're only interested in this when we withdraw caching services from the
|
|
|
|
* cookie.
|
|
|
|
*/
|
|
|
|
static void fscache_init_access_gate(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
int n_accesses;
|
|
|
|
|
|
|
|
n_accesses = atomic_read(&cookie->n_accesses);
|
|
|
|
trace_fscache_access(cookie->debug_id, refcount_read(&cookie->ref),
|
|
|
|
n_accesses, fscache_access_cache_pin);
|
|
|
|
set_bit(FSCACHE_COOKIE_NO_ACCESS_WAKE, &cookie->flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscache_end_cookie_access - Unpin a cache at the end of an access.
|
|
|
|
* @cookie: A data file cookie
|
|
|
|
* @why: An indication of the circumstances of the access for tracing
|
|
|
|
*
|
|
|
|
* Unpin a cache cookie after we've accessed it and bring a deferred
|
|
|
|
* relinquishment or withdrawal state into effect.
|
|
|
|
*
|
|
|
|
* The @why indicator is provided for tracing purposes.
|
|
|
|
*/
|
|
|
|
void fscache_end_cookie_access(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_access_trace why)
|
|
|
|
{
|
|
|
|
int n_accesses;
|
|
|
|
|
|
|
|
smp_mb__before_atomic();
|
|
|
|
n_accesses = atomic_dec_return(&cookie->n_accesses);
|
|
|
|
trace_fscache_access(cookie->debug_id, refcount_read(&cookie->ref),
|
|
|
|
n_accesses, why);
|
|
|
|
if (n_accesses == 0 &&
|
2021-10-20 15:53:34 +01:00
|
|
|
!test_bit(FSCACHE_COOKIE_NO_ACCESS_WAKE, &cookie->flags))
|
|
|
|
fscache_queue_cookie(cookie, fscache_cookie_get_end_access);
|
2021-10-20 15:53:34 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_end_cookie_access);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pin the cache behind a cookie so that we can access it.
|
|
|
|
*/
|
|
|
|
static void __fscache_begin_cookie_access(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_access_trace why)
|
|
|
|
{
|
|
|
|
int n_accesses;
|
|
|
|
|
|
|
|
n_accesses = atomic_inc_return(&cookie->n_accesses);
|
|
|
|
smp_mb__after_atomic(); /* (Future) read state after is-caching.
|
|
|
|
* Reread n_accesses after is-caching
|
|
|
|
*/
|
|
|
|
trace_fscache_access(cookie->debug_id, refcount_read(&cookie->ref),
|
|
|
|
n_accesses, why);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscache_begin_cookie_access - Pin a cache so data can be accessed
|
|
|
|
* @cookie: A data file cookie
|
|
|
|
* @why: An indication of the circumstances of the access for tracing
|
|
|
|
*
|
|
|
|
* Attempt to pin the cache to prevent it from going away whilst we're
|
|
|
|
* accessing data and returns true if successful. This works as follows:
|
|
|
|
*
|
|
|
|
* (1) If the cookie is not being cached (ie. FSCACHE_COOKIE_IS_CACHING is not
|
|
|
|
* set), we return false to indicate access was not permitted.
|
|
|
|
*
|
|
|
|
* (2) If the cookie is being cached, we increment its n_accesses count and
|
|
|
|
* then recheck the IS_CACHING flag, ending the access if it got cleared.
|
|
|
|
*
|
|
|
|
* (3) When we end the access, we decrement the cookie's n_accesses and wake
|
|
|
|
* up the any waiters if it reaches 0.
|
|
|
|
*
|
|
|
|
* (4) Whilst the cookie is actively being cached, its n_accesses is kept
|
|
|
|
* artificially incremented to prevent wakeups from happening.
|
|
|
|
*
|
|
|
|
* (5) When the cache is taken offline or if the cookie is culled, the flag is
|
|
|
|
* cleared to prevent new accesses, the cookie's n_accesses is decremented
|
|
|
|
* and we wait for it to become 0.
|
|
|
|
*
|
|
|
|
* The @why indicator are merely provided for tracing purposes.
|
|
|
|
*/
|
|
|
|
bool fscache_begin_cookie_access(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_access_trace why)
|
|
|
|
{
|
|
|
|
if (!test_bit(FSCACHE_COOKIE_IS_CACHING, &cookie->flags))
|
|
|
|
return false;
|
|
|
|
__fscache_begin_cookie_access(cookie, why);
|
|
|
|
if (!test_bit(FSCACHE_COOKIE_IS_CACHING, &cookie->flags) ||
|
|
|
|
!fscache_cache_is_live(cookie->volume->cache)) {
|
|
|
|
fscache_end_cookie_access(cookie, fscache_access_unlive);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
static inline void wake_up_cookie_state(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
/* Use a barrier to ensure that waiters see the state variable
|
|
|
|
* change, as spin_unlock doesn't guarantee a barrier.
|
|
|
|
*
|
|
|
|
* See comments over wake_up_bit() and waitqueue_active().
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
wake_up_var(&cookie->state);
|
|
|
|
}
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
/*
|
|
|
|
* Change the state a cookie is at and wake up anyone waiting for that. Impose
|
|
|
|
* an ordering between the stuff stored in the cookie and the state member.
|
|
|
|
* Paired with fscache_cookie_state().
|
|
|
|
*/
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
static void __fscache_set_cookie_state(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_cookie_state state)
|
|
|
|
{
|
2021-10-20 15:53:34 +01:00
|
|
|
smp_store_release(&cookie->state, state);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
}
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
static void fscache_set_cookie_state(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_cookie_state state)
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
{
|
|
|
|
spin_lock(&cookie->lock);
|
2021-10-20 15:53:34 +01:00
|
|
|
__fscache_set_cookie_state(cookie, state);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
spin_unlock(&cookie->lock);
|
2021-10-20 15:53:34 +01:00
|
|
|
wake_up_cookie_state(cookie);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscache_cookie_lookup_negative - Note negative lookup
|
|
|
|
* @cookie: The cookie that was being looked up
|
|
|
|
*
|
|
|
|
* Note that some part of the metadata path in the cache doesn't exist and so
|
|
|
|
* we can release any waiting readers in the certain knowledge that there's
|
|
|
|
* nothing for them to actually read.
|
|
|
|
*
|
|
|
|
* This function uses no locking and must only be called from the state machine.
|
|
|
|
*/
|
|
|
|
void fscache_cookie_lookup_negative(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
set_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags);
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_CREATING);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_cookie_lookup_negative);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscache_caching_failed - Report that a failure stopped caching on a cookie
|
|
|
|
* @cookie: The cookie that was affected
|
|
|
|
*
|
|
|
|
* Tell fscache that caching on a cookie needs to be stopped due to some sort
|
|
|
|
* of failure.
|
|
|
|
*
|
|
|
|
* This function uses no locking and must only be called from the state machine.
|
|
|
|
*/
|
|
|
|
void fscache_caching_failed(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
clear_bit(FSCACHE_COOKIE_IS_CACHING, &cookie->flags);
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_FAILED);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
}
|
2021-10-20 15:53:34 +01:00
|
|
|
EXPORT_SYMBOL(fscache_caching_failed);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the index key in a cookie. The cookie struct has space for a 16-byte
|
|
|
|
* key plus length and hash, but if that's not big enough, it's instead a
|
|
|
|
* pointer to a buffer containing 3 bytes of hash, 1 byte of length and then
|
|
|
|
* the key data.
|
|
|
|
*/
|
|
|
|
static int fscache_set_key(struct fscache_cookie *cookie,
|
|
|
|
const void *index_key, size_t index_key_len)
|
|
|
|
{
|
|
|
|
void *buf;
|
|
|
|
size_t buf_size;
|
|
|
|
|
|
|
|
buf_size = round_up(index_key_len, sizeof(__le32));
|
|
|
|
|
|
|
|
if (index_key_len > sizeof(cookie->inline_key)) {
|
|
|
|
buf = kzalloc(buf_size, GFP_KERNEL);
|
|
|
|
if (!buf)
|
|
|
|
return -ENOMEM;
|
|
|
|
cookie->key = buf;
|
|
|
|
} else {
|
|
|
|
buf = cookie->inline_key;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(buf, index_key, index_key_len);
|
|
|
|
cookie->key_hash = fscache_hash(cookie->volume->key_hash,
|
|
|
|
buf, buf_size);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool fscache_cookie_same(const struct fscache_cookie *a,
|
|
|
|
const struct fscache_cookie *b)
|
|
|
|
{
|
|
|
|
const void *ka, *kb;
|
|
|
|
|
|
|
|
if (a->key_hash != b->key_hash ||
|
|
|
|
a->volume != b->volume ||
|
|
|
|
a->key_len != b->key_len)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (a->key_len <= sizeof(a->inline_key)) {
|
|
|
|
ka = &a->inline_key;
|
|
|
|
kb = &b->inline_key;
|
|
|
|
} else {
|
|
|
|
ka = a->key;
|
|
|
|
kb = b->key;
|
|
|
|
}
|
|
|
|
return memcmp(ka, kb, a->key_len) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static atomic_t fscache_cookie_debug_id = ATOMIC_INIT(1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a cookie.
|
|
|
|
*/
|
|
|
|
static struct fscache_cookie *fscache_alloc_cookie(
|
|
|
|
struct fscache_volume *volume,
|
|
|
|
u8 advice,
|
|
|
|
const void *index_key, size_t index_key_len,
|
|
|
|
const void *aux_data, size_t aux_data_len,
|
|
|
|
loff_t object_size)
|
|
|
|
{
|
|
|
|
struct fscache_cookie *cookie;
|
|
|
|
|
|
|
|
/* allocate and initialise a cookie */
|
|
|
|
cookie = kmem_cache_zalloc(fscache_cookie_jar, GFP_KERNEL);
|
|
|
|
if (!cookie)
|
|
|
|
return NULL;
|
|
|
|
fscache_stat(&fscache_n_cookies);
|
|
|
|
|
|
|
|
cookie->volume = volume;
|
|
|
|
cookie->advice = advice;
|
|
|
|
cookie->key_len = index_key_len;
|
|
|
|
cookie->aux_len = aux_data_len;
|
|
|
|
cookie->object_size = object_size;
|
|
|
|
if (object_size == 0)
|
|
|
|
__set_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags);
|
|
|
|
|
|
|
|
if (fscache_set_key(cookie, index_key, index_key_len) < 0)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
if (cookie->aux_len <= sizeof(cookie->inline_aux)) {
|
|
|
|
memcpy(cookie->inline_aux, aux_data, cookie->aux_len);
|
|
|
|
} else {
|
|
|
|
cookie->aux = kmemdup(aux_data, cookie->aux_len, GFP_KERNEL);
|
|
|
|
if (!cookie->aux)
|
|
|
|
goto nomem;
|
|
|
|
}
|
|
|
|
|
|
|
|
refcount_set(&cookie->ref, 1);
|
|
|
|
cookie->debug_id = atomic_inc_return(&fscache_cookie_debug_id);
|
|
|
|
spin_lock_init(&cookie->lock);
|
|
|
|
INIT_LIST_HEAD(&cookie->commit_link);
|
2021-10-20 15:53:34 +01:00
|
|
|
INIT_WORK(&cookie->work, fscache_cookie_worker);
|
|
|
|
__fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_QUIESCENT);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
|
|
|
|
write_lock(&fscache_cookies_lock);
|
|
|
|
list_add_tail(&cookie->proc_link, &fscache_cookies);
|
|
|
|
write_unlock(&fscache_cookies_lock);
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_new_acquire);
|
|
|
|
return cookie;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
fscache_free_cookie(cookie);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fscache_wait_on_collision(struct fscache_cookie *candidate,
|
|
|
|
struct fscache_cookie *wait_for)
|
|
|
|
{
|
|
|
|
enum fscache_cookie_state *statep = &wait_for->state;
|
|
|
|
|
|
|
|
wait_var_event_timeout(statep, READ_ONCE(*statep) == FSCACHE_COOKIE_STATE_DROPPED,
|
|
|
|
20 * HZ);
|
|
|
|
if (READ_ONCE(*statep) != FSCACHE_COOKIE_STATE_DROPPED) {
|
|
|
|
pr_notice("Potential collision c=%08x old: c=%08x",
|
|
|
|
candidate->debug_id, wait_for->debug_id);
|
|
|
|
wait_var_event(statep, READ_ONCE(*statep) == FSCACHE_COOKIE_STATE_DROPPED);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attempt to insert the new cookie into the hash. If there's a collision, we
|
|
|
|
* wait for the old cookie to complete if it's being relinquished and an error
|
|
|
|
* otherwise.
|
|
|
|
*/
|
|
|
|
static bool fscache_hash_cookie(struct fscache_cookie *candidate)
|
|
|
|
{
|
|
|
|
struct fscache_cookie *cursor, *wait_for = NULL;
|
|
|
|
struct hlist_bl_head *h;
|
|
|
|
struct hlist_bl_node *p;
|
|
|
|
unsigned int bucket;
|
|
|
|
|
|
|
|
bucket = candidate->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
|
|
|
|
h = &fscache_cookie_hash[bucket];
|
|
|
|
|
|
|
|
hlist_bl_lock(h);
|
|
|
|
hlist_bl_for_each_entry(cursor, p, h, hash_link) {
|
|
|
|
if (fscache_cookie_same(candidate, cursor)) {
|
|
|
|
if (!test_bit(FSCACHE_COOKIE_RELINQUISHED, &cursor->flags))
|
|
|
|
goto collision;
|
|
|
|
wait_for = fscache_get_cookie(cursor,
|
|
|
|
fscache_cookie_get_hash_collision);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fscache_get_volume(candidate->volume, fscache_volume_get_cookie);
|
|
|
|
atomic_inc(&candidate->volume->n_cookies);
|
|
|
|
hlist_bl_add_head(&candidate->hash_link, h);
|
|
|
|
set_bit(FSCACHE_COOKIE_IS_HASHED, &candidate->flags);
|
|
|
|
hlist_bl_unlock(h);
|
|
|
|
|
|
|
|
if (wait_for) {
|
|
|
|
fscache_wait_on_collision(candidate, wait_for);
|
|
|
|
fscache_put_cookie(wait_for, fscache_cookie_put_hash_collision);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
|
|
|
|
collision:
|
|
|
|
trace_fscache_cookie(cursor->debug_id, refcount_read(&cursor->ref),
|
|
|
|
fscache_cookie_collision);
|
|
|
|
pr_err("Duplicate cookie detected\n");
|
|
|
|
fscache_print_cookie(cursor, 'O');
|
|
|
|
fscache_print_cookie(candidate, 'N');
|
|
|
|
hlist_bl_unlock(h);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Request a cookie to represent a data storage object within a volume.
|
|
|
|
*
|
|
|
|
* We never let on to the netfs about errors. We may set a negative cookie
|
|
|
|
* pointer, but that's okay
|
|
|
|
*/
|
|
|
|
struct fscache_cookie *__fscache_acquire_cookie(
|
|
|
|
struct fscache_volume *volume,
|
|
|
|
u8 advice,
|
|
|
|
const void *index_key, size_t index_key_len,
|
|
|
|
const void *aux_data, size_t aux_data_len,
|
|
|
|
loff_t object_size)
|
|
|
|
{
|
|
|
|
struct fscache_cookie *cookie;
|
|
|
|
|
|
|
|
_enter("V=%x", volume->debug_id);
|
|
|
|
|
|
|
|
if (!index_key || !index_key_len || index_key_len > 255 || aux_data_len > 255)
|
|
|
|
return NULL;
|
|
|
|
if (!aux_data || !aux_data_len) {
|
|
|
|
aux_data = NULL;
|
|
|
|
aux_data_len = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
fscache_stat(&fscache_n_acquires);
|
|
|
|
|
|
|
|
cookie = fscache_alloc_cookie(volume, advice,
|
|
|
|
index_key, index_key_len,
|
|
|
|
aux_data, aux_data_len,
|
|
|
|
object_size);
|
|
|
|
if (!cookie) {
|
|
|
|
fscache_stat(&fscache_n_acquires_oom);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!fscache_hash_cookie(cookie)) {
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_discard);
|
|
|
|
fscache_free_cookie(cookie);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
trace_fscache_acquire(cookie);
|
|
|
|
fscache_stat(&fscache_n_acquires_ok);
|
|
|
|
_leave(" = c=%08x", cookie->debug_id);
|
|
|
|
return cookie;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__fscache_acquire_cookie);
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
/*
|
|
|
|
* Prepare a cache object to be written to.
|
|
|
|
*/
|
|
|
|
static void fscache_prepare_to_write(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
cookie->volume->cache->ops->prepare_to_write(cookie);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look up a cookie in the cache.
|
|
|
|
*/
|
|
|
|
static void fscache_perform_lookup(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
enum fscache_access_trace trace = fscache_access_lookup_cookie_end_failed;
|
|
|
|
bool need_withdraw = false;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
if (!cookie->volume->cache_priv) {
|
|
|
|
fscache_create_volume(cookie->volume, true);
|
|
|
|
if (!cookie->volume->cache_priv) {
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_QUIESCENT);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!cookie->volume->cache->ops->lookup_cookie(cookie)) {
|
|
|
|
if (cookie->state != FSCACHE_COOKIE_STATE_FAILED)
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_QUIESCENT);
|
|
|
|
need_withdraw = true;
|
|
|
|
_leave(" [fail]");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_see_active);
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_ACTIVE);
|
|
|
|
trace = fscache_access_lookup_cookie_end;
|
|
|
|
|
|
|
|
out:
|
|
|
|
fscache_end_cookie_access(cookie, trace);
|
|
|
|
if (need_withdraw)
|
|
|
|
fscache_withdraw_cookie(cookie);
|
|
|
|
fscache_end_volume_access(cookie->volume, cookie, trace);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform work upon the cookie, such as committing its cache state,
|
|
|
|
* relinquishing it or withdrawing the backing cache. We're protected from the
|
|
|
|
* cache going away under us as object withdrawal must come through this
|
|
|
|
* non-reentrant work item.
|
|
|
|
*/
|
|
|
|
static void fscache_cookie_state_machine(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
enum fscache_cookie_state state;
|
|
|
|
bool wake = false;
|
|
|
|
|
|
|
|
_enter("c=%x", cookie->debug_id);
|
|
|
|
|
|
|
|
again:
|
|
|
|
spin_lock(&cookie->lock);
|
|
|
|
again_locked:
|
|
|
|
state = cookie->state;
|
|
|
|
switch (state) {
|
|
|
|
case FSCACHE_COOKIE_STATE_QUIESCENT:
|
|
|
|
/* The QUIESCENT state is jumped to the LOOKING_UP state by
|
|
|
|
* fscache_use_cookie().
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (atomic_read(&cookie->n_accesses) == 0 &&
|
|
|
|
test_bit(FSCACHE_COOKIE_DO_RELINQUISH, &cookie->flags)) {
|
|
|
|
__fscache_set_cookie_state(cookie,
|
|
|
|
FSCACHE_COOKIE_STATE_RELINQUISHING);
|
|
|
|
wake = true;
|
|
|
|
goto again_locked;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case FSCACHE_COOKIE_STATE_LOOKING_UP:
|
|
|
|
spin_unlock(&cookie->lock);
|
|
|
|
fscache_init_access_gate(cookie);
|
|
|
|
fscache_perform_lookup(cookie);
|
|
|
|
goto again;
|
|
|
|
|
|
|
|
case FSCACHE_COOKIE_STATE_ACTIVE:
|
|
|
|
if (test_and_clear_bit(FSCACHE_COOKIE_DO_PREP_TO_WRITE, &cookie->flags)) {
|
|
|
|
spin_unlock(&cookie->lock);
|
|
|
|
fscache_prepare_to_write(cookie);
|
|
|
|
spin_lock(&cookie->lock);
|
|
|
|
}
|
|
|
|
fallthrough;
|
|
|
|
|
|
|
|
case FSCACHE_COOKIE_STATE_FAILED:
|
|
|
|
if (atomic_read(&cookie->n_accesses) != 0)
|
|
|
|
break;
|
|
|
|
if (test_bit(FSCACHE_COOKIE_DO_RELINQUISH, &cookie->flags)) {
|
|
|
|
__fscache_set_cookie_state(cookie,
|
|
|
|
FSCACHE_COOKIE_STATE_RELINQUISHING);
|
|
|
|
wake = true;
|
|
|
|
goto again_locked;
|
|
|
|
}
|
|
|
|
if (test_bit(FSCACHE_COOKIE_DO_WITHDRAW, &cookie->flags)) {
|
|
|
|
__fscache_set_cookie_state(cookie,
|
|
|
|
FSCACHE_COOKIE_STATE_WITHDRAWING);
|
|
|
|
wake = true;
|
|
|
|
goto again_locked;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case FSCACHE_COOKIE_STATE_RELINQUISHING:
|
|
|
|
case FSCACHE_COOKIE_STATE_WITHDRAWING:
|
|
|
|
if (cookie->cache_priv) {
|
|
|
|
spin_unlock(&cookie->lock);
|
|
|
|
cookie->volume->cache->ops->withdraw_cookie(cookie);
|
|
|
|
spin_lock(&cookie->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case FSCACHE_COOKIE_STATE_RELINQUISHING:
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_see_relinquish);
|
|
|
|
fscache_unhash_cookie(cookie);
|
|
|
|
__fscache_set_cookie_state(cookie,
|
|
|
|
FSCACHE_COOKIE_STATE_DROPPED);
|
|
|
|
wake = true;
|
|
|
|
goto out;
|
|
|
|
case FSCACHE_COOKIE_STATE_WITHDRAWING:
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_see_withdraw);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
clear_bit(FSCACHE_COOKIE_NEEDS_UPDATE, &cookie->flags);
|
|
|
|
clear_bit(FSCACHE_COOKIE_DO_WITHDRAW, &cookie->flags);
|
|
|
|
clear_bit(FSCACHE_COOKIE_DO_LRU_DISCARD, &cookie->flags);
|
|
|
|
clear_bit(FSCACHE_COOKIE_DO_PREP_TO_WRITE, &cookie->flags);
|
|
|
|
set_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags);
|
|
|
|
__fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_QUIESCENT);
|
|
|
|
wake = true;
|
|
|
|
goto again_locked;
|
|
|
|
|
|
|
|
case FSCACHE_COOKIE_STATE_DROPPED:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
WARN_ONCE(1, "Cookie %x in unexpected state %u\n",
|
|
|
|
cookie->debug_id, state);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(&cookie->lock);
|
|
|
|
if (wake)
|
|
|
|
wake_up_cookie_state(cookie);
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fscache_cookie_worker(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct fscache_cookie *cookie = container_of(work, struct fscache_cookie, work);
|
|
|
|
|
|
|
|
fscache_see_cookie(cookie, fscache_cookie_see_work);
|
|
|
|
fscache_cookie_state_machine(cookie);
|
|
|
|
fscache_put_cookie(cookie, fscache_cookie_put_work);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for the object to become inactive. The cookie's work item will be
|
|
|
|
* scheduled when someone transitions n_accesses to 0 - but if someone's
|
|
|
|
* already done that, schedule it anyway.
|
|
|
|
*/
|
|
|
|
static void __fscache_withdraw_cookie(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
int n_accesses;
|
|
|
|
bool unpinned;
|
|
|
|
|
|
|
|
unpinned = test_and_clear_bit(FSCACHE_COOKIE_NO_ACCESS_WAKE, &cookie->flags);
|
|
|
|
|
|
|
|
/* Need to read the access count after unpinning */
|
|
|
|
n_accesses = atomic_read(&cookie->n_accesses);
|
|
|
|
if (unpinned)
|
|
|
|
trace_fscache_access(cookie->debug_id, refcount_read(&cookie->ref),
|
|
|
|
n_accesses, fscache_access_cache_unpin);
|
|
|
|
if (n_accesses == 0)
|
|
|
|
fscache_queue_cookie(cookie, fscache_cookie_get_end_access);
|
|
|
|
}
|
|
|
|
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
/*
|
|
|
|
* Remove a cookie from the hash table.
|
|
|
|
*/
|
|
|
|
static void fscache_unhash_cookie(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
struct hlist_bl_head *h;
|
|
|
|
unsigned int bucket;
|
|
|
|
|
|
|
|
bucket = cookie->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
|
|
|
|
h = &fscache_cookie_hash[bucket];
|
|
|
|
|
|
|
|
hlist_bl_lock(h);
|
|
|
|
hlist_bl_del(&cookie->hash_link);
|
|
|
|
clear_bit(FSCACHE_COOKIE_IS_HASHED, &cookie->flags);
|
|
|
|
hlist_bl_unlock(h);
|
2021-10-20 15:53:34 +01:00
|
|
|
fscache_stat(&fscache_n_relinquishes_dropped);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
}
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
static void fscache_drop_withdraw_cookie(struct fscache_cookie *cookie)
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
{
|
2021-10-20 15:53:34 +01:00
|
|
|
__fscache_withdraw_cookie(cookie);
|
|
|
|
}
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
/**
|
|
|
|
* fscache_withdraw_cookie - Mark a cookie for withdrawal
|
|
|
|
* @cookie: The cookie to be withdrawn.
|
|
|
|
*
|
|
|
|
* Allow the cache backend to withdraw the backing for a cookie for its own
|
|
|
|
* reasons, even if that cookie is in active use.
|
|
|
|
*/
|
|
|
|
void fscache_withdraw_cookie(struct fscache_cookie *cookie)
|
|
|
|
{
|
|
|
|
set_bit(FSCACHE_COOKIE_DO_WITHDRAW, &cookie->flags);
|
|
|
|
fscache_drop_withdraw_cookie(cookie);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
}
|
2021-10-20 15:53:34 +01:00
|
|
|
EXPORT_SYMBOL(fscache_withdraw_cookie);
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow the netfs to release a cookie back to the cache.
|
|
|
|
* - the object will be marked as recyclable on disk if retire is true
|
|
|
|
*/
|
|
|
|
void __fscache_relinquish_cookie(struct fscache_cookie *cookie, bool retire)
|
|
|
|
{
|
|
|
|
fscache_stat(&fscache_n_relinquishes);
|
|
|
|
if (retire)
|
|
|
|
fscache_stat(&fscache_n_relinquishes_retire);
|
|
|
|
|
|
|
|
_enter("c=%08x{%d},%d",
|
|
|
|
cookie->debug_id, atomic_read(&cookie->n_active), retire);
|
|
|
|
|
|
|
|
if (WARN(test_and_set_bit(FSCACHE_COOKIE_RELINQUISHED, &cookie->flags),
|
|
|
|
"Cookie c=%x already relinquished\n", cookie->debug_id))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (retire)
|
|
|
|
set_bit(FSCACHE_COOKIE_RETIRED, &cookie->flags);
|
|
|
|
trace_fscache_relinquish(cookie, retire);
|
|
|
|
|
|
|
|
ASSERTCMP(atomic_read(&cookie->n_active), ==, 0);
|
|
|
|
ASSERTCMP(atomic_read(&cookie->volume->n_cookies), >, 0);
|
|
|
|
atomic_dec(&cookie->volume->n_cookies);
|
|
|
|
|
2021-10-20 15:53:34 +01:00
|
|
|
if (test_bit(FSCACHE_COOKIE_HAS_BEEN_CACHED, &cookie->flags)) {
|
|
|
|
set_bit(FSCACHE_COOKIE_DO_RELINQUISH, &cookie->flags);
|
|
|
|
fscache_drop_withdraw_cookie(cookie);
|
|
|
|
} else {
|
|
|
|
fscache_set_cookie_state(cookie, FSCACHE_COOKIE_STATE_DROPPED);
|
|
|
|
fscache_unhash_cookie(cookie);
|
|
|
|
}
|
fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem. It is intended that the
filesystem will create such cookies per-inode under a volume.
To request a cookie, the filesystem should call:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_volume *volume,
u8 advice,
const void *index_key,
size_t index_key_len,
const void *aux_data,
size_t aux_data_len,
loff_t object_size)
The filesystem must first have created a volume cookie, which is passed in
here. If it passes in NULL then the function will just return a NULL
cookie.
A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.
A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data. This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed. The data is stored in the cookie and will be
updateable by various functions in later patches.
The object_size must also be given. This is also used to perform a
coherency check and to size the backing storage appropriately.
This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.
When a network filesystem has finished with a cookie, it should call:
void
fscache_relinquish_cookie(struct fscache_volume *volume,
bool retire)
If retire is true, any backing data will be discarded immediately.
Changes
=======
ver #3:
- fscache_hash()'s size parameter is now in bytes. Use __le32 as the unit
to round up to.
- When comparing cookies, simply see if the attributes are the same rather
than subtracting them to produce a strcmp-style return[1].
- Add a check to see if the cookie is still hashed at the point of
freeing.
ver #2:
- Don't hold n_accesses elevated whilst cache is bound to a cookie, but
rather add a flag that prevents the state machine from being queued when
n_accesses reaches 0.
- Remove the unused cookie pointer field from the fscache_acquire
tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2021-10-20 15:53:34 +01:00
|
|
|
fscache_put_cookie(cookie, fscache_cookie_put_relinquish);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__fscache_relinquish_cookie);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Drop a reference to a cookie.
|
|
|
|
*/
|
|
|
|
void fscache_put_cookie(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_cookie_trace where)
|
|
|
|
{
|
|
|
|
struct fscache_volume *volume = cookie->volume;
|
|
|
|
unsigned int cookie_debug_id = cookie->debug_id;
|
|
|
|
bool zero;
|
|
|
|
int ref;
|
|
|
|
|
|
|
|
zero = __refcount_dec_and_test(&cookie->ref, &ref);
|
|
|
|
trace_fscache_cookie(cookie_debug_id, ref - 1, where);
|
|
|
|
if (zero) {
|
|
|
|
fscache_free_cookie(cookie);
|
|
|
|
fscache_put_volume(volume, fscache_volume_put_cookie);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_put_cookie);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get a reference to a cookie.
|
|
|
|
*/
|
|
|
|
struct fscache_cookie *fscache_get_cookie(struct fscache_cookie *cookie,
|
|
|
|
enum fscache_cookie_trace where)
|
|
|
|
{
|
|
|
|
int ref;
|
|
|
|
|
|
|
|
__refcount_inc(&cookie->ref, &ref);
|
|
|
|
trace_fscache_cookie(cookie->debug_id, ref + 1, where);
|
|
|
|
return cookie;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_get_cookie);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate a list of extant cookies in /proc/fs/fscache/cookies
|
|
|
|
*/
|
|
|
|
static int fscache_cookies_seq_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct fscache_cookie *cookie;
|
|
|
|
unsigned int keylen = 0, auxlen = 0;
|
|
|
|
u8 *p;
|
|
|
|
|
|
|
|
if (v == &fscache_cookies) {
|
|
|
|
seq_puts(m,
|
|
|
|
"COOKIE VOLUME REF ACT ACC S FL DEF \n"
|
|
|
|
"======== ======== === === === = == ================\n"
|
|
|
|
);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
cookie = list_entry(v, struct fscache_cookie, proc_link);
|
|
|
|
|
|
|
|
seq_printf(m,
|
|
|
|
"%08x %08x %3d %3d %3d %c %02lx",
|
|
|
|
cookie->debug_id,
|
|
|
|
cookie->volume->debug_id,
|
|
|
|
refcount_read(&cookie->ref),
|
|
|
|
atomic_read(&cookie->n_active),
|
|
|
|
atomic_read(&cookie->n_accesses),
|
|
|
|
fscache_cookie_states[cookie->state],
|
|
|
|
cookie->flags);
|
|
|
|
|
|
|
|
keylen = cookie->key_len;
|
|
|
|
auxlen = cookie->aux_len;
|
|
|
|
|
|
|
|
if (keylen > 0 || auxlen > 0) {
|
|
|
|
seq_puts(m, " ");
|
|
|
|
p = keylen <= sizeof(cookie->inline_key) ?
|
|
|
|
cookie->inline_key : cookie->key;
|
|
|
|
for (; keylen > 0; keylen--)
|
|
|
|
seq_printf(m, "%02x", *p++);
|
|
|
|
if (auxlen > 0) {
|
|
|
|
seq_puts(m, ", ");
|
|
|
|
p = auxlen <= sizeof(cookie->inline_aux) ?
|
|
|
|
cookie->inline_aux : cookie->aux;
|
|
|
|
for (; auxlen > 0; auxlen--)
|
|
|
|
seq_printf(m, "%02x", *p++);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
seq_puts(m, "\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *fscache_cookies_seq_start(struct seq_file *m, loff_t *_pos)
|
|
|
|
__acquires(fscache_cookies_lock)
|
|
|
|
{
|
|
|
|
read_lock(&fscache_cookies_lock);
|
|
|
|
return seq_list_start_head(&fscache_cookies, *_pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *fscache_cookies_seq_next(struct seq_file *m, void *v, loff_t *_pos)
|
|
|
|
{
|
|
|
|
return seq_list_next(v, &fscache_cookies, _pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fscache_cookies_seq_stop(struct seq_file *m, void *v)
|
|
|
|
__releases(rcu)
|
|
|
|
{
|
|
|
|
read_unlock(&fscache_cookies_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const struct seq_operations fscache_cookies_seq_ops = {
|
|
|
|
.start = fscache_cookies_seq_start,
|
|
|
|
.next = fscache_cookies_seq_next,
|
|
|
|
.stop = fscache_cookies_seq_stop,
|
|
|
|
.show = fscache_cookies_seq_show,
|
|
|
|
};
|