linux/tools/memory-model/linux-kernel.bell

85 lines
3.1 KiB
Plaintext
Raw Normal View History

Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
// SPDX-License-Identifier: GPL-2.0+
(*
* Copyright (C) 2015 Jade Alglave <j.alglave@ucl.ac.uk>,
* Copyright (C) 2016 Luc Maranget <luc.maranget@inria.fr> for Inria
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>,
* Andrea Parri <parri.andrea@gmail.com>
*
* An earlier version of this file appeared in the companion webpage for
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
* "Frightening small children and disconcerting grown-ups: Concurrency
* in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
* which appeared in ASPLOS 2018.
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
*)
"Linux-kernel memory consistency model"
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
enum Accesses = 'once (*READ_ONCE,WRITE_ONCE*) ||
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
'release (*smp_store_release*) ||
'acquire (*smp_load_acquire*) ||
'noreturn (* R of non-return RMW *)
instructions R[{'once,'acquire,'noreturn}]
instructions W[{'once,'release}]
instructions RMW[{'once,'acquire,'release}]
enum Barriers = 'wmb (*smp_wmb*) ||
'rmb (*smp_rmb*) ||
'mb (*smp_mb*) ||
'barrier (*barrier*) ||
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
'rcu-lock (*rcu_read_lock*) ||
'rcu-unlock (*rcu_read_unlock*) ||
'sync-rcu (*synchronize_rcu*) ||
'before-atomic (*smp_mb__before_atomic*) ||
'after-atomic (*smp_mb__after_atomic*) ||
tools/memory-model: Model smp_mb__after_unlock_lock() The kernel documents smp_mb__after_unlock_lock() the following way: "Place this after a lock-acquisition primitive to guarantee that an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies if the UNLOCK and LOCK are executed by the same CPU or if the UNLOCK and LOCK operate on the same lock variable." Formalize in LKMM the above guarantee by defining (new) mb-links according to the law: ([M] ; po ; [UL] ; (co | po) ; [LKW] ; fencerel(After-unlock-lock) ; [M]) where the component ([UL] ; co ; [LKW]) identifies "UNLOCK+LOCK pairs on the same lock variable" and the component ([UL] ; po ; [LKW]) identifies "UNLOCK+LOCK pairs executed by the same CPU". In particular, the LKMM forbids the following two behaviors (the second litmus test below is based on: Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html c.f., Section "Tree RCU Grace Period Memory Ordering Building Blocks"): C after-unlock-lock-same-cpu (* * Result: Never *) {} P0(spinlock_t *s, spinlock_t *t, int *x, int *y) { int r0; spin_lock(s); WRITE_ONCE(*x, 1); spin_unlock(s); spin_lock(t); smp_mb__after_unlock_lock(); r0 = READ_ONCE(*y); spin_unlock(t); } P1(int *x, int *y) { int r0; WRITE_ONCE(*y, 1); smp_mb(); r0 = READ_ONCE(*x); } exists (0:r0=0 /\ 1:r0=0) C after-unlock-lock-same-lock-variable (* * Result: Never *) {} P0(spinlock_t *s, int *x, int *y) { int r0; spin_lock(s); WRITE_ONCE(*x, 1); r0 = READ_ONCE(*y); spin_unlock(s); } P1(spinlock_t *s, int *y, int *z) { int r0; spin_lock(s); smp_mb__after_unlock_lock(); WRITE_ONCE(*y, 1); r0 = READ_ONCE(*z); spin_unlock(s); } P2(int *z, int *x) { int r0; WRITE_ONCE(*z, 1); smp_mb(); r0 = READ_ONCE(*x); } exists (0:r0=0 /\ 1:r0=0 /\ 2:r0=0) Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Akira Yokosawa <akiyks@gmail.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Daniel Lustig <dlustig@nvidia.com> Cc: David Howells <dhowells@redhat.com> Cc: Jade Alglave <j.alglave@ucl.ac.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Maranget <luc.maranget@inria.fr> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arch@vger.kernel.org Cc: parri.andrea@gmail.com Link: http://lkml.kernel.org/r/20181203230451.28921-1-paulmck@linux.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-03 23:04:49 +00:00
'after-spinlock (*smp_mb__after_spinlock*) ||
'after-unlock-lock (*smp_mb__after_unlock_lock*) ||
'after-srcu-read-unlock (*smp_mb__after_srcu_read_unlock*)
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
instructions F[Barriers]
(* SRCU *)
enum SRCU = 'srcu-lock || 'srcu-unlock || 'sync-srcu
instructions SRCU[SRCU]
(* All srcu events *)
let Srcu = Srcu-lock | Srcu-unlock | Sync-srcu
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
(* Compute matching pairs of nested Rcu-lock and Rcu-unlock *)
let rcu-rscs = let rec
Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
unmatched-locks = Rcu-lock \ domain(matched)
and unmatched-unlocks = Rcu-unlock \ range(matched)
and unmatched = unmatched-locks | unmatched-unlocks
and unmatched-po = [unmatched] ; po ; [unmatched]
and unmatched-locks-to-unlocks =
[unmatched-locks] ; po ; [unmatched-unlocks]
and matched = matched | (unmatched-locks-to-unlocks \
(unmatched-po ; unmatched-po))
in matched
(* Validate nesting *)
flag ~empty Rcu-lock \ domain(rcu-rscs) as unmatched-rcu-lock
flag ~empty Rcu-unlock \ range(rcu-rscs) as unmatched-rcu-unlock
(* Compute matching pairs of nested Srcu-lock and Srcu-unlock *)
tools/memory-model: Provide exact SRCU semantics LKMM has long provided only approximate handling of SRCU read-side critical sections. This has not been a pressing problem because LKMM's traditional handling is correct for the common cases of non-overlapping and properly nested critical sections. However, LKMM's traditional handling of partially overlapping critical sections incorrectly fuses them into one large critical section. For example, consider the following litmus test: ------------------------------------------------------------------------ C C-srcu-nest-5 (* * Result: Sometimes * * This demonstrates non-nested overlapping of SRCU read-side critical * sections. Unlike RCU, SRCU critical sections do not unconditionally * nest. *) {} P0(int *x, int *y, struct srcu_struct *s1) { int r1; int r2; int r3; int r4; r3 = srcu_read_lock(s1); r2 = READ_ONCE(*y); r4 = srcu_read_lock(s1); srcu_read_unlock(s1, r3); r1 = READ_ONCE(*x); srcu_read_unlock(s1, r4); } P1(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] exists (0:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ Current mainline incorrectly flattens the two critical sections into one larger critical section, giving "Never" instead of the correct "Sometimes": ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 3 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=1; No Witnesses Positive: 0 Negative: 3 Flag srcu-bad-nesting Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Never 0 3 Time C-srcu-nest-5 0.01 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ To its credit, it does complain about bad nesting. But with this commit we get the following result, which has the virtue of being correct: ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 4 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=0; 0:r1=1; 0:r2=1; Ok Witnesses Positive: 1 Negative: 3 Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Sometimes 1 3 Time C-srcu-nest-5 0.05 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ In addition, there are new srcu_down_read() and srcu_up_read() functions on their way to mainline. Roughly speaking, these are to srcu_read_lock() and srcu_read_unlock() as down() and up() are to mutex_lock() and mutex_unlock(). The key point is that srcu_down_read() can execute in one process and the matching srcu_up_read() in another, as shown in this litmus test: ------------------------------------------------------------------------ C C-srcu-nest-6 (* * Result: Never * * This would be valid for srcu_down_read() and srcu_up_read(). *) {} P0(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r2; int r3; r3 = srcu_down_read(s1); WRITE_ONCE(*idx, r3); r2 = READ_ONCE(*y); smp_store_release(f, 1); } P1(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r1; int r3; int r4; r4 = smp_load_acquire(f); r1 = READ_ONCE(*x); r3 = READ_ONCE(*idx); srcu_up_read(s1, r3); } P2(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] filter (1:r4=1) exists (1:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ When run on current mainline, this litmus test gets a complaint about an unknown macro srcu_down_read(). With this commit: ------------------------------------------------------------------------ herd7 -conf linux-kernel.cfg C-srcu-nest-6.litmus Test C-srcu-nest-6 Allowed States 3 0:r1=0; 0:r2=0; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (1:r1=1 /\ 0:r2=0) Observation C-srcu-nest-6 Never 0 3 Time C-srcu-nest-6 0.02 Hash=c1f20257d052ca5e899be508bedcb2a1 ------------------------------------------------------------------------ Note that the user must supply the flag "f" and the "filter" clause, similar to what must be done to emulate call_rcu(). The commit works by treating srcu_read_lock()/srcu_down_read() as loads and srcu_read_unlock()/srcu_up_read() as stores. This allows us to determine which unlock matches which lock by looking for a data dependency between them. In order for this to work properly, the data dependencies have to be tracked through stores to intermediate variables such as "idx" in the litmus test above; this is handled by the new carry-srcu-data relation. But it's important here (and in the existing carry-dep relation) to avoid tracking the dependencies through SRCU unlock stores. Otherwise, in situations resembling: A: r1 = srcu_read_lock(s); B: srcu_read_unlock(s, r1); C: r2 = srcu_read_lock(s); D: srcu_read_unlock(s, r2); it would look as if D was dependent on both A and C, because "s" would appear to be an intermediate variable written by B and read by C. This explains the complications in the definitions of carry-srcu-dep and carry-dep. As a debugging aid, the commit adds a check for errors in which the value returned by one call to srcu_read_lock()/srcu_down_read() is passed to more than one instance of srcu_read_unlock()/srcu_up_read(). Finally, since these SRCU-related primitives are now treated as ordinary reads and writes, we have to add them into the lists of marked accesses (i.e., not subject to data races) and lock-related accesses (i.e., one shouldn't try to access an srcu_struct with a non-lock-related primitive such as READ_ONCE() or a plain write). Portions of this approach were suggested by Boqun Feng and Jonas Oberhauser. [ paulmck: Fix space-before-tab whitespace nit. ] Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reviewed-by: Jonas Oberhauser <jonas.oberhauser@huaweicloud.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-25 20:21:42 +00:00
let carry-srcu-data = (data ; [~ Srcu-unlock] ; rf)*
let srcu-rscs = ([Srcu-lock] ; carry-srcu-data ; data ; [Srcu-unlock]) & loc
(* Validate nesting *)
flag ~empty Srcu-lock \ domain(srcu-rscs) as unmatched-srcu-lock
flag ~empty Srcu-unlock \ range(srcu-rscs) as unmatched-srcu-unlock
tools/memory-model: Provide exact SRCU semantics LKMM has long provided only approximate handling of SRCU read-side critical sections. This has not been a pressing problem because LKMM's traditional handling is correct for the common cases of non-overlapping and properly nested critical sections. However, LKMM's traditional handling of partially overlapping critical sections incorrectly fuses them into one large critical section. For example, consider the following litmus test: ------------------------------------------------------------------------ C C-srcu-nest-5 (* * Result: Sometimes * * This demonstrates non-nested overlapping of SRCU read-side critical * sections. Unlike RCU, SRCU critical sections do not unconditionally * nest. *) {} P0(int *x, int *y, struct srcu_struct *s1) { int r1; int r2; int r3; int r4; r3 = srcu_read_lock(s1); r2 = READ_ONCE(*y); r4 = srcu_read_lock(s1); srcu_read_unlock(s1, r3); r1 = READ_ONCE(*x); srcu_read_unlock(s1, r4); } P1(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] exists (0:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ Current mainline incorrectly flattens the two critical sections into one larger critical section, giving "Never" instead of the correct "Sometimes": ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 3 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=1; No Witnesses Positive: 0 Negative: 3 Flag srcu-bad-nesting Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Never 0 3 Time C-srcu-nest-5 0.01 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ To its credit, it does complain about bad nesting. But with this commit we get the following result, which has the virtue of being correct: ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 4 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=0; 0:r1=1; 0:r2=1; Ok Witnesses Positive: 1 Negative: 3 Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Sometimes 1 3 Time C-srcu-nest-5 0.05 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ In addition, there are new srcu_down_read() and srcu_up_read() functions on their way to mainline. Roughly speaking, these are to srcu_read_lock() and srcu_read_unlock() as down() and up() are to mutex_lock() and mutex_unlock(). The key point is that srcu_down_read() can execute in one process and the matching srcu_up_read() in another, as shown in this litmus test: ------------------------------------------------------------------------ C C-srcu-nest-6 (* * Result: Never * * This would be valid for srcu_down_read() and srcu_up_read(). *) {} P0(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r2; int r3; r3 = srcu_down_read(s1); WRITE_ONCE(*idx, r3); r2 = READ_ONCE(*y); smp_store_release(f, 1); } P1(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r1; int r3; int r4; r4 = smp_load_acquire(f); r1 = READ_ONCE(*x); r3 = READ_ONCE(*idx); srcu_up_read(s1, r3); } P2(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] filter (1:r4=1) exists (1:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ When run on current mainline, this litmus test gets a complaint about an unknown macro srcu_down_read(). With this commit: ------------------------------------------------------------------------ herd7 -conf linux-kernel.cfg C-srcu-nest-6.litmus Test C-srcu-nest-6 Allowed States 3 0:r1=0; 0:r2=0; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (1:r1=1 /\ 0:r2=0) Observation C-srcu-nest-6 Never 0 3 Time C-srcu-nest-6 0.02 Hash=c1f20257d052ca5e899be508bedcb2a1 ------------------------------------------------------------------------ Note that the user must supply the flag "f" and the "filter" clause, similar to what must be done to emulate call_rcu(). The commit works by treating srcu_read_lock()/srcu_down_read() as loads and srcu_read_unlock()/srcu_up_read() as stores. This allows us to determine which unlock matches which lock by looking for a data dependency between them. In order for this to work properly, the data dependencies have to be tracked through stores to intermediate variables such as "idx" in the litmus test above; this is handled by the new carry-srcu-data relation. But it's important here (and in the existing carry-dep relation) to avoid tracking the dependencies through SRCU unlock stores. Otherwise, in situations resembling: A: r1 = srcu_read_lock(s); B: srcu_read_unlock(s, r1); C: r2 = srcu_read_lock(s); D: srcu_read_unlock(s, r2); it would look as if D was dependent on both A and C, because "s" would appear to be an intermediate variable written by B and read by C. This explains the complications in the definitions of carry-srcu-dep and carry-dep. As a debugging aid, the commit adds a check for errors in which the value returned by one call to srcu_read_lock()/srcu_down_read() is passed to more than one instance of srcu_read_unlock()/srcu_up_read(). Finally, since these SRCU-related primitives are now treated as ordinary reads and writes, we have to add them into the lists of marked accesses (i.e., not subject to data races) and lock-related accesses (i.e., one shouldn't try to access an srcu_struct with a non-lock-related primitive such as READ_ONCE() or a plain write). Portions of this approach were suggested by Boqun Feng and Jonas Oberhauser. [ paulmck: Fix space-before-tab whitespace nit. ] Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reviewed-by: Jonas Oberhauser <jonas.oberhauser@huaweicloud.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-25 20:21:42 +00:00
flag ~empty (srcu-rscs^-1 ; srcu-rscs) \ id as multiple-srcu-matches
(* Check for use of synchronize_srcu() inside an RCU critical section *)
flag ~empty rcu-rscs & (po ; [Sync-srcu] ; po) as invalid-sleep
(* Validate SRCU dynamic match *)
flag ~empty different-values(srcu-rscs) as srcu-bad-value-match
(* Compute marked and plain memory accesses *)
let Marked = (~M) | IW | Once | Release | Acquire | domain(rmw) | range(rmw) |
tools/memory-model: Provide exact SRCU semantics LKMM has long provided only approximate handling of SRCU read-side critical sections. This has not been a pressing problem because LKMM's traditional handling is correct for the common cases of non-overlapping and properly nested critical sections. However, LKMM's traditional handling of partially overlapping critical sections incorrectly fuses them into one large critical section. For example, consider the following litmus test: ------------------------------------------------------------------------ C C-srcu-nest-5 (* * Result: Sometimes * * This demonstrates non-nested overlapping of SRCU read-side critical * sections. Unlike RCU, SRCU critical sections do not unconditionally * nest. *) {} P0(int *x, int *y, struct srcu_struct *s1) { int r1; int r2; int r3; int r4; r3 = srcu_read_lock(s1); r2 = READ_ONCE(*y); r4 = srcu_read_lock(s1); srcu_read_unlock(s1, r3); r1 = READ_ONCE(*x); srcu_read_unlock(s1, r4); } P1(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] exists (0:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ Current mainline incorrectly flattens the two critical sections into one larger critical section, giving "Never" instead of the correct "Sometimes": ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 3 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=1; No Witnesses Positive: 0 Negative: 3 Flag srcu-bad-nesting Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Never 0 3 Time C-srcu-nest-5 0.01 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ To its credit, it does complain about bad nesting. But with this commit we get the following result, which has the virtue of being correct: ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 4 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=0; 0:r1=1; 0:r2=1; Ok Witnesses Positive: 1 Negative: 3 Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Sometimes 1 3 Time C-srcu-nest-5 0.05 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ In addition, there are new srcu_down_read() and srcu_up_read() functions on their way to mainline. Roughly speaking, these are to srcu_read_lock() and srcu_read_unlock() as down() and up() are to mutex_lock() and mutex_unlock(). The key point is that srcu_down_read() can execute in one process and the matching srcu_up_read() in another, as shown in this litmus test: ------------------------------------------------------------------------ C C-srcu-nest-6 (* * Result: Never * * This would be valid for srcu_down_read() and srcu_up_read(). *) {} P0(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r2; int r3; r3 = srcu_down_read(s1); WRITE_ONCE(*idx, r3); r2 = READ_ONCE(*y); smp_store_release(f, 1); } P1(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r1; int r3; int r4; r4 = smp_load_acquire(f); r1 = READ_ONCE(*x); r3 = READ_ONCE(*idx); srcu_up_read(s1, r3); } P2(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] filter (1:r4=1) exists (1:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ When run on current mainline, this litmus test gets a complaint about an unknown macro srcu_down_read(). With this commit: ------------------------------------------------------------------------ herd7 -conf linux-kernel.cfg C-srcu-nest-6.litmus Test C-srcu-nest-6 Allowed States 3 0:r1=0; 0:r2=0; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (1:r1=1 /\ 0:r2=0) Observation C-srcu-nest-6 Never 0 3 Time C-srcu-nest-6 0.02 Hash=c1f20257d052ca5e899be508bedcb2a1 ------------------------------------------------------------------------ Note that the user must supply the flag "f" and the "filter" clause, similar to what must be done to emulate call_rcu(). The commit works by treating srcu_read_lock()/srcu_down_read() as loads and srcu_read_unlock()/srcu_up_read() as stores. This allows us to determine which unlock matches which lock by looking for a data dependency between them. In order for this to work properly, the data dependencies have to be tracked through stores to intermediate variables such as "idx" in the litmus test above; this is handled by the new carry-srcu-data relation. But it's important here (and in the existing carry-dep relation) to avoid tracking the dependencies through SRCU unlock stores. Otherwise, in situations resembling: A: r1 = srcu_read_lock(s); B: srcu_read_unlock(s, r1); C: r2 = srcu_read_lock(s); D: srcu_read_unlock(s, r2); it would look as if D was dependent on both A and C, because "s" would appear to be an intermediate variable written by B and read by C. This explains the complications in the definitions of carry-srcu-dep and carry-dep. As a debugging aid, the commit adds a check for errors in which the value returned by one call to srcu_read_lock()/srcu_down_read() is passed to more than one instance of srcu_read_unlock()/srcu_up_read(). Finally, since these SRCU-related primitives are now treated as ordinary reads and writes, we have to add them into the lists of marked accesses (i.e., not subject to data races) and lock-related accesses (i.e., one shouldn't try to access an srcu_struct with a non-lock-related primitive such as READ_ONCE() or a plain write). Portions of this approach were suggested by Boqun Feng and Jonas Oberhauser. [ paulmck: Fix space-before-tab whitespace nit. ] Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reviewed-by: Jonas Oberhauser <jonas.oberhauser@huaweicloud.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-25 20:21:42 +00:00
LKR | LKW | UL | LF | RL | RU | Srcu-lock | Srcu-unlock
let Plain = M \ Marked
tools: memory-model: Make plain accesses carry dependencies As reported by Viktor, plain accesses in LKMM are weaker than accesses to registers: the latter carry dependencies but the former do not. This is exemplified in the following snippet: int r = READ_ONCE(*x); WRITE_ONCE(*y, r); Here a data dependency links the READ_ONCE() to the WRITE_ONCE(), preserving their order, because the model treats r as a register. If r is turned into a memory location accessed by plain accesses, however, the link is broken and the order between READ_ONCE() and WRITE_ONCE() is no longer preserved. This is too conservative, since any optimizations on plain accesses that might break dependencies are also possible on registers; it also contradicts the intuitive notion of "dependency" as the data stored by the WRITE_ONCE() does depend on the data read by the READ_ONCE(), independently of whether r is a register or a memory location. This is resolved by redefining all dependencies to include dependencies carried by memory accesses; a dependency is said to be carried by memory accesses (in the model: carry-dep) from one load to another load if the initial load is followed by an arbitrarily long sequence alternating between stores and loads of the same thread, where the data of each store depends on the previous load, and is read by the next load. Any dependency linking the final load in the sequence to another access also links the initial load in the sequence to that access. More deep details can be found in this LKML discussion: https://lore.kernel.org/lkml/d86295788ad14a02874ab030ddb8a6f8@huawei.com/ Reported-by: Viktor Vafeiadis <viktor@mpi-sws.org> Signed-off-by: Jonas Oberhauser <jonas.oberhauser@huawei.com> Reviewed-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-02 12:51:00 +00:00
(* Redefine dependencies to include those carried through plain accesses *)
tools/memory-model: Provide exact SRCU semantics LKMM has long provided only approximate handling of SRCU read-side critical sections. This has not been a pressing problem because LKMM's traditional handling is correct for the common cases of non-overlapping and properly nested critical sections. However, LKMM's traditional handling of partially overlapping critical sections incorrectly fuses them into one large critical section. For example, consider the following litmus test: ------------------------------------------------------------------------ C C-srcu-nest-5 (* * Result: Sometimes * * This demonstrates non-nested overlapping of SRCU read-side critical * sections. Unlike RCU, SRCU critical sections do not unconditionally * nest. *) {} P0(int *x, int *y, struct srcu_struct *s1) { int r1; int r2; int r3; int r4; r3 = srcu_read_lock(s1); r2 = READ_ONCE(*y); r4 = srcu_read_lock(s1); srcu_read_unlock(s1, r3); r1 = READ_ONCE(*x); srcu_read_unlock(s1, r4); } P1(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] exists (0:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ Current mainline incorrectly flattens the two critical sections into one larger critical section, giving "Never" instead of the correct "Sometimes": ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 3 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=1; No Witnesses Positive: 0 Negative: 3 Flag srcu-bad-nesting Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Never 0 3 Time C-srcu-nest-5 0.01 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ To its credit, it does complain about bad nesting. But with this commit we get the following result, which has the virtue of being correct: ------------------------------------------------------------------------ $ herd7 -conf linux-kernel.cfg C-srcu-nest-5.litmus Test C-srcu-nest-5 Allowed States 4 0:r1=0; 0:r2=0; 0:r1=0; 0:r2=1; 0:r1=1; 0:r2=0; 0:r1=1; 0:r2=1; Ok Witnesses Positive: 1 Negative: 3 Condition exists (0:r1=1 /\ 0:r2=0) Observation C-srcu-nest-5 Sometimes 1 3 Time C-srcu-nest-5 0.05 Hash=e692c106cf3e84e20f12991dc438ff1b ------------------------------------------------------------------------ In addition, there are new srcu_down_read() and srcu_up_read() functions on their way to mainline. Roughly speaking, these are to srcu_read_lock() and srcu_read_unlock() as down() and up() are to mutex_lock() and mutex_unlock(). The key point is that srcu_down_read() can execute in one process and the matching srcu_up_read() in another, as shown in this litmus test: ------------------------------------------------------------------------ C C-srcu-nest-6 (* * Result: Never * * This would be valid for srcu_down_read() and srcu_up_read(). *) {} P0(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r2; int r3; r3 = srcu_down_read(s1); WRITE_ONCE(*idx, r3); r2 = READ_ONCE(*y); smp_store_release(f, 1); } P1(int *x, int *y, struct srcu_struct *s1, int *idx, int *f) { int r1; int r3; int r4; r4 = smp_load_acquire(f); r1 = READ_ONCE(*x); r3 = READ_ONCE(*idx); srcu_up_read(s1, r3); } P2(int *x, int *y, struct srcu_struct *s1) { WRITE_ONCE(*y, 1); synchronize_srcu(s1); WRITE_ONCE(*x, 1); } locations [0:r1] filter (1:r4=1) exists (1:r1=1 /\ 0:r2=0) ------------------------------------------------------------------------ When run on current mainline, this litmus test gets a complaint about an unknown macro srcu_down_read(). With this commit: ------------------------------------------------------------------------ herd7 -conf linux-kernel.cfg C-srcu-nest-6.litmus Test C-srcu-nest-6 Allowed States 3 0:r1=0; 0:r2=0; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=0; 0:r1=0; 0:r2=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (1:r1=1 /\ 0:r2=0) Observation C-srcu-nest-6 Never 0 3 Time C-srcu-nest-6 0.02 Hash=c1f20257d052ca5e899be508bedcb2a1 ------------------------------------------------------------------------ Note that the user must supply the flag "f" and the "filter" clause, similar to what must be done to emulate call_rcu(). The commit works by treating srcu_read_lock()/srcu_down_read() as loads and srcu_read_unlock()/srcu_up_read() as stores. This allows us to determine which unlock matches which lock by looking for a data dependency between them. In order for this to work properly, the data dependencies have to be tracked through stores to intermediate variables such as "idx" in the litmus test above; this is handled by the new carry-srcu-data relation. But it's important here (and in the existing carry-dep relation) to avoid tracking the dependencies through SRCU unlock stores. Otherwise, in situations resembling: A: r1 = srcu_read_lock(s); B: srcu_read_unlock(s, r1); C: r2 = srcu_read_lock(s); D: srcu_read_unlock(s, r2); it would look as if D was dependent on both A and C, because "s" would appear to be an intermediate variable written by B and read by C. This explains the complications in the definitions of carry-srcu-dep and carry-dep. As a debugging aid, the commit adds a check for errors in which the value returned by one call to srcu_read_lock()/srcu_down_read() is passed to more than one instance of srcu_read_unlock()/srcu_up_read(). Finally, since these SRCU-related primitives are now treated as ordinary reads and writes, we have to add them into the lists of marked accesses (i.e., not subject to data races) and lock-related accesses (i.e., one shouldn't try to access an srcu_struct with a non-lock-related primitive such as READ_ONCE() or a plain write). Portions of this approach were suggested by Boqun Feng and Jonas Oberhauser. [ paulmck: Fix space-before-tab whitespace nit. ] Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reviewed-by: Jonas Oberhauser <jonas.oberhauser@huaweicloud.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-25 20:21:42 +00:00
let carry-dep = (data ; [~ Srcu-unlock] ; rfi)*
tools: memory-model: Make plain accesses carry dependencies As reported by Viktor, plain accesses in LKMM are weaker than accesses to registers: the latter carry dependencies but the former do not. This is exemplified in the following snippet: int r = READ_ONCE(*x); WRITE_ONCE(*y, r); Here a data dependency links the READ_ONCE() to the WRITE_ONCE(), preserving their order, because the model treats r as a register. If r is turned into a memory location accessed by plain accesses, however, the link is broken and the order between READ_ONCE() and WRITE_ONCE() is no longer preserved. This is too conservative, since any optimizations on plain accesses that might break dependencies are also possible on registers; it also contradicts the intuitive notion of "dependency" as the data stored by the WRITE_ONCE() does depend on the data read by the READ_ONCE(), independently of whether r is a register or a memory location. This is resolved by redefining all dependencies to include dependencies carried by memory accesses; a dependency is said to be carried by memory accesses (in the model: carry-dep) from one load to another load if the initial load is followed by an arbitrarily long sequence alternating between stores and loads of the same thread, where the data of each store depends on the previous load, and is read by the next load. Any dependency linking the final load in the sequence to another access also links the initial load in the sequence to that access. More deep details can be found in this LKML discussion: https://lore.kernel.org/lkml/d86295788ad14a02874ab030ddb8a6f8@huawei.com/ Reported-by: Viktor Vafeiadis <viktor@mpi-sws.org> Signed-off-by: Jonas Oberhauser <jonas.oberhauser@huawei.com> Reviewed-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-02 12:51:00 +00:00
let addr = carry-dep ; addr
let ctrl = carry-dep ; ctrl
let data = carry-dep ; data