linux/include/rdma/ib_umem.h

226 lines
6.8 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
/*
* Copyright (c) 2007 Cisco Systems. All rights reserved.
* Copyright (c) 2020 Intel Corporation. All rights reserved.
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
*/
#ifndef IB_UMEM_H
#define IB_UMEM_H
#include <linux/list.h>
#include <linux/scatterlist.h>
#include <linux/workqueue.h>
#include <rdma/ib_verbs.h>
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
struct ib_ucontext;
struct ib_umem_odp;
struct dma_buf_attach_ops;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
struct ib_umem {
struct ib_device *ibdev;
struct mm_struct *owning_mm;
u64 iova;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
size_t length;
unsigned long address;
u32 writable : 1;
u32 is_odp : 1;
u32 is_dmabuf : 1;
struct sg_append_table sgt_append;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
};
struct ib_umem_dmabuf {
struct ib_umem umem;
struct dma_buf_attachment *attach;
struct sg_table *sgt;
struct scatterlist *first_sg;
struct scatterlist *last_sg;
unsigned long first_sg_offset;
unsigned long last_sg_trim;
void *private;
u8 pinned : 1;
u8 revoked : 1;
};
static inline struct ib_umem_dmabuf *to_ib_umem_dmabuf(struct ib_umem *umem)
{
return container_of(umem, struct ib_umem_dmabuf, umem);
}
/* Returns the offset of the umem start relative to the first page. */
static inline int ib_umem_offset(struct ib_umem *umem)
{
return umem->address & ~PAGE_MASK;
}
static inline unsigned long ib_umem_dma_offset(struct ib_umem *umem,
unsigned long pgsz)
{
return (sg_dma_address(umem->sgt_append.sgt.sgl) + ib_umem_offset(umem)) &
(pgsz - 1);
}
static inline size_t ib_umem_num_dma_blocks(struct ib_umem *umem,
unsigned long pgsz)
{
return (size_t)((ALIGN(umem->iova + umem->length, pgsz) -
ALIGN_DOWN(umem->iova, pgsz))) /
pgsz;
}
static inline size_t ib_umem_num_pages(struct ib_umem *umem)
{
return ib_umem_num_dma_blocks(umem, PAGE_SIZE);
}
static inline void __rdma_umem_block_iter_start(struct ib_block_iter *biter,
struct ib_umem *umem,
unsigned long pgsz)
{
__rdma_block_iter_start(biter, umem->sgt_append.sgt.sgl,
umem->sgt_append.sgt.nents, pgsz);
RDMA/core: Fix umem iterator when PAGE_SIZE is greater then HCA pgsz 64k pages introduce the situation in this diagram when the HCA 4k page size is being used: +-------------------------------------------+ <--- 64k aligned VA | | | HCA 4k page | | | +-------------------------------------------+ | o | | | | o | | | | o | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ <--- Live HCA page |OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO| <--- offset | | <--- VA | MR data | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ | o | | | | o | | | | o | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ The VA addresses are coming from rdma-core in this diagram can be arbitrary, but for 64k pages, the VA may be offset by some number of HCA 4k pages and followed by some number of HCA 4k pages. The current iterator doesn't account for either the preceding 4k pages or the following 4k pages. Fix the issue by extending the ib_block_iter to contain the number of DMA pages like comment [1] says and by using __sg_advance to start the iterator at the first live HCA page. The changes are contained in a parallel set of iterator start and next functions that are umem aware and specific to umem since there is one user of the rdma_for_each_block() without umem. These two fixes prevents the extra pages before and after the user MR data. Fix the preceding pages by using the __sq_advance field to start at the first 4k page containing MR data. Fix the following pages by saving the number of pgsz blocks in the iterator state and downcounting on each next. This fix allows for the elimination of the small page crutch noted in the Fixes. Fixes: 10c75ccb54e4 ("RDMA/umem: Prevent small pages from being returned by ib_umem_find_best_pgsz()") Link: https://lore.kernel.org/r/20231129202143.1434-2-shiraz.saleem@intel.com Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Shiraz Saleem <shiraz.saleem@intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2023-11-29 14:21:41 -06:00
biter->__sg_advance = ib_umem_offset(umem) & ~(pgsz - 1);
biter->__sg_numblocks = ib_umem_num_dma_blocks(umem, pgsz);
}
static inline bool __rdma_umem_block_iter_next(struct ib_block_iter *biter)
{
return __rdma_block_iter_next(biter) && biter->__sg_numblocks--;
}
/**
* rdma_umem_for_each_dma_block - iterate over contiguous DMA blocks of the umem
* @umem: umem to iterate over
* @pgsz: Page size to split the list into
*
* pgsz must be <= PAGE_SIZE or computed by ib_umem_find_best_pgsz(). The
* returned DMA blocks will be aligned to pgsz and span the range:
* ALIGN_DOWN(umem->address, pgsz) to ALIGN(umem->address + umem->length, pgsz)
*
* Performs exactly ib_umem_num_dma_blocks() iterations.
*/
#define rdma_umem_for_each_dma_block(umem, biter, pgsz) \
for (__rdma_umem_block_iter_start(biter, umem, pgsz); \
RDMA/core: Fix umem iterator when PAGE_SIZE is greater then HCA pgsz 64k pages introduce the situation in this diagram when the HCA 4k page size is being used: +-------------------------------------------+ <--- 64k aligned VA | | | HCA 4k page | | | +-------------------------------------------+ | o | | | | o | | | | o | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ <--- Live HCA page |OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO| <--- offset | | <--- VA | MR data | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ | o | | | | o | | | | o | +-------------------------------------------+ | | | HCA 4k page | | | +-------------------------------------------+ The VA addresses are coming from rdma-core in this diagram can be arbitrary, but for 64k pages, the VA may be offset by some number of HCA 4k pages and followed by some number of HCA 4k pages. The current iterator doesn't account for either the preceding 4k pages or the following 4k pages. Fix the issue by extending the ib_block_iter to contain the number of DMA pages like comment [1] says and by using __sg_advance to start the iterator at the first live HCA page. The changes are contained in a parallel set of iterator start and next functions that are umem aware and specific to umem since there is one user of the rdma_for_each_block() without umem. These two fixes prevents the extra pages before and after the user MR data. Fix the preceding pages by using the __sq_advance field to start at the first 4k page containing MR data. Fix the following pages by saving the number of pgsz blocks in the iterator state and downcounting on each next. This fix allows for the elimination of the small page crutch noted in the Fixes. Fixes: 10c75ccb54e4 ("RDMA/umem: Prevent small pages from being returned by ib_umem_find_best_pgsz()") Link: https://lore.kernel.org/r/20231129202143.1434-2-shiraz.saleem@intel.com Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Shiraz Saleem <shiraz.saleem@intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2023-11-29 14:21:41 -06:00
__rdma_umem_block_iter_next(biter);)
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
#ifdef CONFIG_INFINIBAND_USER_MEM
struct ib_umem *ib_umem_get(struct ib_device *device, unsigned long addr,
size_t size, int access);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
void ib_umem_release(struct ib_umem *umem);
int ib_umem_copy_from(void *dst, struct ib_umem *umem, size_t offset,
size_t length);
unsigned long ib_umem_find_best_pgsz(struct ib_umem *umem,
unsigned long pgsz_bitmap,
unsigned long virt);
/**
* ib_umem_find_best_pgoff - Find best HW page size
*
* @umem: umem struct
* @pgsz_bitmap bitmap of HW supported page sizes
* @pgoff_bitmask: Mask of bits that can be represented with an offset
*
* This is very similar to ib_umem_find_best_pgsz() except instead of accepting
* an IOVA it accepts a bitmask specifying what address bits can be represented
* with a page offset.
*
* For instance if the HW has multiple page sizes, requires 64 byte alignemnt,
* and can support aligned offsets up to 4032 then pgoff_bitmask would be
* "111111000000".
*
* If the pgoff_bitmask requires either alignment in the low bit or an
* unavailable page size for the high bits, this function returns 0.
*/
static inline unsigned long ib_umem_find_best_pgoff(struct ib_umem *umem,
unsigned long pgsz_bitmap,
u64 pgoff_bitmask)
{
struct scatterlist *sg = umem->sgt_append.sgt.sgl;
dma_addr_t dma_addr;
dma_addr = sg_dma_address(sg) + (umem->address & ~PAGE_MASK);
return ib_umem_find_best_pgsz(umem, pgsz_bitmap,
dma_addr & pgoff_bitmask);
}
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
struct ib_umem_dmabuf *ib_umem_dmabuf_get(struct ib_device *device,
unsigned long offset, size_t size,
int fd, int access,
const struct dma_buf_attach_ops *ops);
struct ib_umem_dmabuf *ib_umem_dmabuf_get_pinned(struct ib_device *device,
unsigned long offset,
size_t size, int fd,
int access);
struct ib_umem_dmabuf *
ib_umem_dmabuf_get_pinned_with_dma_device(struct ib_device *device,
struct device *dma_device,
unsigned long offset, size_t size,
int fd, int access);
int ib_umem_dmabuf_map_pages(struct ib_umem_dmabuf *umem_dmabuf);
void ib_umem_dmabuf_unmap_pages(struct ib_umem_dmabuf *umem_dmabuf);
void ib_umem_dmabuf_release(struct ib_umem_dmabuf *umem_dmabuf);
void ib_umem_dmabuf_revoke(struct ib_umem_dmabuf *umem_dmabuf);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
#else /* CONFIG_INFINIBAND_USER_MEM */
#include <linux/err.h>
static inline struct ib_umem *ib_umem_get(struct ib_device *device,
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
unsigned long addr, size_t size,
int access)
{
return ERR_PTR(-EOPNOTSUPP);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
}
static inline void ib_umem_release(struct ib_umem *umem) { }
static inline int ib_umem_copy_from(void *dst, struct ib_umem *umem, size_t offset,
size_t length) {
return -EOPNOTSUPP;
}
static inline unsigned long ib_umem_find_best_pgsz(struct ib_umem *umem,
unsigned long pgsz_bitmap,
unsigned long virt)
{
return 0;
}
static inline unsigned long ib_umem_find_best_pgoff(struct ib_umem *umem,
unsigned long pgsz_bitmap,
u64 pgoff_bitmask)
{
return 0;
}
static inline
struct ib_umem_dmabuf *ib_umem_dmabuf_get(struct ib_device *device,
unsigned long offset,
size_t size, int fd,
int access,
struct dma_buf_attach_ops *ops)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct ib_umem_dmabuf *
ib_umem_dmabuf_get_pinned(struct ib_device *device, unsigned long offset,
size_t size, int fd, int access)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct ib_umem_dmabuf *
ib_umem_dmabuf_get_pinned_with_dma_device(struct ib_device *device,
struct device *dma_device,
unsigned long offset, size_t size,
int fd, int access)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int ib_umem_dmabuf_map_pages(struct ib_umem_dmabuf *umem_dmabuf)
{
return -EOPNOTSUPP;
}
static inline void ib_umem_dmabuf_unmap_pages(struct ib_umem_dmabuf *umem_dmabuf) { }
static inline void ib_umem_dmabuf_release(struct ib_umem_dmabuf *umem_dmabuf) { }
static inline void ib_umem_dmabuf_revoke(struct ib_umem_dmabuf *umem_dmabuf) {}
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-04 16:15:11 -08:00
#endif /* CONFIG_INFINIBAND_USER_MEM */
#endif /* IB_UMEM_H */