2011-10-20 17:24:15 +02:00
|
|
|
/*
|
|
|
|
* Remote Processor Framework
|
|
|
|
*
|
|
|
|
* Copyright (C) 2011 Texas Instruments, Inc.
|
|
|
|
* Copyright (C) 2011 Google, Inc.
|
|
|
|
*
|
|
|
|
* Ohad Ben-Cohen <ohad@wizery.com>
|
|
|
|
* Mark Grosen <mgrosen@ti.com>
|
|
|
|
* Brian Swetland <swetland@google.com>
|
|
|
|
* Fernando Guzman Lugo <fernando.lugo@ti.com>
|
|
|
|
* Suman Anna <s-anna@ti.com>
|
|
|
|
* Robert Tivy <rtivy@ti.com>
|
|
|
|
* Armando Uribe De Leon <x0095078@ti.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* version 2 as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/remoteproc.h>
|
|
|
|
#include <linux/device.h>
|
2012-09-18 12:26:35 +03:00
|
|
|
#include <linux/uaccess.h>
|
|
|
|
|
|
|
|
#include "remoteproc_internal.h"
|
2011-10-20 17:24:15 +02:00
|
|
|
|
|
|
|
/* remoteproc debugfs parent dir */
|
|
|
|
static struct dentry *rproc_dbg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some remote processors may support dumping trace logs into a shared
|
|
|
|
* memory buffer. We expose this trace buffer using debugfs, so users
|
|
|
|
* can easily tell what's going on remotely.
|
|
|
|
*
|
|
|
|
* We will most probably improve the rproc tracing facilities later on,
|
|
|
|
* but this kind of lightweight and simple mechanism is always good to have,
|
|
|
|
* as it provides very early tracing with little to no dependencies at all.
|
|
|
|
*/
|
|
|
|
static ssize_t rproc_trace_read(struct file *filp, char __user *userbuf,
|
2016-08-12 18:42:20 -05:00
|
|
|
size_t count, loff_t *ppos)
|
2011-10-20 17:24:15 +02:00
|
|
|
{
|
|
|
|
struct rproc_mem_entry *trace = filp->private_data;
|
|
|
|
int len = strnlen(trace->va, trace->len);
|
|
|
|
|
|
|
|
return simple_read_from_buffer(userbuf, count, ppos, trace->va, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations trace_rproc_ops = {
|
|
|
|
.read = rproc_trace_read,
|
2012-04-05 14:25:11 -07:00
|
|
|
.open = simple_open,
|
2011-10-20 17:24:15 +02:00
|
|
|
.llseek = generic_file_llseek,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* expose the name of the remote processor via debugfs */
|
|
|
|
static ssize_t rproc_name_read(struct file *filp, char __user *userbuf,
|
2016-08-12 18:42:20 -05:00
|
|
|
size_t count, loff_t *ppos)
|
2011-10-20 17:24:15 +02:00
|
|
|
{
|
|
|
|
struct rproc *rproc = filp->private_data;
|
|
|
|
/* need room for the name, a newline and a terminating null */
|
|
|
|
char buf[100];
|
|
|
|
int i;
|
|
|
|
|
2012-09-25 10:02:51 +03:00
|
|
|
i = scnprintf(buf, sizeof(buf), "%.98s\n", rproc->name);
|
2011-10-20 17:24:15 +02:00
|
|
|
|
|
|
|
return simple_read_from_buffer(userbuf, count, ppos, buf, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations rproc_name_ops = {
|
|
|
|
.read = rproc_name_read,
|
2012-04-05 14:25:11 -07:00
|
|
|
.open = simple_open,
|
2011-10-20 17:24:15 +02:00
|
|
|
.llseek = generic_file_llseek,
|
|
|
|
};
|
|
|
|
|
2012-09-18 12:26:35 +03:00
|
|
|
/* expose recovery flag via debugfs */
|
|
|
|
static ssize_t rproc_recovery_read(struct file *filp, char __user *userbuf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct rproc *rproc = filp->private_data;
|
|
|
|
char *buf = rproc->recovery_disabled ? "disabled\n" : "enabled\n";
|
|
|
|
|
|
|
|
return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* By writing to the 'recovery' debugfs entry, we control the behavior of the
|
|
|
|
* recovery mechanism dynamically. The default value of this entry is "enabled".
|
|
|
|
*
|
|
|
|
* The 'recovery' debugfs entry supports these commands:
|
|
|
|
*
|
|
|
|
* enabled: When enabled, the remote processor will be automatically
|
|
|
|
* recovered whenever it crashes. Moreover, if the remote
|
|
|
|
* processor crashes while recovery is disabled, it will
|
|
|
|
* be automatically recovered too as soon as recovery is enabled.
|
|
|
|
*
|
|
|
|
* disabled: When disabled, a remote processor will remain in a crashed
|
|
|
|
* state if it crashes. This is useful for debugging purposes;
|
|
|
|
* without it, debugging a crash is substantially harder.
|
|
|
|
*
|
|
|
|
* recover: This function will trigger an immediate recovery if the
|
|
|
|
* remote processor is in a crashed state, without changing
|
|
|
|
* or checking the recovery state (enabled/disabled).
|
|
|
|
* This is useful during debugging sessions, when one expects
|
|
|
|
* additional crashes to happen after enabling recovery. In this
|
|
|
|
* case, enabling recovery will make it hard to debug subsequent
|
|
|
|
* crashes, so it's recommended to keep recovery disabled, and
|
|
|
|
* instead use the "recover" command as needed.
|
|
|
|
*/
|
|
|
|
static ssize_t
|
|
|
|
rproc_recovery_write(struct file *filp, const char __user *user_buf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct rproc *rproc = filp->private_data;
|
|
|
|
char buf[10];
|
|
|
|
int ret;
|
|
|
|
|
2015-11-20 18:26:07 +01:00
|
|
|
if (count < 1 || count > sizeof(buf))
|
2016-01-12 12:46:15 +00:00
|
|
|
return -EINVAL;
|
2012-09-18 12:26:35 +03:00
|
|
|
|
|
|
|
ret = copy_from_user(buf, user_buf, count);
|
|
|
|
if (ret)
|
2012-09-25 10:05:33 +03:00
|
|
|
return -EFAULT;
|
2012-09-18 12:26:35 +03:00
|
|
|
|
|
|
|
/* remove end of line */
|
|
|
|
if (buf[count - 1] == '\n')
|
|
|
|
buf[count - 1] = '\0';
|
|
|
|
|
|
|
|
if (!strncmp(buf, "enabled", count)) {
|
|
|
|
rproc->recovery_disabled = false;
|
|
|
|
/* if rproc has crashed, trigger recovery */
|
|
|
|
if (rproc->state == RPROC_CRASHED)
|
|
|
|
rproc_trigger_recovery(rproc);
|
|
|
|
} else if (!strncmp(buf, "disabled", count)) {
|
|
|
|
rproc->recovery_disabled = true;
|
|
|
|
} else if (!strncmp(buf, "recover", count)) {
|
|
|
|
/* if rproc has crashed, trigger recovery */
|
|
|
|
if (rproc->state == RPROC_CRASHED)
|
|
|
|
rproc_trigger_recovery(rproc);
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations rproc_recovery_ops = {
|
|
|
|
.read = rproc_recovery_read,
|
|
|
|
.write = rproc_recovery_write,
|
|
|
|
.open = simple_open,
|
|
|
|
.llseek = generic_file_llseek,
|
|
|
|
};
|
|
|
|
|
2011-10-20 17:24:15 +02:00
|
|
|
void rproc_remove_trace_file(struct dentry *tfile)
|
|
|
|
{
|
|
|
|
debugfs_remove(tfile);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dentry *rproc_create_trace_file(const char *name, struct rproc *rproc,
|
2016-08-12 18:42:20 -05:00
|
|
|
struct rproc_mem_entry *trace)
|
2011-10-20 17:24:15 +02:00
|
|
|
{
|
|
|
|
struct dentry *tfile;
|
|
|
|
|
2016-08-12 18:42:20 -05:00
|
|
|
tfile = debugfs_create_file(name, 0400, rproc->dbg_dir, trace,
|
|
|
|
&trace_rproc_ops);
|
2011-10-20 17:24:15 +02:00
|
|
|
if (!tfile) {
|
remoteproc: maintain a generic child device for each rproc
For each registered rproc, maintain a generic remoteproc device whose
parent is the low level platform-specific device (commonly a pdev, but
it may certainly be any other type of device too).
With this in hand, the resulting device hierarchy might then look like:
omap-rproc.0
|
- remoteproc0 <---- new !
|
- virtio0
|
- virtio1
|
- rpmsg0
|
- rpmsg1
|
- rpmsg2
Where:
- omap-rproc.0 is the low level device that's bound to the
driver which invokes rproc_register()
- remoteproc0 is the result of this patch, and will be added by the
remoteproc framework when rproc_register() is invoked
- virtio0 and virtio1 are vdevs that are registered by remoteproc
when it realizes that they are supported by the firmware
of the physical remote processor represented by omap-rproc.0
- rpmsg0, rpmsg1 and rpmsg2 are rpmsg devices that represent rpmsg
channels, and are registerd by the rpmsg bus when it gets notified
about their existence
Technically, this patch:
- changes 'struct rproc' to contain this generic remoteproc.x device
- creates a new "remoteproc" type, to which this new generic remoteproc.x
device belong to.
- adds a super simple enumeration method for the indices of the
remoteproc.x devices
- updates all dev_* messaging to use the generic remoteproc.x device
instead of the low level platform-specific device
- updates all dma_* allocations to use the parent of remoteproc.x (where
the platform-specific memory pools, most commonly CMA, are to be found)
Adding this generic device has several merits:
- we can now add remoteproc runtime PM support simply by hooking onto the
new "remoteproc" type
- all remoteproc log messages will now carry a common name prefix
instead of having a platform-specific one
- having a device as part of the rproc struct makes it possible to simplify
refcounting (see subsequent patch)
Thanks to Stephen Boyd <sboyd@codeaurora.org> for suggesting and
discussing these ideas in one of the remoteproc review threads and
to Fernando Guzman Lugo <fernando.lugo@ti.com> for trying them out
with the (upcoming) runtime PM support for remoteproc.
Cc: Fernando Guzman Lugo <fernando.lugo@ti.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
2012-05-30 22:01:25 +03:00
|
|
|
dev_err(&rproc->dev, "failed to create debugfs trace entry\n");
|
2011-10-20 17:24:15 +02:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return tfile;
|
|
|
|
}
|
|
|
|
|
|
|
|
void rproc_delete_debug_dir(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
if (!rproc->dbg_dir)
|
|
|
|
return;
|
|
|
|
|
|
|
|
debugfs_remove_recursive(rproc->dbg_dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
void rproc_create_debug_dir(struct rproc *rproc)
|
|
|
|
{
|
remoteproc: maintain a generic child device for each rproc
For each registered rproc, maintain a generic remoteproc device whose
parent is the low level platform-specific device (commonly a pdev, but
it may certainly be any other type of device too).
With this in hand, the resulting device hierarchy might then look like:
omap-rproc.0
|
- remoteproc0 <---- new !
|
- virtio0
|
- virtio1
|
- rpmsg0
|
- rpmsg1
|
- rpmsg2
Where:
- omap-rproc.0 is the low level device that's bound to the
driver which invokes rproc_register()
- remoteproc0 is the result of this patch, and will be added by the
remoteproc framework when rproc_register() is invoked
- virtio0 and virtio1 are vdevs that are registered by remoteproc
when it realizes that they are supported by the firmware
of the physical remote processor represented by omap-rproc.0
- rpmsg0, rpmsg1 and rpmsg2 are rpmsg devices that represent rpmsg
channels, and are registerd by the rpmsg bus when it gets notified
about their existence
Technically, this patch:
- changes 'struct rproc' to contain this generic remoteproc.x device
- creates a new "remoteproc" type, to which this new generic remoteproc.x
device belong to.
- adds a super simple enumeration method for the indices of the
remoteproc.x devices
- updates all dev_* messaging to use the generic remoteproc.x device
instead of the low level platform-specific device
- updates all dma_* allocations to use the parent of remoteproc.x (where
the platform-specific memory pools, most commonly CMA, are to be found)
Adding this generic device has several merits:
- we can now add remoteproc runtime PM support simply by hooking onto the
new "remoteproc" type
- all remoteproc log messages will now carry a common name prefix
instead of having a platform-specific one
- having a device as part of the rproc struct makes it possible to simplify
refcounting (see subsequent patch)
Thanks to Stephen Boyd <sboyd@codeaurora.org> for suggesting and
discussing these ideas in one of the remoteproc review threads and
to Fernando Guzman Lugo <fernando.lugo@ti.com> for trying them out
with the (upcoming) runtime PM support for remoteproc.
Cc: Fernando Guzman Lugo <fernando.lugo@ti.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
2012-05-30 22:01:25 +03:00
|
|
|
struct device *dev = &rproc->dev;
|
2011-10-20 17:24:15 +02:00
|
|
|
|
|
|
|
if (!rproc_dbg)
|
|
|
|
return;
|
|
|
|
|
|
|
|
rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg);
|
|
|
|
if (!rproc->dbg_dir)
|
|
|
|
return;
|
|
|
|
|
|
|
|
debugfs_create_file("name", 0400, rproc->dbg_dir,
|
2016-08-12 18:42:20 -05:00
|
|
|
rproc, &rproc_name_ops);
|
2012-09-18 12:26:35 +03:00
|
|
|
debugfs_create_file("recovery", 0400, rproc->dbg_dir,
|
2016-08-12 18:42:20 -05:00
|
|
|
rproc, &rproc_recovery_ops);
|
2011-10-20 17:24:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void __init rproc_init_debugfs(void)
|
|
|
|
{
|
|
|
|
if (debugfs_initialized()) {
|
|
|
|
rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
|
|
|
|
if (!rproc_dbg)
|
|
|
|
pr_err("can't create debugfs dir\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void __exit rproc_exit_debugfs(void)
|
|
|
|
{
|
2013-06-30 11:33:05 +03:00
|
|
|
debugfs_remove(rproc_dbg);
|
2011-10-20 17:24:15 +02:00
|
|
|
}
|