linux/fs/netfs/buffered_write.c

1260 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem high-level write support.
*
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/pagevec.h>
#include "internal.h"
/*
* Determined write method. Adjust netfs_folio_traces if this is changed.
*/
enum netfs_how_to_modify {
NETFS_FOLIO_IS_UPTODATE, /* Folio is uptodate already */
NETFS_JUST_PREFETCH, /* We have to read the folio anyway */
NETFS_WHOLE_FOLIO_MODIFY, /* We're going to overwrite the whole folio */
NETFS_MODIFY_AND_CLEAR, /* We can assume there is no data to be downloaded. */
NETFS_STREAMING_WRITE, /* Store incomplete data in non-uptodate page. */
NETFS_STREAMING_WRITE_CONT, /* Continue streaming write. */
NETFS_FLUSH_CONTENT, /* Flush incompatible content. */
};
static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq);
static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
{
if (netfs_group && !folio_get_private(folio))
folio_attach_private(folio, netfs_get_group(netfs_group));
}
#if IS_ENABLED(CONFIG_FSCACHE)
static void netfs_folio_start_fscache(bool caching, struct folio *folio)
{
if (caching)
folio_start_fscache(folio);
}
#else
static void netfs_folio_start_fscache(bool caching, struct folio *folio)
{
}
#endif
/*
* Decide how we should modify a folio. We might be attempting to do
* write-streaming, in which case we don't want to a local RMW cycle if we can
* avoid it. If we're doing local caching or content crypto, we award that
* priority over avoiding RMW. If the file is open readably, then we also
* assume that we may want to read what we wrote.
*/
static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx,
struct file *file,
struct folio *folio,
void *netfs_group,
size_t flen,
size_t offset,
size_t len,
bool maybe_trouble)
{
struct netfs_folio *finfo = netfs_folio_info(folio);
loff_t pos = folio_file_pos(folio);
_enter("");
if (netfs_folio_group(folio) != netfs_group)
return NETFS_FLUSH_CONTENT;
if (folio_test_uptodate(folio))
return NETFS_FOLIO_IS_UPTODATE;
netfs: Optimise away reads above the point at which there can be no data Track the file position above which the server is not expected to have any data (the "zero point") and preemptively assume that we can satisfy requests by filling them with zeroes locally rather than attempting to download them if they're over that line - even if we've written data back to the server. Assume that any data that was written back above that position is held in the local cache. Note that we have to split requests that straddle the line. Make use of this to optimise away some reads from the server. We need to set the zero point in the following circumstances: (1) When we see an extant remote inode and have no cache for it, we set the zero_point to i_size. (2) On local inode creation, we set zero_point to 0. (3) On local truncation down, we reduce zero_point to the new i_size if the new i_size is lower. (4) On local truncation up, we don't change zero_point. (5) On local modification, we don't change zero_point. (6) On remote invalidation, we set zero_point to the new i_size. (7) If stored data is discarded from the pagecache or culled from fscache, we must set zero_point above that if the data also got written to the server. (8) If dirty data is written back to the server, but not fscache, we must set zero_point above that. (9) If a direct I/O write is made, set zero_point above that. Assuming the above, any read from the server at or above the zero_point position will return all zeroes. The zero_point value can be stored in the cache, provided the above rules are applied to it by any code that culls part of the local cache. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2023-11-24 13:39:02 +00:00
if (pos >= ctx->zero_point)
return NETFS_MODIFY_AND_CLEAR;
if (!maybe_trouble && offset == 0 && len >= flen)
return NETFS_WHOLE_FOLIO_MODIFY;
if (file->f_mode & FMODE_READ)
netfs: Fix interaction between write-streaming and cachefiles culling An issue can occur between write-streaming (storing dirty data in partial non-uptodate pages) and a cachefiles object being culled to make space. The problem occurs because the cache object is only marked in use while there are files open using it. Once it has been released, it can be culled and the cookie marked disabled. At this point, a streaming write is permitted to occur (if the cache is active, we require pages to be prefetched and cached), but the cache can become active again before this gets flushed out - and then two effects can occur: (1) The cache may be asked to write out a region that's less than its DIO block size (assumed by cachefiles to be PAGE_SIZE) - and this causes one of two debugging statements to be emitted. (2) netfs_how_to_modify() gets confused because it sees a page that isn't allowed to be non-uptodate being uptodate and tries to prefetch it - leading to a warning that PG_fscache is set twice. Fix this by the following means: (1) Add a netfs_inode flag to disallow write-streaming to an inode and set it if we ever do local caching of that inode. It remains set for the lifetime of that inode - even if the cookie becomes disabled. (2) If the no-write-streaming flag is set, then make netfs_how_to_modify() always want to prefetch instead. (3) If netfs_how_to_modify() decides it wants to prefetch a folio, but that folio has write-streamed data in it, then it requires the folio be flushed first. (4) Export a counter of the number of times we wanted to prefetch a non-uptodate page, but found it had write-streamed data in it. (5) Export a counter of the number of times we cancelled a write to the cache because it didn't DIO align and remove the debug statements. Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-erofs@lists.ozlabs.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-01-04 15:52:11 +00:00
goto no_write_streaming;
if (test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
goto no_write_streaming;
if (netfs_is_cache_enabled(ctx)) {
/* We don't want to get a streaming write on a file that loses
* caching service temporarily because the backing store got
* culled.
*/
if (!test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
set_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags);
goto no_write_streaming;
}
if (!finfo)
return NETFS_STREAMING_WRITE;
/* We can continue a streaming write only if it continues on from the
* previous. If it overlaps, we must flush lest we suffer a partial
* copy and disjoint dirty regions.
*/
if (offset == finfo->dirty_offset + finfo->dirty_len)
return NETFS_STREAMING_WRITE_CONT;
return NETFS_FLUSH_CONTENT;
netfs: Fix interaction between write-streaming and cachefiles culling An issue can occur between write-streaming (storing dirty data in partial non-uptodate pages) and a cachefiles object being culled to make space. The problem occurs because the cache object is only marked in use while there are files open using it. Once it has been released, it can be culled and the cookie marked disabled. At this point, a streaming write is permitted to occur (if the cache is active, we require pages to be prefetched and cached), but the cache can become active again before this gets flushed out - and then two effects can occur: (1) The cache may be asked to write out a region that's less than its DIO block size (assumed by cachefiles to be PAGE_SIZE) - and this causes one of two debugging statements to be emitted. (2) netfs_how_to_modify() gets confused because it sees a page that isn't allowed to be non-uptodate being uptodate and tries to prefetch it - leading to a warning that PG_fscache is set twice. Fix this by the following means: (1) Add a netfs_inode flag to disallow write-streaming to an inode and set it if we ever do local caching of that inode. It remains set for the lifetime of that inode - even if the cookie becomes disabled. (2) If the no-write-streaming flag is set, then make netfs_how_to_modify() always want to prefetch instead. (3) If netfs_how_to_modify() decides it wants to prefetch a folio, but that folio has write-streamed data in it, then it requires the folio be flushed first. (4) Export a counter of the number of times we wanted to prefetch a non-uptodate page, but found it had write-streamed data in it. (5) Export a counter of the number of times we cancelled a write to the cache because it didn't DIO align and remove the debug statements. Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-erofs@lists.ozlabs.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-01-04 15:52:11 +00:00
no_write_streaming:
if (finfo) {
netfs_stat(&netfs_n_wh_wstream_conflict);
return NETFS_FLUSH_CONTENT;
}
return NETFS_JUST_PREFETCH;
}
/*
* Grab a folio for writing and lock it. Attempt to allocate as large a folio
* as possible to hold as much of the remaining length as possible in one go.
*/
static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
loff_t pos, size_t part)
{
pgoff_t index = pos / PAGE_SIZE;
fgf_t fgp_flags = FGP_WRITEBEGIN;
if (mapping_large_folio_support(mapping))
fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
return __filemap_get_folio(mapping, index, fgp_flags,
mapping_gfp_mask(mapping));
}
/**
* netfs_perform_write - Copy data into the pagecache.
* @iocb: The operation parameters
* @iter: The source buffer
* @netfs_group: Grouping for dirty pages (eg. ceph snaps).
*
* Copy data into pagecache pages attached to the inode specified by @iocb.
* The caller must hold appropriate inode locks.
*
* Dirty pages are tagged with a netfs_folio struct if they're not up to date
* to indicate the range modified. Dirty pages may also be tagged with a
* netfs-specific grouping such that data from an old group gets flushed before
* a new one is started.
*/
ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
struct netfs_group *netfs_group)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
struct netfs_inode *ctx = netfs_inode(inode);
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.for_sync = true,
.nr_to_write = LONG_MAX,
.range_start = iocb->ki_pos,
.range_end = iocb->ki_pos + iter->count,
};
struct netfs_io_request *wreq = NULL;
struct netfs_folio *finfo;
struct folio *folio;
enum netfs_how_to_modify howto;
enum netfs_folio_trace trace;
unsigned int bdp_flags = (iocb->ki_flags & IOCB_SYNC) ? 0: BDP_ASYNC;
ssize_t written = 0, ret, ret2;
loff_t i_size, pos = iocb->ki_pos, from, to;
size_t max_chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
bool maybe_trouble = false;
if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
) {
if (pos < i_size_read(inode)) {
ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
if (ret < 0) {
goto out;
}
}
wbc_attach_fdatawrite_inode(&wbc, mapping->host);
wreq = netfs_begin_writethrough(iocb, iter->count);
if (IS_ERR(wreq)) {
wbc_detach_inode(&wbc);
ret = PTR_ERR(wreq);
wreq = NULL;
goto out;
}
if (!is_sync_kiocb(iocb))
wreq->iocb = iocb;
wreq->cleanup = netfs_cleanup_buffered_write;
}
do {
size_t flen;
size_t offset; /* Offset into pagecache folio */
size_t part; /* Bytes to write to folio */
size_t copied; /* Bytes copied from user */
ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
if (unlikely(ret < 0))
break;
offset = pos & (max_chunk - 1);
part = min(max_chunk - offset, iov_iter_count(iter));
/* Bring in the user pages that we will copy from _first_ lest
* we hit a nasty deadlock on copying from the same page as
* we're writing to, without it being marked uptodate.
*
* Not only is this an optimisation, but it is also required to
* check that the address is actually valid, when atomic
* usercopies are used below.
*
* We rely on the page being held onto long enough by the LRU
* that we can grab it below if this causes it to be read.
*/
ret = -EFAULT;
if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
break;
folio = netfs_grab_folio_for_write(mapping, pos, part);
if (IS_ERR(folio)) {
ret = PTR_ERR(folio);
break;
}
flen = folio_size(folio);
offset = pos & (flen - 1);
part = min_t(size_t, flen - offset, part);
if (signal_pending(current)) {
ret = written ? -EINTR : -ERESTARTSYS;
goto error_folio_unlock;
}
/* See if we need to prefetch the area we're going to modify.
* We need to do this before we get a lock on the folio in case
* there's more than one writer competing for the same cache
* block.
*/
howto = netfs_how_to_modify(ctx, file, folio, netfs_group,
flen, offset, part, maybe_trouble);
_debug("howto %u", howto);
switch (howto) {
case NETFS_JUST_PREFETCH:
ret = netfs_prefetch_for_write(file, folio, offset, part);
if (ret < 0) {
_debug("prefetch = %zd", ret);
goto error_folio_unlock;
}
break;
case NETFS_FOLIO_IS_UPTODATE:
case NETFS_WHOLE_FOLIO_MODIFY:
case NETFS_STREAMING_WRITE_CONT:
break;
case NETFS_MODIFY_AND_CLEAR:
zero_user_segment(&folio->page, 0, offset);
break;
case NETFS_STREAMING_WRITE:
ret = -EIO;
if (WARN_ON(folio_get_private(folio)))
goto error_folio_unlock;
break;
case NETFS_FLUSH_CONTENT:
trace_netfs_folio(folio, netfs_flush_content);
from = folio_pos(folio);
to = from + folio_size(folio) - 1;
folio_unlock(folio);
folio_put(folio);
ret = filemap_write_and_wait_range(mapping, from, to);
if (ret < 0)
goto error_folio_unlock;
continue;
}
if (mapping_writably_mapped(mapping))
flush_dcache_folio(folio);
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
flush_dcache_folio(folio);
/* Deal with a (partially) failed copy */
if (copied == 0) {
ret = -EFAULT;
goto error_folio_unlock;
}
trace = (enum netfs_folio_trace)howto;
switch (howto) {
case NETFS_FOLIO_IS_UPTODATE:
case NETFS_JUST_PREFETCH:
netfs_set_group(folio, netfs_group);
break;
case NETFS_MODIFY_AND_CLEAR:
zero_user_segment(&folio->page, offset + copied, flen);
netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
break;
case NETFS_WHOLE_FOLIO_MODIFY:
if (unlikely(copied < part)) {
maybe_trouble = true;
iov_iter_revert(iter, copied);
copied = 0;
goto retry;
}
netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
break;
case NETFS_STREAMING_WRITE:
if (offset == 0 && copied == flen) {
netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
trace = netfs_streaming_filled_page;
break;
}
finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
if (!finfo) {
iov_iter_revert(iter, copied);
ret = -ENOMEM;
goto error_folio_unlock;
}
finfo->netfs_group = netfs_get_group(netfs_group);
finfo->dirty_offset = offset;
finfo->dirty_len = copied;
folio_attach_private(folio, (void *)((unsigned long)finfo |
NETFS_FOLIO_INFO));
break;
case NETFS_STREAMING_WRITE_CONT:
finfo = netfs_folio_info(folio);
finfo->dirty_len += copied;
if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
if (finfo->netfs_group)
folio_change_private(folio, finfo->netfs_group);
else
folio_detach_private(folio);
folio_mark_uptodate(folio);
kfree(finfo);
trace = netfs_streaming_cont_filled_page;
}
break;
default:
WARN(true, "Unexpected modify type %u ix=%lx\n",
howto, folio->index);
ret = -EIO;
goto error_folio_unlock;
}
trace_netfs_folio(folio, trace);
/* Update the inode size if we moved the EOF marker */
i_size = i_size_read(inode);
pos += copied;
if (pos > i_size) {
if (ctx->ops->update_i_size) {
ctx->ops->update_i_size(inode, pos);
} else {
i_size_write(inode, pos);
#if IS_ENABLED(CONFIG_FSCACHE)
fscache_update_cookie(ctx->cache, NULL, &pos);
#endif
}
}
written += copied;
if (likely(!wreq)) {
folio_mark_dirty(folio);
} else {
if (folio_test_dirty(folio))
/* Sigh. mmap. */
folio_clear_dirty_for_io(folio);
/* We make multiple writes to the folio... */
if (!folio_test_writeback(folio)) {
folio_wait_fscache(folio);
folio_start_writeback(folio);
folio_start_fscache(folio);
if (wreq->iter.count == 0)
trace_netfs_folio(folio, netfs_folio_trace_wthru);
else
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
}
netfs_advance_writethrough(wreq, copied,
offset + copied == flen);
}
retry:
folio_unlock(folio);
folio_put(folio);
folio = NULL;
cond_resched();
} while (iov_iter_count(iter));
out:
if (unlikely(wreq)) {
ret2 = netfs_end_writethrough(wreq, iocb);
wbc_detach_inode(&wbc);
if (ret2 == -EIOCBQUEUED)
return ret2;
if (ret == 0)
ret = ret2;
}
iocb->ki_pos += written;
_leave(" = %zd [%zd]", written, ret);
return written ? written : ret;
error_folio_unlock:
folio_unlock(folio);
folio_put(folio);
goto out;
}
EXPORT_SYMBOL(netfs_perform_write);
/**
* netfs_buffered_write_iter_locked - write data to a file
* @iocb: IO state structure (file, offset, etc.)
* @from: iov_iter with data to write
* @netfs_group: Grouping for dirty pages (eg. ceph snaps).
*
* This function does all the work needed for actually writing data to a
* file. It does all basic checks, removes SUID from the file, updates
* modification times and calls proper subroutines depending on whether we
* do direct IO or a standard buffered write.
*
* The caller must hold appropriate locks around this function and have called
* generic_write_checks() already. The caller is also responsible for doing
* any necessary syncing afterwards.
*
* This function does *not* take care of syncing data in case of O_SYNC write.
* A caller has to handle it. This is mainly due to the fact that we want to
* avoid syncing under i_rwsem.
*
* Return:
* * number of bytes written, even for truncated writes
* * negative error code if no data has been written at all
*/
ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
struct netfs_group *netfs_group)
{
struct file *file = iocb->ki_filp;
ssize_t ret;
trace_netfs_write_iter(iocb, from);
ret = file_remove_privs(file);
if (ret)
return ret;
ret = file_update_time(file);
if (ret)
return ret;
return netfs_perform_write(iocb, from, netfs_group);
}
EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
/**
* netfs_file_write_iter - write data to a file
* @iocb: IO state structure
* @from: iov_iter with data to write
*
* Perform a write to a file, writing into the pagecache if possible and doing
* an unbuffered write instead if not.
*
* Return:
* * Negative error code if no data has been written at all of
* vfs_fsync_range() failed for a synchronous write
* * Number of bytes written, even for truncated writes
*/
ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct netfs_inode *ictx = netfs_inode(inode);
ssize_t ret;
_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
if (!iov_iter_count(from))
return 0;
if ((iocb->ki_flags & IOCB_DIRECT) ||
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
return netfs_unbuffered_write_iter(iocb, from);
ret = netfs_start_io_write(inode);
if (ret < 0)
return ret;
ret = generic_write_checks(iocb, from);
if (ret > 0)
ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
netfs_end_io_write(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
return ret;
}
EXPORT_SYMBOL(netfs_file_write_iter);
/*
* Notification that a previously read-only page is about to become writable.
* Note that the caller indicates a single page of a multipage folio.
*/
vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
{
struct folio *folio = page_folio(vmf->page);
struct file *file = vmf->vma->vm_file;
struct inode *inode = file_inode(file);
vm_fault_t ret = VM_FAULT_RETRY;
int err;
_enter("%lx", folio->index);
sb_start_pagefault(inode->i_sb);
if (folio_wait_writeback_killable(folio))
goto out;
if (folio_lock_killable(folio) < 0)
goto out;
/* Can we see a streaming write here? */
if (WARN_ON(!folio_test_uptodate(folio))) {
ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
goto out;
}
if (netfs_folio_group(folio) != netfs_group) {
folio_unlock(folio);
err = filemap_fdatawait_range(inode->i_mapping,
folio_pos(folio),
folio_pos(folio) + folio_size(folio));
switch (err) {
case 0:
ret = VM_FAULT_RETRY;
goto out;
case -ENOMEM:
ret = VM_FAULT_OOM;
goto out;
default:
ret = VM_FAULT_SIGBUS;
goto out;
}
}
if (folio_test_dirty(folio))
trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
else
trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
netfs_set_group(folio, netfs_group);
file_update_time(file);
ret = VM_FAULT_LOCKED;
out:
sb_end_pagefault(inode->i_sb);
return ret;
}
EXPORT_SYMBOL(netfs_page_mkwrite);
/*
* Kill all the pages in the given range
*/
static void netfs_kill_pages(struct address_space *mapping,
loff_t start, loff_t len)
{
struct folio *folio;
pgoff_t index = start / PAGE_SIZE;
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
_enter("%llx-%llx", start, start + len - 1);
do {
_debug("kill %lx (to %lx)", index, last);
folio = filemap_get_folio(mapping, index);
if (IS_ERR(folio)) {
next = index + 1;
continue;
}
next = folio_next_index(folio);
trace_netfs_folio(folio, netfs_folio_trace_kill);
folio_clear_uptodate(folio);
if (folio_test_fscache(folio))
folio_end_fscache(folio);
folio_end_writeback(folio);
folio_lock(folio);
vfs-6.8.netfs -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZabMrQAKCRCRxhvAZXjc ovnUAQDgCOonb1tjtTvC8s8IMDUEoaVYZI91KVfsZQSJYN1sdQD+KfJmX1BhJnWG l0cEffGfnWGXMZkZqDgLPHUIPzFrmws= =1b3j -----END PGP SIGNATURE----- Merge tag 'vfs-6.8.netfs' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs Pull netfs updates from Christian Brauner: "This extends the netfs helper library that network filesystems can use to replace their own implementations. Both afs and 9p are ported. cifs is ready as well but the patches are way bigger and will be routed separately once this is merged. That will remove lots of code as well. The overal goal is to get high-level I/O and knowledge of the page cache and ouf of the filesystem drivers. This includes knowledge about the existence of pages and folios The pull request converts afs and 9p. This removes about 800 lines of code from afs and 300 from 9p. For 9p it is now possible to do writes in larger than a page chunks. Additionally, multipage folio support can be turned on for 9p. Separate patches exist for cifs removing another 2000+ lines. I've included detailed information in the individual pulls I took. Summary: - Add NFS-style (and Ceph-style) locking around DIO vs buffered I/O calls to prevent these from happening at the same time. - Support for direct and unbuffered I/O. - Support for write-through caching in the page cache. - O_*SYNC and RWF_*SYNC writes use write-through rather than writing to the page cache and then flushing afterwards. - Support for write-streaming. - Support for write grouping. - Skip reads for which the server could only return zeros or EOF. - The fscache module is now part of the netfs library and the corresponding maintainer entry is updated. - Some helpers from the fscache subsystem are renamed to mark them as belonging to the netfs library. - Follow-up fixes for the netfs library. - Follow-up fixes for the 9p conversion" * tag 'vfs-6.8.netfs' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (50 commits) netfs: Fix wrong #ifdef hiding wait cachefiles: Fix signed/unsigned mixup netfs: Fix the loop that unmarks folios after writing to the cache netfs: Fix interaction between write-streaming and cachefiles culling netfs: Count DIO writes netfs: Mark netfs_unbuffered_write_iter_locked() static netfs: Fix proc/fs/fscache symlink to point to "netfs" not "../netfs" netfs: Rearrange netfs_io_subrequest to put request pointer first 9p: Use length of data written to the server in preference to error 9p: Do a couple of cleanups 9p: Fix initialisation of netfs_inode for 9p cachefiles: Fix __cachefiles_prepare_write() 9p: Use netfslib read/write_iter afs: Use the netfs write helpers netfs: Export the netfs_sreq tracepoint netfs: Optimise away reads above the point at which there can be no data netfs: Implement a write-through caching option netfs: Provide a launder_folio implementation netfs: Provide a writepages implementation netfs, cachefiles: Pass upper bound length to allow expansion ...
2024-01-19 17:10:23 +00:00
generic_error_remove_folio(mapping, folio);
folio_unlock(folio);
folio_put(folio);
} while (index = next, index <= last);
_leave("");
}
/*
* Redirty all the pages in a given range.
*/
static void netfs_redirty_pages(struct address_space *mapping,
loff_t start, loff_t len)
{
struct folio *folio;
pgoff_t index = start / PAGE_SIZE;
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
_enter("%llx-%llx", start, start + len - 1);
do {
_debug("redirty %llx @%llx", len, start);
folio = filemap_get_folio(mapping, index);
if (IS_ERR(folio)) {
next = index + 1;
continue;
}
next = folio_next_index(folio);
trace_netfs_folio(folio, netfs_folio_trace_redirty);
filemap_dirty_folio(mapping, folio);
if (folio_test_fscache(folio))
folio_end_fscache(folio);
folio_end_writeback(folio);
folio_put(folio);
} while (index = next, index <= last);
balance_dirty_pages_ratelimited(mapping);
_leave("");
}
/*
* Completion of write to server
*/
static void netfs_pages_written_back(struct netfs_io_request *wreq)
{
struct address_space *mapping = wreq->mapping;
struct netfs_folio *finfo;
struct netfs_group *group = NULL;
struct folio *folio;
pgoff_t last;
int gcount = 0;
XA_STATE(xas, &mapping->i_pages, wreq->start / PAGE_SIZE);
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
rcu_read_lock();
last = (wreq->start + wreq->len - 1) / PAGE_SIZE;
xas_for_each(&xas, folio, last) {
WARN(!folio_test_writeback(folio),
"bad %zx @%llx page %lx %lx\n",
wreq->len, wreq->start, folio->index, last);
if ((finfo = netfs_folio_info(folio))) {
/* Streaming writes cannot be redirtied whilst under
* writeback, so discard the streaming record.
*/
folio_detach_private(folio);
group = finfo->netfs_group;
gcount++;
trace_netfs_folio(folio, netfs_folio_trace_clear_s);
kfree(finfo);
} else if ((group = netfs_folio_group(folio))) {
/* Need to detach the group pointer if the page didn't
* get redirtied. If it has been redirtied, then it
* must be within the same group.
*/
if (folio_test_dirty(folio)) {
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
goto end_wb;
}
if (folio_trylock(folio)) {
if (!folio_test_dirty(folio)) {
folio_detach_private(folio);
gcount++;
trace_netfs_folio(folio, netfs_folio_trace_clear_g);
} else {
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
}
folio_unlock(folio);
goto end_wb;
}
xas_pause(&xas);
rcu_read_unlock();
folio_lock(folio);
if (!folio_test_dirty(folio)) {
folio_detach_private(folio);
gcount++;
trace_netfs_folio(folio, netfs_folio_trace_clear_g);
} else {
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
}
folio_unlock(folio);
rcu_read_lock();
} else {
trace_netfs_folio(folio, netfs_folio_trace_clear);
}
end_wb:
if (folio_test_fscache(folio))
folio_end_fscache(folio);
xas_advance(&xas, folio_next_index(folio) - 1);
folio_end_writeback(folio);
}
rcu_read_unlock();
netfs_put_group_many(group, gcount);
_leave("");
}
/*
* Deal with the disposition of the folios that are under writeback to close
* out the operation.
*/
static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq)
{
struct address_space *mapping = wreq->mapping;
_enter("");
switch (wreq->error) {
case 0:
netfs_pages_written_back(wreq);
break;
default:
pr_notice("R=%08x Unexpected error %d\n", wreq->debug_id, wreq->error);
fallthrough;
case -EACCES:
case -EPERM:
case -ENOKEY:
case -EKEYEXPIRED:
case -EKEYREJECTED:
case -EKEYREVOKED:
case -ENETRESET:
case -EDQUOT:
case -ENOSPC:
netfs_redirty_pages(mapping, wreq->start, wreq->len);
break;
case -EROFS:
case -EIO:
case -EREMOTEIO:
case -EFBIG:
case -ENOENT:
case -ENOMEDIUM:
case -ENXIO:
netfs_kill_pages(mapping, wreq->start, wreq->len);
break;
}
if (wreq->error)
mapping_set_error(mapping, wreq->error);
if (wreq->netfs_ops->done)
wreq->netfs_ops->done(wreq);
}
/*
* Extend the region to be written back to include subsequent contiguously
* dirty pages if possible, but don't sleep while doing so.
*
* If this page holds new content, then we can include filler zeros in the
* writeback.
*/
static void netfs_extend_writeback(struct address_space *mapping,
struct netfs_group *group,
struct xa_state *xas,
long *_count,
loff_t start,
loff_t max_len,
bool caching,
size_t *_len,
size_t *_top)
{
struct netfs_folio *finfo;
struct folio_batch fbatch;
struct folio *folio;
unsigned int i;
pgoff_t index = (start + *_len) / PAGE_SIZE;
size_t len;
void *priv;
bool stop = true;
folio_batch_init(&fbatch);
do {
/* Firstly, we gather up a batch of contiguous dirty pages
* under the RCU read lock - but we can't clear the dirty flags
* there if any of those pages are mapped.
*/
rcu_read_lock();
xas_for_each(xas, folio, ULONG_MAX) {
stop = true;
if (xas_retry(xas, folio))
continue;
if (xa_is_value(folio))
break;
if (folio->index != index) {
xas_reset(xas);
break;
}
if (!folio_try_get_rcu(folio)) {
xas_reset(xas);
continue;
}
/* Has the folio moved or been split? */
if (unlikely(folio != xas_reload(xas))) {
folio_put(folio);
xas_reset(xas);
break;
}
if (!folio_trylock(folio)) {
folio_put(folio);
xas_reset(xas);
break;
}
if (!folio_test_dirty(folio) ||
folio_test_writeback(folio) ||
folio_test_fscache(folio)) {
folio_unlock(folio);
folio_put(folio);
xas_reset(xas);
break;
}
stop = false;
len = folio_size(folio);
priv = folio_get_private(folio);
if ((const struct netfs_group *)priv != group) {
stop = true;
finfo = netfs_folio_info(folio);
if (finfo->netfs_group != group ||
finfo->dirty_offset > 0) {
folio_unlock(folio);
folio_put(folio);
xas_reset(xas);
break;
}
len = finfo->dirty_len;
}
*_top += folio_size(folio);
index += folio_nr_pages(folio);
*_count -= folio_nr_pages(folio);
*_len += len;
if (*_len >= max_len || *_count <= 0)
stop = true;
if (!folio_batch_add(&fbatch, folio))
break;
if (stop)
break;
}
xas_pause(xas);
rcu_read_unlock();
/* Now, if we obtained any folios, we can shift them to being
* writable and mark them for caching.
*/
if (!folio_batch_count(&fbatch))
break;
for (i = 0; i < folio_batch_count(&fbatch); i++) {
folio = fbatch.folios[i];
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
if (!folio_clear_dirty_for_io(folio))
BUG();
folio_start_writeback(folio);
netfs_folio_start_fscache(caching, folio);
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
} while (!stop);
}
/*
* Synchronously write back the locked page and any subsequent non-locked dirty
* pages.
*/
static ssize_t netfs_write_back_from_locked_folio(struct address_space *mapping,
struct writeback_control *wbc,
struct netfs_group *group,
struct xa_state *xas,
struct folio *folio,
unsigned long long start,
unsigned long long end)
{
struct netfs_io_request *wreq;
struct netfs_folio *finfo;
struct netfs_inode *ctx = netfs_inode(mapping->host);
unsigned long long i_size = i_size_read(&ctx->inode);
size_t len, max_len;
bool caching = netfs_is_cache_enabled(ctx);
long count = wbc->nr_to_write;
int ret;
_enter(",%lx,%llx-%llx,%u", folio->index, start, end, caching);
wreq = netfs_alloc_request(mapping, NULL, start, folio_size(folio),
NETFS_WRITEBACK);
if (IS_ERR(wreq)) {
folio_unlock(folio);
return PTR_ERR(wreq);
}
if (!folio_clear_dirty_for_io(folio))
BUG();
folio_start_writeback(folio);
netfs_folio_start_fscache(caching, folio);
count -= folio_nr_pages(folio);
/* Find all consecutive lockable dirty pages that have contiguous
* written regions, stopping when we find a page that is not
* immediately lockable, is not dirty or is missing, or we reach the
* end of the range.
*/
trace_netfs_folio(folio, netfs_folio_trace_store);
len = wreq->len;
finfo = netfs_folio_info(folio);
if (finfo) {
start += finfo->dirty_offset;
if (finfo->dirty_offset + finfo->dirty_len != len) {
len = finfo->dirty_len;
goto cant_expand;
}
len = finfo->dirty_len;
}
if (start < i_size) {
/* Trim the write to the EOF; the extra data is ignored. Also
* put an upper limit on the size of a single storedata op.
*/
max_len = 65536 * 4096;
max_len = min_t(unsigned long long, max_len, end - start + 1);
max_len = min_t(unsigned long long, max_len, i_size - start);
if (len < max_len)
netfs_extend_writeback(mapping, group, xas, &count, start,
max_len, caching, &len, &wreq->upper_len);
}
cant_expand:
len = min_t(unsigned long long, len, i_size - start);
/* We now have a contiguous set of dirty pages, each with writeback
* set; the first page is still locked at this point, but all the rest
* have been unlocked.
*/
folio_unlock(folio);
wreq->start = start;
wreq->len = len;
if (start < i_size) {
_debug("write back %zx @%llx [%llx]", len, start, i_size);
/* Speculatively write to the cache. We have to fix this up
* later if the store fails.
*/
wreq->cleanup = netfs_cleanup_buffered_write;
iov_iter_xarray(&wreq->iter, ITER_SOURCE, &mapping->i_pages, start,
wreq->upper_len);
__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
ret = netfs_begin_write(wreq, true, netfs_write_trace_writeback);
if (ret == 0 || ret == -EIOCBQUEUED)
wbc->nr_to_write -= len / PAGE_SIZE;
} else {
_debug("write discard %zx @%llx [%llx]", len, start, i_size);
/* The dirty region was entirely beyond the EOF. */
fscache_clear_page_bits(mapping, start, len, caching);
netfs_pages_written_back(wreq);
ret = 0;
}
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
_leave(" = 1");
return 1;
}
/*
* Write a region of pages back to the server
*/
static ssize_t netfs_writepages_begin(struct address_space *mapping,
struct writeback_control *wbc,
struct netfs_group *group,
struct xa_state *xas,
unsigned long long *_start,
unsigned long long end)
{
const struct netfs_folio *finfo;
struct folio *folio;
unsigned long long start = *_start;
ssize_t ret;
void *priv;
int skips = 0;
_enter("%llx,%llx,", start, end);
search_again:
/* Find the first dirty page in the group. */
rcu_read_lock();
for (;;) {
folio = xas_find_marked(xas, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY);
if (xas_retry(xas, folio) || xa_is_value(folio))
continue;
if (!folio)
break;
if (!folio_try_get_rcu(folio)) {
xas_reset(xas);
continue;
}
if (unlikely(folio != xas_reload(xas))) {
folio_put(folio);
xas_reset(xas);
continue;
}
/* Skip any dirty folio that's not in the group of interest. */
priv = folio_get_private(folio);
if ((const struct netfs_group *)priv != group) {
finfo = netfs_folio_info(folio);
if (finfo->netfs_group != group) {
folio_put(folio);
continue;
}
}
xas_pause(xas);
break;
}
rcu_read_unlock();
if (!folio)
return 0;
start = folio_pos(folio); /* May regress with THPs */
_debug("wback %lx", folio->index);
/* At this point we hold neither the i_pages lock nor the page lock:
* the page may be truncated or invalidated (changing page->mapping to
* NULL), or even swizzled back from swapper_space to tmpfs file
* mapping
*/
lock_again:
if (wbc->sync_mode != WB_SYNC_NONE) {
ret = folio_lock_killable(folio);
if (ret < 0)
return ret;
} else {
if (!folio_trylock(folio))
goto search_again;
}
if (folio->mapping != mapping ||
!folio_test_dirty(folio)) {
start += folio_size(folio);
folio_unlock(folio);
goto search_again;
}
if (folio_test_writeback(folio) ||
folio_test_fscache(folio)) {
folio_unlock(folio);
if (wbc->sync_mode != WB_SYNC_NONE) {
folio_wait_writeback(folio);
#ifdef CONFIG_FSCACHE
folio_wait_fscache(folio);
#endif
goto lock_again;
}
start += folio_size(folio);
if (wbc->sync_mode == WB_SYNC_NONE) {
if (skips >= 5 || need_resched()) {
ret = 0;
goto out;
}
skips++;
}
goto search_again;
}
ret = netfs_write_back_from_locked_folio(mapping, wbc, group, xas,
folio, start, end);
out:
if (ret > 0)
*_start = start + ret;
_leave(" = %zd [%llx]", ret, *_start);
return ret;
}
/*
* Write a region of pages back to the server
*/
static int netfs_writepages_region(struct address_space *mapping,
struct writeback_control *wbc,
struct netfs_group *group,
unsigned long long *_start,
unsigned long long end)
{
ssize_t ret;
XA_STATE(xas, &mapping->i_pages, *_start / PAGE_SIZE);
do {
ret = netfs_writepages_begin(mapping, wbc, group, &xas,
_start, end);
if (ret > 0 && wbc->nr_to_write > 0)
cond_resched();
} while (ret > 0 && wbc->nr_to_write > 0);
return ret > 0 ? 0 : ret;
}
/*
* write some of the pending data back to the server
*/
int netfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct netfs_group *group = NULL;
loff_t start, end;
int ret;
_enter("");
/* We have to be careful as we can end up racing with setattr()
* truncating the pagecache since the caller doesn't take a lock here
* to prevent it.
*/
if (wbc->range_cyclic && mapping->writeback_index) {
start = mapping->writeback_index * PAGE_SIZE;
ret = netfs_writepages_region(mapping, wbc, group,
&start, LLONG_MAX);
if (ret < 0)
goto out;
if (wbc->nr_to_write <= 0) {
mapping->writeback_index = start / PAGE_SIZE;
goto out;
}
start = 0;
end = mapping->writeback_index * PAGE_SIZE;
mapping->writeback_index = 0;
ret = netfs_writepages_region(mapping, wbc, group, &start, end);
if (ret == 0)
mapping->writeback_index = start / PAGE_SIZE;
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
start = 0;
ret = netfs_writepages_region(mapping, wbc, group,
&start, LLONG_MAX);
if (wbc->nr_to_write > 0 && ret == 0)
mapping->writeback_index = start / PAGE_SIZE;
} else {
start = wbc->range_start;
ret = netfs_writepages_region(mapping, wbc, group,
&start, wbc->range_end);
}
out:
_leave(" = %d", ret);
return ret;
}
EXPORT_SYMBOL(netfs_writepages);
/*
* Deal with the disposition of a laundered folio.
*/
static void netfs_cleanup_launder_folio(struct netfs_io_request *wreq)
{
if (wreq->error) {
pr_notice("R=%08x Laundering error %d\n", wreq->debug_id, wreq->error);
mapping_set_error(wreq->mapping, wreq->error);
}
}
/**
* netfs_launder_folio - Clean up a dirty folio that's being invalidated
* @folio: The folio to clean
*
* This is called to write back a folio that's being invalidated when an inode
* is getting torn down. Ideally, writepages would be used instead.
*/
int netfs_launder_folio(struct folio *folio)
{
struct netfs_io_request *wreq;
struct address_space *mapping = folio->mapping;
struct netfs_folio *finfo = netfs_folio_info(folio);
struct netfs_group *group = netfs_folio_group(folio);
struct bio_vec bvec;
unsigned long long i_size = i_size_read(mapping->host);
unsigned long long start = folio_pos(folio);
size_t offset = 0, len;
int ret = 0;
if (finfo) {
offset = finfo->dirty_offset;
start += offset;
len = finfo->dirty_len;
} else {
len = folio_size(folio);
}
len = min_t(unsigned long long, len, i_size - start);
wreq = netfs_alloc_request(mapping, NULL, start, len, NETFS_LAUNDER_WRITE);
if (IS_ERR(wreq)) {
ret = PTR_ERR(wreq);
goto out;
}
if (!folio_clear_dirty_for_io(folio))
goto out_put;
trace_netfs_folio(folio, netfs_folio_trace_launder);
_debug("launder %llx-%llx", start, start + len - 1);
/* Speculatively write to the cache. We have to fix this up later if
* the store fails.
*/
wreq->cleanup = netfs_cleanup_launder_folio;
bvec_set_folio(&bvec, folio, len, offset);
iov_iter_bvec(&wreq->iter, ITER_SOURCE, &bvec, 1, len);
__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
ret = netfs_begin_write(wreq, true, netfs_write_trace_launder);
out_put:
folio_detach_private(folio);
netfs_put_group(group);
kfree(finfo);
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
out:
folio_wait_fscache(folio);
_leave(" = %d", ret);
return ret;
}
EXPORT_SYMBOL(netfs_launder_folio);