linux/drivers/spi/spi-ep93xx.c

779 lines
19 KiB
C
Raw Normal View History

/*
* Driver for Cirrus Logic EP93xx SPI controller.
*
* Copyright (C) 2010-2011 Mika Westerberg
*
* Explicit FIFO handling code was inspired by amba-pl022 driver.
*
* Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
*
* For more information about the SPI controller see documentation on Cirrus
* Logic web site:
* http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/platform_data/dma-ep93xx.h>
#include <linux/platform_data/spi-ep93xx.h>
#define SSPCR0 0x0000
#define SSPCR0_MODE_SHIFT 6
#define SSPCR0_SCR_SHIFT 8
#define SSPCR1 0x0004
#define SSPCR1_RIE BIT(0)
#define SSPCR1_TIE BIT(1)
#define SSPCR1_RORIE BIT(2)
#define SSPCR1_LBM BIT(3)
#define SSPCR1_SSE BIT(4)
#define SSPCR1_MS BIT(5)
#define SSPCR1_SOD BIT(6)
#define SSPDR 0x0008
#define SSPSR 0x000c
#define SSPSR_TFE BIT(0)
#define SSPSR_TNF BIT(1)
#define SSPSR_RNE BIT(2)
#define SSPSR_RFF BIT(3)
#define SSPSR_BSY BIT(4)
#define SSPCPSR 0x0010
#define SSPIIR 0x0014
#define SSPIIR_RIS BIT(0)
#define SSPIIR_TIS BIT(1)
#define SSPIIR_RORIS BIT(2)
#define SSPICR SSPIIR
/* timeout in milliseconds */
#define SPI_TIMEOUT 5
/* maximum depth of RX/TX FIFO */
#define SPI_FIFO_SIZE 8
/**
* struct ep93xx_spi - EP93xx SPI controller structure
* @clk: clock for the controller
* @mmio: pointer to ioremap()'d registers
* @sspdr_phys: physical address of the SSPDR register
* @tx: current byte in transfer to transmit
* @rx: current byte in transfer to receive
* @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
* frame decreases this level and sending one frame increases it.
* @dma_rx: RX DMA channel
* @dma_tx: TX DMA channel
* @dma_rx_data: RX parameters passed to the DMA engine
* @dma_tx_data: TX parameters passed to the DMA engine
* @rx_sgt: sg table for RX transfers
* @tx_sgt: sg table for TX transfers
* @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
* the client
*/
struct ep93xx_spi {
struct clk *clk;
void __iomem *mmio;
unsigned long sspdr_phys;
size_t tx;
size_t rx;
size_t fifo_level;
struct dma_chan *dma_rx;
struct dma_chan *dma_tx;
struct ep93xx_dma_data dma_rx_data;
struct ep93xx_dma_data dma_tx_data;
struct sg_table rx_sgt;
struct sg_table tx_sgt;
void *zeropage;
};
/* converts bits per word to CR0.DSS value */
#define bits_per_word_to_dss(bpw) ((bpw) - 1)
/**
* ep93xx_spi_calc_divisors() - calculates SPI clock divisors
* @master: SPI master
* @rate: desired SPI output clock rate
* @div_cpsr: pointer to return the cpsr (pre-scaler) divider
* @div_scr: pointer to return the scr divider
*/
static int ep93xx_spi_calc_divisors(struct spi_master *master,
u32 rate, u8 *div_cpsr, u8 *div_scr)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
unsigned long spi_clk_rate = clk_get_rate(espi->clk);
int cpsr, scr;
/*
* Make sure that max value is between values supported by the
* controller.
*/
rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
/*
* Calculate divisors so that we can get speed according the
* following formula:
* rate = spi_clock_rate / (cpsr * (1 + scr))
*
* cpsr must be even number and starts from 2, scr can be any number
* between 0 and 255.
*/
for (cpsr = 2; cpsr <= 254; cpsr += 2) {
for (scr = 0; scr <= 255; scr++) {
if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
*div_scr = (u8)scr;
*div_cpsr = (u8)cpsr;
return 0;
}
}
}
return -EINVAL;
}
static int ep93xx_spi_chip_setup(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
u8 div_cpsr = 0;
u8 div_scr = 0;
u16 cr0;
int err;
err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
&div_cpsr, &div_scr);
if (err)
return err;
cr0 = div_scr << SSPCR0_SCR_SHIFT;
cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
cr0 |= dss;
dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
spi->mode, div_cpsr, div_scr, dss);
dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
writel(div_cpsr, espi->mmio + SSPCPSR);
writel(cr0, espi->mmio + SSPCR0);
return 0;
}
static void ep93xx_do_write(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
u32 val = 0;
if (xfer->bits_per_word > 8) {
if (xfer->tx_buf)
val = ((u16 *)xfer->tx_buf)[espi->tx];
espi->tx += 2;
} else {
if (xfer->tx_buf)
val = ((u8 *)xfer->tx_buf)[espi->tx];
espi->tx += 1;
}
writel(val, espi->mmio + SSPDR);
}
static void ep93xx_do_read(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
u32 val;
val = readl(espi->mmio + SSPDR);
if (xfer->bits_per_word > 8) {
if (xfer->rx_buf)
((u16 *)xfer->rx_buf)[espi->rx] = val;
espi->rx += 2;
} else {
if (xfer->rx_buf)
((u8 *)xfer->rx_buf)[espi->rx] = val;
espi->rx += 1;
}
}
/**
* ep93xx_spi_read_write() - perform next RX/TX transfer
* @espi: ep93xx SPI controller struct
*
* This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
* called several times, the whole transfer will be completed. Returns
* %-EINPROGRESS when current transfer was not yet completed otherwise %0.
*
* When this function is finished, RX FIFO should be empty and TX FIFO should be
* full.
*/
static int ep93xx_spi_read_write(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
/* read as long as RX FIFO has frames in it */
while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
ep93xx_do_read(master);
espi->fifo_level--;
}
/* write as long as TX FIFO has room */
while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
ep93xx_do_write(master);
espi->fifo_level++;
}
if (espi->rx == xfer->len)
return 0;
return -EINPROGRESS;
}
/**
* ep93xx_spi_dma_prepare() - prepares a DMA transfer
* @master: SPI master
* @dir: DMA transfer direction
*
* Function configures the DMA, maps the buffer and prepares the DMA
* descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
* in case of failure.
*/
static struct dma_async_tx_descriptor *
ep93xx_spi_dma_prepare(struct spi_master *master,
enum dma_transfer_direction dir)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
struct dma_async_tx_descriptor *txd;
enum dma_slave_buswidth buswidth;
struct dma_slave_config conf;
struct scatterlist *sg;
struct sg_table *sgt;
struct dma_chan *chan;
const void *buf, *pbuf;
size_t len = xfer->len;
int i, ret, nents;
if (xfer->bits_per_word > 8)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
memset(&conf, 0, sizeof(conf));
conf.direction = dir;
if (dir == DMA_DEV_TO_MEM) {
chan = espi->dma_rx;
buf = xfer->rx_buf;
sgt = &espi->rx_sgt;
conf.src_addr = espi->sspdr_phys;
conf.src_addr_width = buswidth;
} else {
chan = espi->dma_tx;
buf = xfer->tx_buf;
sgt = &espi->tx_sgt;
conf.dst_addr = espi->sspdr_phys;
conf.dst_addr_width = buswidth;
}
ret = dmaengine_slave_config(chan, &conf);
if (ret)
return ERR_PTR(ret);
/*
* We need to split the transfer into PAGE_SIZE'd chunks. This is
* because we are using @espi->zeropage to provide a zero RX buffer
* for the TX transfers and we have only allocated one page for that.
*
* For performance reasons we allocate a new sg_table only when
* needed. Otherwise we will re-use the current one. Eventually the
* last sg_table is released in ep93xx_spi_release_dma().
*/
nents = DIV_ROUND_UP(len, PAGE_SIZE);
if (nents != sgt->nents) {
sg_free_table(sgt);
ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
if (ret)
return ERR_PTR(ret);
}
pbuf = buf;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
size_t bytes = min_t(size_t, len, PAGE_SIZE);
if (buf) {
sg_set_page(sg, virt_to_page(pbuf), bytes,
offset_in_page(pbuf));
} else {
sg_set_page(sg, virt_to_page(espi->zeropage),
bytes, 0);
}
pbuf += bytes;
len -= bytes;
}
if (WARN_ON(len)) {
dev_warn(&master->dev, "len = %zu expected 0!\n", len);
return ERR_PTR(-EINVAL);
}
nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
if (!nents)
return ERR_PTR(-ENOMEM);
txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
if (!txd) {
dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
return ERR_PTR(-ENOMEM);
}
return txd;
}
/**
* ep93xx_spi_dma_finish() - finishes with a DMA transfer
* @master: SPI master
* @dir: DMA transfer direction
*
* Function finishes with the DMA transfer. After this, the DMA buffer is
* unmapped.
*/
static void ep93xx_spi_dma_finish(struct spi_master *master,
enum dma_transfer_direction dir)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct dma_chan *chan;
struct sg_table *sgt;
if (dir == DMA_DEV_TO_MEM) {
chan = espi->dma_rx;
sgt = &espi->rx_sgt;
} else {
chan = espi->dma_tx;
sgt = &espi->tx_sgt;
}
dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
}
static void ep93xx_spi_dma_callback(void *callback_param)
{
struct spi_master *master = callback_param;
ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
spi_finalize_current_transfer(master);
}
static int ep93xx_spi_dma_transfer(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct dma_async_tx_descriptor *rxd, *txd;
rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM);
if (IS_ERR(rxd)) {
dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
return PTR_ERR(rxd);
}
txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV);
if (IS_ERR(txd)) {
ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
return PTR_ERR(txd);
}
/* We are ready when RX is done */
rxd->callback = ep93xx_spi_dma_callback;
rxd->callback_param = master;
/* Now submit both descriptors and start DMA */
dmaengine_submit(rxd);
dmaengine_submit(txd);
dma_async_issue_pending(espi->dma_rx);
dma_async_issue_pending(espi->dma_tx);
/* signal that we need to wait for completion */
return 1;
}
static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u32 val;
/*
* If we got ROR (receive overrun) interrupt we know that something is
* wrong. Just abort the message.
*/
if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
/* clear the overrun interrupt */
writel(0, espi->mmio + SSPICR);
dev_warn(&master->dev,
"receive overrun, aborting the message\n");
master->cur_msg->status = -EIO;
} else {
/*
* Interrupt is either RX (RIS) or TX (TIS). For both cases we
* simply execute next data transfer.
*/
if (ep93xx_spi_read_write(master)) {
/*
* In normal case, there still is some processing left
* for current transfer. Let's wait for the next
* interrupt then.
*/
return IRQ_HANDLED;
}
}
/*
* Current transfer is finished, either with error or with success. In
* any case we disable interrupts and notify the worker to handle
* any post-processing of the message.
*/
val = readl(espi->mmio + SSPCR1);
val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
writel(val, espi->mmio + SSPCR1);
spi_finalize_current_transfer(master);
return IRQ_HANDLED;
}
static int ep93xx_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u32 val;
int ret;
ret = ep93xx_spi_chip_setup(master, spi, xfer);
if (ret) {
dev_err(&master->dev, "failed to setup chip for transfer\n");
return ret;
}
master->cur_msg->state = xfer;
espi->rx = 0;
espi->tx = 0;
/*
* There is no point of setting up DMA for the transfers which will
* fit into the FIFO and can be transferred with a single interrupt.
* So in these cases we will be using PIO and don't bother for DMA.
*/
if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
return ep93xx_spi_dma_transfer(master);
/* Using PIO so prime the TX FIFO and enable interrupts */
ep93xx_spi_read_write(master);
val = readl(espi->mmio + SSPCR1);
val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
writel(val, espi->mmio + SSPCR1);
/* signal that we need to wait for completion */
return 1;
}
static int ep93xx_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
unsigned long timeout;
/*
* Just to be sure: flush any data from RX FIFO.
*/
timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
if (time_after(jiffies, timeout)) {
dev_warn(&master->dev,
"timeout while flushing RX FIFO\n");
return -ETIMEDOUT;
}
readl(espi->mmio + SSPDR);
}
/*
* We explicitly handle FIFO level. This way we don't have to check TX
* FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
*/
espi->fifo_level = 0;
return 0;
}
static int ep93xx_spi_prepare_hardware(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u32 val;
int ret;
ret = clk_enable(espi->clk);
if (ret)
return ret;
val = readl(espi->mmio + SSPCR1);
val |= SSPCR1_SSE;
writel(val, espi->mmio + SSPCR1);
return 0;
}
static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u32 val;
val = readl(espi->mmio + SSPCR1);
val &= ~SSPCR1_SSE;
writel(val, espi->mmio + SSPCR1);
clk_disable(espi->clk);
return 0;
}
static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
{
if (ep93xx_dma_chan_is_m2p(chan))
return false;
chan->private = filter_param;
return true;
}
static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
{
dma_cap_mask_t mask;
int ret;
espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
if (!espi->zeropage)
return -ENOMEM;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
espi->dma_rx_data.port = EP93XX_DMA_SSP;
espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
espi->dma_rx_data.name = "ep93xx-spi-rx";
espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
&espi->dma_rx_data);
if (!espi->dma_rx) {
ret = -ENODEV;
goto fail_free_page;
}
espi->dma_tx_data.port = EP93XX_DMA_SSP;
espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
espi->dma_tx_data.name = "ep93xx-spi-tx";
espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
&espi->dma_tx_data);
if (!espi->dma_tx) {
ret = -ENODEV;
goto fail_release_rx;
}
return 0;
fail_release_rx:
dma_release_channel(espi->dma_rx);
espi->dma_rx = NULL;
fail_free_page:
free_page((unsigned long)espi->zeropage);
return ret;
}
static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
{
if (espi->dma_rx) {
dma_release_channel(espi->dma_rx);
sg_free_table(&espi->rx_sgt);
}
if (espi->dma_tx) {
dma_release_channel(espi->dma_tx);
sg_free_table(&espi->tx_sgt);
}
if (espi->zeropage)
free_page((unsigned long)espi->zeropage);
}
static int ep93xx_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct ep93xx_spi_info *info;
struct ep93xx_spi *espi;
struct resource *res;
int irq;
int error;
int i;
info = dev_get_platdata(&pdev->dev);
if (!info) {
dev_err(&pdev->dev, "missing platform data\n");
return -EINVAL;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get irq resources\n");
return -EBUSY;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "unable to get iomem resource\n");
return -ENODEV;
}
master = spi_alloc_master(&pdev->dev, sizeof(*espi));
if (!master)
return -ENOMEM;
master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
master->prepare_message = ep93xx_spi_prepare_message;
master->transfer_one = ep93xx_spi_transfer_one;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->num_chipselect = info->num_chipselect;
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:07:58 -07:00
master->cs_gpios = devm_kcalloc(&master->dev,
master->num_chipselect, sizeof(int),
GFP_KERNEL);
if (!master->cs_gpios) {
error = -ENOMEM;
goto fail_release_master;
}
for (i = 0; i < master->num_chipselect; i++) {
master->cs_gpios[i] = info->chipselect[i];
if (!gpio_is_valid(master->cs_gpios[i]))
continue;
error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
GPIOF_OUT_INIT_HIGH,
"ep93xx-spi");
if (error) {
dev_err(&pdev->dev, "could not request cs gpio %d\n",
master->cs_gpios[i]);
goto fail_release_master;
}
}
platform_set_drvdata(pdev, master);
espi = spi_master_get_devdata(master);
espi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(espi->clk)) {
dev_err(&pdev->dev, "unable to get spi clock\n");
error = PTR_ERR(espi->clk);
goto fail_release_master;
}
/*
* Calculate maximum and minimum supported clock rates
* for the controller.
*/
master->max_speed_hz = clk_get_rate(espi->clk) / 2;
master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
espi->sspdr_phys = res->start + SSPDR;
espi->mmio = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(espi->mmio)) {
error = PTR_ERR(espi->mmio);
goto fail_release_master;
}
error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
0, "ep93xx-spi", master);
if (error) {
dev_err(&pdev->dev, "failed to request irq\n");
goto fail_release_master;
}
if (info->use_dma && ep93xx_spi_setup_dma(espi))
dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
/* make sure that the hardware is disabled */
writel(0, espi->mmio + SSPCR1);
error = devm_spi_register_master(&pdev->dev, master);
if (error) {
dev_err(&pdev->dev, "failed to register SPI master\n");
goto fail_free_dma;
}
dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
(unsigned long)res->start, irq);
return 0;
fail_free_dma:
ep93xx_spi_release_dma(espi);
fail_release_master:
spi_master_put(master);
return error;
}
static int ep93xx_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct ep93xx_spi *espi = spi_master_get_devdata(master);
ep93xx_spi_release_dma(espi);
return 0;
}
static struct platform_driver ep93xx_spi_driver = {
.driver = {
.name = "ep93xx-spi",
},
.probe = ep93xx_spi_probe,
.remove = ep93xx_spi_remove,
};
module_platform_driver(ep93xx_spi_driver);
MODULE_DESCRIPTION("EP93xx SPI Controller driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:ep93xx-spi");