linux/arch/mips/kernel/module.c

459 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Copyright (C) 2001 Rusty Russell.
* Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2005 Thiemo Seufer
*/
#undef DEBUG
#include <linux/extable.h>
#include <linux/moduleloader.h>
#include <linux/elf.h>
2008-07-23 21:28:13 -07:00
#include <linux/mm.h>
#include <linux/numa.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/jump_label.h>
[MIPS] Load modules to CKSEG0 if CONFIG_BUILD_ELF64=n This is a patch to load 64-bit modules to CKSEG0 so that can be compiled with -msym32 option. This makes each module ~10% smaller. * introduce MODULE_START and MODULE_END * custom module_alloc() * PGD for modules * change XTLB refill handler synthesizer * enable -msym32 for modules again (revert ca78b1a5c6a6e70e052d3ea253828e49b5d07c8a) New XTLB refill handler looks like this: 80000080 dmfc0 k0,C0_BADVADDR 80000084 bltz k0,800000e4 # goto l_module_alloc 80000088 lui k1,0x8046 # %high(pgd_current) 8000008c ld k1,24600(k1) # %low(pgd_current) 80000090 dsrl k0,k0,0x1b # l_vmalloc_done: 80000094 andi k0,k0,0x1ff8 80000098 daddu k1,k1,k0 8000009c dmfc0 k0,C0_BADVADDR 800000a0 ld k1,0(k1) 800000a4 dsrl k0,k0,0x12 800000a8 andi k0,k0,0xff8 800000ac daddu k1,k1,k0 800000b0 dmfc0 k0,C0_XCONTEXT 800000b4 ld k1,0(k1) 800000b8 andi k0,k0,0xff0 800000bc daddu k1,k1,k0 800000c0 ld k0,0(k1) 800000c4 ld k1,8(k1) 800000c8 dsrl k0,k0,0x6 800000cc mtc0 k0,C0_ENTRYLO0 800000d0 dsrl k1,k1,0x6 800000d4 mtc0 k1,C0_ENTRYL01 800000d8 nop 800000dc tlbwr 800000e0 eret 800000e4 dsll k1,k0,0x2 # l_module_alloc: 800000e8 bgez k1,80000008 # goto l_vmalloc 800000ec lui k1,0xc000 800000f0 dsubu k0,k0,k1 800000f4 lui k1,0x8046 # %high(module_pg_dir) 800000f8 beq zero,zero,80000000 800000fc nop 80000000 beq zero,zero,80000090 # goto l_vmalloc_done 80000004 daddiu k1,k1,0x4000 80000008 dsll32 k1,k1,0x0 # l_vmalloc: 8000000c dsubu k0,k0,k1 80000010 beq zero,zero,80000090 # goto l_vmalloc_done 80000014 lui k1,0x8046 # %high(swapper_pg_dir) Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-10-26 00:08:31 +09:00
#include <asm/pgtable.h> /* MODULE_START */
struct mips_hi16 {
struct mips_hi16 *next;
Elf_Addr *addr;
Elf_Addr value;
};
static LIST_HEAD(dbe_list);
static DEFINE_SPINLOCK(dbe_lock);
#ifdef MODULE_START
void *module_alloc(unsigned long size)
{
return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into __vmalloc_node_range(). Add new parameter 'vm_flags' to __vmalloc_node_range() function. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 14:40:07 -08:00
GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
#endif
static int apply_r_mips_none(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
return 0;
}
static int apply_r_mips_32(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
*location = base + v;
return 0;
}
static int apply_r_mips_26(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
if (v % 4) {
pr_err("module %s: dangerous R_MIPS_26 relocation\n",
me->name);
return -ENOEXEC;
}
if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
pr_err("module %s: relocation overflow\n",
me->name);
return -ENOEXEC;
}
*location = (*location & ~0x03ffffff) |
((base + (v >> 2)) & 0x03ffffff);
return 0;
}
static int apply_r_mips_hi16(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
struct mips_hi16 *n;
if (rela) {
*location = (*location & 0xffff0000) |
((((long long) v + 0x8000LL) >> 16) & 0xffff);
return 0;
}
/*
* We cannot relocate this one now because we don't know the value of
* the carry we need to add. Save the information, and let LO16 do the
* actual relocation.
*/
n = kmalloc(sizeof *n, GFP_KERNEL);
if (!n)
return -ENOMEM;
n->addr = (Elf_Addr *)location;
n->value = v;
n->next = me->arch.r_mips_hi16_list;
me->arch.r_mips_hi16_list = n;
return 0;
}
static void free_relocation_chain(struct mips_hi16 *l)
{
struct mips_hi16 *next;
while (l) {
next = l->next;
kfree(l);
l = next;
}
}
static int apply_r_mips_lo16(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
unsigned long insnlo = base;
struct mips_hi16 *l;
Elf_Addr val, vallo;
if (rela) {
*location = (*location & 0xffff0000) | (v & 0xffff);
return 0;
}
/* Sign extend the addend we extract from the lo insn. */
vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
if (me->arch.r_mips_hi16_list != NULL) {
l = me->arch.r_mips_hi16_list;
while (l != NULL) {
struct mips_hi16 *next;
unsigned long insn;
/*
* The value for the HI16 had best be the same.
*/
if (v != l->value)
goto out_danger;
/*
* Do the HI16 relocation. Note that we actually don't
* need to know anything about the LO16 itself, except
* where to find the low 16 bits of the addend needed
* by the LO16.
*/
insn = *l->addr;
val = ((insn & 0xffff) << 16) + vallo;
val += v;
/*
* Account for the sign extension that will happen in
* the low bits.
*/
val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
insn = (insn & ~0xffff) | val;
*l->addr = insn;
next = l->next;
kfree(l);
l = next;
}
me->arch.r_mips_hi16_list = NULL;
}
/*
* Ok, we're done with the HI16 relocs. Now deal with the LO16.
*/
val = v + vallo;
insnlo = (insnlo & ~0xffff) | (val & 0xffff);
*location = insnlo;
return 0;
out_danger:
free_relocation_chain(l);
me->arch.r_mips_hi16_list = NULL;
pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name);
return -ENOEXEC;
}
static int apply_r_mips_pc(struct module *me, u32 *location, u32 base,
Elf_Addr v, unsigned int bits)
{
unsigned long mask = GENMASK(bits - 1, 0);
unsigned long se_bits;
long offset;
if (v % 4) {
pr_err("module %s: dangerous R_MIPS_PC%u relocation\n",
me->name, bits);
return -ENOEXEC;
}
/* retrieve & sign extend implicit addend if any */
offset = base & mask;
offset |= (offset & BIT(bits - 1)) ? ~mask : 0;
offset += ((long)v - (long)location) >> 2;
/* check the sign bit onwards are identical - ie. we didn't overflow */
se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0;
if ((offset & ~mask) != (se_bits & ~mask)) {
pr_err("module %s: relocation overflow\n", me->name);
return -ENOEXEC;
}
*location = (*location & ~mask) | (offset & mask);
return 0;
}
static int apply_r_mips_pc16(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
return apply_r_mips_pc(me, location, base, v, 16);
}
static int apply_r_mips_pc21(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
return apply_r_mips_pc(me, location, base, v, 21);
}
static int apply_r_mips_pc26(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
return apply_r_mips_pc(me, location, base, v, 26);
}
static int apply_r_mips_64(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
if (WARN_ON(!rela))
return -EINVAL;
*(Elf_Addr *)location = v;
return 0;
}
static int apply_r_mips_higher(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
if (WARN_ON(!rela))
return -EINVAL;
*location = (*location & 0xffff0000) |
((((long long)v + 0x80008000LL) >> 32) & 0xffff);
return 0;
}
static int apply_r_mips_highest(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela)
{
if (WARN_ON(!rela))
return -EINVAL;
*location = (*location & 0xffff0000) |
((((long long)v + 0x800080008000LL) >> 48) & 0xffff);
return 0;
}
/**
* reloc_handler() - Apply a particular relocation to a module
* @me: the module to apply the reloc to
* @location: the address at which the reloc is to be applied
* @base: the existing value at location for REL-style; 0 for RELA-style
* @v: the value of the reloc, with addend for RELA-style
*
* Each implemented reloc_handler function applies a particular type of
* relocation to the module @me. Relocs that may be found in either REL or RELA
* variants can be handled by making use of the @base & @v parameters which are
* set to values which abstract the difference away from the particular reloc
* implementations.
*
* Return: 0 upon success, else -ERRNO
*/
typedef int (*reloc_handler)(struct module *me, u32 *location,
u32 base, Elf_Addr v, bool rela);
/* The handlers for known reloc types */
static reloc_handler reloc_handlers[] = {
[R_MIPS_NONE] = apply_r_mips_none,
[R_MIPS_32] = apply_r_mips_32,
[R_MIPS_26] = apply_r_mips_26,
[R_MIPS_HI16] = apply_r_mips_hi16,
[R_MIPS_LO16] = apply_r_mips_lo16,
[R_MIPS_PC16] = apply_r_mips_pc16,
[R_MIPS_64] = apply_r_mips_64,
[R_MIPS_HIGHER] = apply_r_mips_higher,
[R_MIPS_HIGHEST] = apply_r_mips_highest,
[R_MIPS_PC21_S2] = apply_r_mips_pc21,
[R_MIPS_PC26_S2] = apply_r_mips_pc26,
};
static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
unsigned int symindex, unsigned int relsec,
struct module *me, bool rela)
{
union {
Elf_Mips_Rel *rel;
Elf_Mips_Rela *rela;
} r;
reloc_handler handler;
Elf_Sym *sym;
u32 *location, base;
unsigned int i, type;
Elf_Addr v;
int err = 0;
size_t reloc_sz;
pr_debug("Applying relocate section %u to %u\n", relsec,
sechdrs[relsec].sh_info);
r.rel = (void *)sechdrs[relsec].sh_addr;
reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel);
me->arch.r_mips_hi16_list = NULL;
for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) {
/* This is where to make the change */
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ r.rel->r_offset;
/* This is the symbol it is referring to */
sym = (Elf_Sym *)sechdrs[symindex].sh_addr
+ ELF_MIPS_R_SYM(*r.rel);
if (sym->st_value >= -MAX_ERRNO) {
/* Ignore unresolved weak symbol */
if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
continue;
pr_warn("%s: Unknown symbol %s\n",
me->name, strtab + sym->st_name);
err = -ENOENT;
goto out;
}
type = ELF_MIPS_R_TYPE(*r.rel);
if (type < ARRAY_SIZE(reloc_handlers))
handler = reloc_handlers[type];
else
handler = NULL;
if (!handler) {
pr_err("%s: Unknown relocation type %u\n",
me->name, type);
err = -EINVAL;
goto out;
}
if (rela) {
v = sym->st_value + r.rela->r_addend;
base = 0;
r.rela = &r.rela[1];
} else {
v = sym->st_value;
base = *location;
r.rel = &r.rel[1];
}
err = handler(me, location, base, v, rela);
if (err)
goto out;
}
out:
/*
* Normally the hi16 list should be deallocated at this point. A
* malformed binary however could contain a series of R_MIPS_HI16
* relocations not followed by a R_MIPS_LO16 relocation, or if we hit
* an error processing a reloc we might have gotten here before
* reaching the R_MIPS_LO16. In either case, free up the list and
* return an error.
*/
if (me->arch.r_mips_hi16_list) {
free_relocation_chain(me->arch.r_mips_hi16_list);
me->arch.r_mips_hi16_list = NULL;
err = err ?: -ENOEXEC;
}
return err;
}
int apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
unsigned int symindex, unsigned int relsec,
struct module *me)
{
return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false);
}
#ifdef CONFIG_MODULES_USE_ELF_RELA
int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
unsigned int symindex, unsigned int relsec,
struct module *me)
{
return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true);
}
#endif /* CONFIG_MODULES_USE_ELF_RELA */
/* Given an address, look for it in the module exception tables. */
const struct exception_table_entry *search_module_dbetables(unsigned long addr)
{
unsigned long flags;
const struct exception_table_entry *e = NULL;
struct mod_arch_specific *dbe;
spin_lock_irqsave(&dbe_lock, flags);
list_for_each_entry(dbe, &dbe_list, dbe_list) {
e = search_extable(dbe->dbe_start,
dbe->dbe_end - dbe->dbe_start, addr);
if (e)
break;
}
spin_unlock_irqrestore(&dbe_lock, flags);
/* Now, if we found one, we are running inside it now, hence
we cannot unload the module, hence no refcnt needed. */
return e;
}
/* Put in dbe list if necessary. */
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s;
char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
/* Make jump label nops. */
jump_label_apply_nops(me);
INIT_LIST_HEAD(&me->arch.dbe_list);
for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
if (strcmp("__dbe_table", secstrings + s->sh_name) != 0)
continue;
me->arch.dbe_start = (void *)s->sh_addr;
me->arch.dbe_end = (void *)s->sh_addr + s->sh_size;
spin_lock_irq(&dbe_lock);
list_add(&me->arch.dbe_list, &dbe_list);
spin_unlock_irq(&dbe_lock);
}
return 0;
}
void module_arch_cleanup(struct module *mod)
{
spin_lock_irq(&dbe_lock);
list_del(&mod->arch.dbe_list);
spin_unlock_irq(&dbe_lock);
}