License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* linux/fs/ioctl.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <linux/mm.h>
|
2006-01-11 20:17:46 +00:00
|
|
|
#include <linux/capability.h>
|
2018-09-11 14:55:03 +00:00
|
|
|
#include <linux/compat.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/security.h>
|
2011-11-17 04:57:37 +00:00
|
|
|
#include <linux/export.h>
|
2008-02-07 08:13:23 +00:00
|
|
|
#include <linux/uaccess.h>
|
2008-10-03 21:32:43 +00:00
|
|
|
#include <linux/writeback.h>
|
|
|
|
#include <linux/buffer_head.h>
|
2009-06-19 18:28:07 +00:00
|
|
|
#include <linux/falloc.h>
|
2017-02-03 22:47:37 +00:00
|
|
|
#include <linux/sched/signal.h>
|
2020-05-23 07:30:11 +00:00
|
|
|
#include <linux/fiemap.h>
|
2021-04-07 12:36:42 +00:00
|
|
|
#include <linux/mount.h>
|
|
|
|
#include <linux/fscrypt.h>
|
|
|
|
#include <linux/fileattr.h>
|
2017-02-03 22:47:37 +00:00
|
|
|
|
2016-01-07 14:53:30 +00:00
|
|
|
#include "internal.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm/ioctls.h>
|
|
|
|
|
2008-10-08 23:44:18 +00:00
|
|
|
/* So that the fiemap access checks can't overflow on 32 bit machines. */
|
|
|
|
#define FIEMAP_MAX_EXTENTS (UINT_MAX / sizeof(struct fiemap_extent))
|
|
|
|
|
2008-02-07 08:13:25 +00:00
|
|
|
/**
|
|
|
|
* vfs_ioctl - call filesystem specific ioctl methods
|
2008-02-09 08:10:16 +00:00
|
|
|
* @filp: open file to invoke ioctl method on
|
|
|
|
* @cmd: ioctl command to execute
|
|
|
|
* @arg: command-specific argument for ioctl
|
2008-02-07 08:13:25 +00:00
|
|
|
*
|
|
|
|
* Invokes filesystem specific ->unlocked_ioctl, if one exists; otherwise
|
|
|
|
* returns -ENOTTY.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -errno on error.
|
|
|
|
*/
|
2016-01-07 14:53:30 +00:00
|
|
|
long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int error = -ENOTTY;
|
|
|
|
|
2013-09-22 20:27:52 +00:00
|
|
|
if (!filp->f_op->unlocked_ioctl)
|
2005-04-16 22:20:36 +00:00
|
|
|
goto out;
|
|
|
|
|
2010-07-03 22:15:10 +00:00
|
|
|
error = filp->f_op->unlocked_ioctl(filp, cmd, arg);
|
|
|
|
if (error == -ENOIOCTLCMD)
|
2012-01-05 23:40:12 +00:00
|
|
|
error = -ENOTTY;
|
2005-04-16 22:20:36 +00:00
|
|
|
out:
|
|
|
|
return error;
|
|
|
|
}
|
2018-07-18 13:44:40 +00:00
|
|
|
EXPORT_SYMBOL(vfs_ioctl);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-02-07 08:13:25 +00:00
|
|
|
static int ioctl_fibmap(struct file *filp, int __user *p)
|
|
|
|
{
|
2020-01-09 13:30:44 +00:00
|
|
|
struct inode *inode = file_inode(filp);
|
2020-04-30 14:57:46 +00:00
|
|
|
struct super_block *sb = inode->i_sb;
|
2020-01-09 13:30:44 +00:00
|
|
|
int error, ur_block;
|
|
|
|
sector_t block;
|
2008-02-07 08:13:25 +00:00
|
|
|
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
|
|
return -EPERM;
|
2020-01-09 13:30:44 +00:00
|
|
|
|
|
|
|
error = get_user(ur_block, p);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
2020-01-09 13:30:45 +00:00
|
|
|
if (ur_block < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2020-01-09 13:30:44 +00:00
|
|
|
block = ur_block;
|
|
|
|
error = bmap(inode, &block);
|
|
|
|
|
2020-04-30 14:57:46 +00:00
|
|
|
if (block > INT_MAX) {
|
|
|
|
error = -ERANGE;
|
|
|
|
pr_warn_ratelimited("[%s/%d] FS: %s File: %pD4 would truncate fibmap result\n",
|
|
|
|
current->comm, task_pid_nr(current),
|
|
|
|
sb->s_id, filp);
|
|
|
|
}
|
|
|
|
|
2020-01-09 13:30:44 +00:00
|
|
|
if (error)
|
|
|
|
ur_block = 0;
|
|
|
|
else
|
|
|
|
ur_block = block;
|
|
|
|
|
|
|
|
if (put_user(ur_block, p))
|
|
|
|
error = -EFAULT;
|
|
|
|
|
|
|
|
return error;
|
2008-02-07 08:13:25 +00:00
|
|
|
}
|
|
|
|
|
2008-10-08 23:44:18 +00:00
|
|
|
/**
|
|
|
|
* fiemap_fill_next_extent - Fiemap helper function
|
|
|
|
* @fieinfo: Fiemap context passed into ->fiemap
|
|
|
|
* @logical: Extent logical start offset, in bytes
|
|
|
|
* @phys: Extent physical start offset, in bytes
|
|
|
|
* @len: Extent length, in bytes
|
|
|
|
* @flags: FIEMAP_EXTENT flags that describe this extent
|
|
|
|
*
|
|
|
|
* Called from file system ->fiemap callback. Will populate extent
|
|
|
|
* info as passed in via arguments and copy to user memory. On
|
|
|
|
* success, extent count on fieinfo is incremented.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -errno on error, 1 if this was the last
|
|
|
|
* extent that will fit in user array.
|
|
|
|
*/
|
|
|
|
int fiemap_fill_next_extent(struct fiemap_extent_info *fieinfo, u64 logical,
|
|
|
|
u64 phys, u64 len, u32 flags)
|
|
|
|
{
|
|
|
|
struct fiemap_extent extent;
|
2011-01-16 14:28:17 +00:00
|
|
|
struct fiemap_extent __user *dest = fieinfo->fi_extents_start;
|
2008-10-08 23:44:18 +00:00
|
|
|
|
|
|
|
/* only count the extents */
|
|
|
|
if (fieinfo->fi_extents_max == 0) {
|
|
|
|
fieinfo->fi_extents_mapped++;
|
|
|
|
return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max)
|
|
|
|
return 1;
|
|
|
|
|
2023-08-18 20:08:24 +00:00
|
|
|
#define SET_UNKNOWN_FLAGS (FIEMAP_EXTENT_DELALLOC)
|
|
|
|
#define SET_NO_UNMOUNTED_IO_FLAGS (FIEMAP_EXTENT_DATA_ENCRYPTED)
|
|
|
|
#define SET_NOT_ALIGNED_FLAGS (FIEMAP_EXTENT_DATA_TAIL|FIEMAP_EXTENT_DATA_INLINE)
|
|
|
|
|
2008-10-08 23:44:18 +00:00
|
|
|
if (flags & SET_UNKNOWN_FLAGS)
|
|
|
|
flags |= FIEMAP_EXTENT_UNKNOWN;
|
|
|
|
if (flags & SET_NO_UNMOUNTED_IO_FLAGS)
|
|
|
|
flags |= FIEMAP_EXTENT_ENCODED;
|
|
|
|
if (flags & SET_NOT_ALIGNED_FLAGS)
|
|
|
|
flags |= FIEMAP_EXTENT_NOT_ALIGNED;
|
|
|
|
|
|
|
|
memset(&extent, 0, sizeof(extent));
|
|
|
|
extent.fe_logical = logical;
|
|
|
|
extent.fe_physical = phys;
|
|
|
|
extent.fe_length = len;
|
|
|
|
extent.fe_flags = flags;
|
|
|
|
|
|
|
|
dest += fieinfo->fi_extents_mapped;
|
|
|
|
if (copy_to_user(dest, &extent, sizeof(extent)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
fieinfo->fi_extents_mapped++;
|
|
|
|
if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max)
|
|
|
|
return 1;
|
|
|
|
return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fiemap_fill_next_extent);
|
|
|
|
|
|
|
|
/**
|
2020-05-23 07:30:13 +00:00
|
|
|
* fiemap_prep - check validity of requested flags for fiemap
|
|
|
|
* @inode: Inode to operate on
|
2008-10-08 23:44:18 +00:00
|
|
|
* @fieinfo: Fiemap context passed into ->fiemap
|
2020-05-23 07:30:13 +00:00
|
|
|
* @start: Start of the mapped range
|
|
|
|
* @len: Length of the mapped range, can be truncated by this function.
|
|
|
|
* @supported_flags: Set of fiemap flags that the file system understands
|
2008-10-08 23:44:18 +00:00
|
|
|
*
|
2020-05-23 07:30:13 +00:00
|
|
|
* This function must be called from each ->fiemap instance to validate the
|
|
|
|
* fiemap request against the file system parameters.
|
2008-10-08 23:44:18 +00:00
|
|
|
*
|
2020-05-23 07:30:13 +00:00
|
|
|
* Returns 0 on success, or a negative error on failure.
|
2008-10-08 23:44:18 +00:00
|
|
|
*/
|
2020-05-23 07:30:13 +00:00
|
|
|
int fiemap_prep(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
|
|
u64 start, u64 *len, u32 supported_flags)
|
2008-10-08 23:44:18 +00:00
|
|
|
{
|
2020-05-23 07:30:13 +00:00
|
|
|
u64 maxbytes = inode->i_sb->s_maxbytes;
|
2008-10-08 23:44:18 +00:00
|
|
|
u32 incompat_flags;
|
2020-05-23 07:30:14 +00:00
|
|
|
int ret = 0;
|
2008-10-08 23:44:18 +00:00
|
|
|
|
2020-05-23 07:30:13 +00:00
|
|
|
if (*len == 0)
|
2008-10-08 23:44:18 +00:00
|
|
|
return -EINVAL;
|
2022-03-30 16:49:28 +00:00
|
|
|
if (start >= maxbytes)
|
2008-10-08 23:44:18 +00:00
|
|
|
return -EFBIG;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Shrink request scope to what the fs can actually handle.
|
|
|
|
*/
|
2020-05-23 07:30:13 +00:00
|
|
|
if (*len > maxbytes || (maxbytes - *len) < start)
|
|
|
|
*len = maxbytes - start;
|
2008-10-08 23:44:18 +00:00
|
|
|
|
2020-05-23 07:30:14 +00:00
|
|
|
supported_flags |= FIEMAP_FLAG_SYNC;
|
2020-05-23 07:30:13 +00:00
|
|
|
supported_flags &= FIEMAP_FLAGS_COMPAT;
|
|
|
|
incompat_flags = fieinfo->fi_flags & ~supported_flags;
|
|
|
|
if (incompat_flags) {
|
|
|
|
fieinfo->fi_flags = incompat_flags;
|
|
|
|
return -EBADR;
|
|
|
|
}
|
2020-05-23 07:30:14 +00:00
|
|
|
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC)
|
|
|
|
ret = filemap_write_and_wait(inode->i_mapping);
|
|
|
|
return ret;
|
2008-10-08 23:44:18 +00:00
|
|
|
}
|
2020-05-23 07:30:13 +00:00
|
|
|
EXPORT_SYMBOL(fiemap_prep);
|
2008-10-08 23:44:18 +00:00
|
|
|
|
2019-04-21 22:45:28 +00:00
|
|
|
static int ioctl_fiemap(struct file *filp, struct fiemap __user *ufiemap)
|
2008-10-08 23:44:18 +00:00
|
|
|
{
|
|
|
|
struct fiemap fiemap;
|
|
|
|
struct fiemap_extent_info fieinfo = { 0, };
|
2013-01-23 22:07:38 +00:00
|
|
|
struct inode *inode = file_inode(filp);
|
2008-10-08 23:44:18 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!inode->i_op->fiemap)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2011-01-16 14:28:17 +00:00
|
|
|
if (copy_from_user(&fiemap, ufiemap, sizeof(fiemap)))
|
2008-10-08 23:44:18 +00:00
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (fiemap.fm_extent_count > FIEMAP_MAX_EXTENTS)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
fieinfo.fi_flags = fiemap.fm_flags;
|
|
|
|
fieinfo.fi_extents_max = fiemap.fm_extent_count;
|
2011-01-16 14:28:17 +00:00
|
|
|
fieinfo.fi_extents_start = ufiemap->fm_extents;
|
2008-10-08 23:44:18 +00:00
|
|
|
|
2020-05-23 07:30:13 +00:00
|
|
|
error = inode->i_op->fiemap(inode, &fieinfo, fiemap.fm_start,
|
|
|
|
fiemap.fm_length);
|
2020-05-23 07:30:15 +00:00
|
|
|
|
2008-10-08 23:44:18 +00:00
|
|
|
fiemap.fm_flags = fieinfo.fi_flags;
|
|
|
|
fiemap.fm_mapped_extents = fieinfo.fi_extents_mapped;
|
2011-01-16 14:28:17 +00:00
|
|
|
if (copy_to_user(ufiemap, &fiemap, sizeof(fiemap)))
|
2008-10-08 23:44:18 +00:00
|
|
|
error = -EFAULT;
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2015-12-03 11:59:50 +00:00
|
|
|
static long ioctl_file_clone(struct file *dst_file, unsigned long srcfd,
|
|
|
|
u64 off, u64 olen, u64 destoff)
|
|
|
|
{
|
|
|
|
struct fd src_file = fdget(srcfd);
|
2018-10-29 23:41:49 +00:00
|
|
|
loff_t cloned;
|
2015-12-03 11:59:50 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!src_file.file)
|
|
|
|
return -EBADF;
|
2018-10-29 23:41:49 +00:00
|
|
|
cloned = vfs_clone_file_range(src_file.file, off, dst_file, destoff,
|
2018-10-29 23:41:56 +00:00
|
|
|
olen, 0);
|
2018-10-29 23:41:49 +00:00
|
|
|
if (cloned < 0)
|
|
|
|
ret = cloned;
|
|
|
|
else if (olen && cloned != olen)
|
|
|
|
ret = -EINVAL;
|
|
|
|
else
|
|
|
|
ret = 0;
|
2015-12-03 11:59:50 +00:00
|
|
|
fdput(src_file);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2019-04-21 22:45:28 +00:00
|
|
|
static long ioctl_file_clone_range(struct file *file,
|
|
|
|
struct file_clone_range __user *argp)
|
2015-12-03 11:59:50 +00:00
|
|
|
{
|
|
|
|
struct file_clone_range args;
|
|
|
|
|
|
|
|
if (copy_from_user(&args, argp, sizeof(args)))
|
|
|
|
return -EFAULT;
|
|
|
|
return ioctl_file_clone(file, args.src_fd, args.src_offset,
|
|
|
|
args.src_length, args.dest_offset);
|
|
|
|
}
|
|
|
|
|
2009-06-19 18:28:07 +00:00
|
|
|
/*
|
|
|
|
* This provides compatibility with legacy XFS pre-allocation ioctls
|
|
|
|
* which predate the fallocate syscall.
|
|
|
|
*
|
|
|
|
* Only the l_start, l_len and l_whence fields of the 'struct space_resv'
|
|
|
|
* are used here, rest are ignored.
|
|
|
|
*/
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
static int ioctl_preallocate(struct file *filp, int mode, void __user *argp)
|
2009-06-19 18:28:07 +00:00
|
|
|
{
|
2013-01-23 22:07:38 +00:00
|
|
|
struct inode *inode = file_inode(filp);
|
2009-06-19 18:28:07 +00:00
|
|
|
struct space_resv sr;
|
|
|
|
|
|
|
|
if (copy_from_user(&sr, argp, sizeof(sr)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
switch (sr.l_whence) {
|
|
|
|
case SEEK_SET:
|
|
|
|
break;
|
|
|
|
case SEEK_CUR:
|
|
|
|
sr.l_start += filp->f_pos;
|
|
|
|
break;
|
|
|
|
case SEEK_END:
|
|
|
|
sr.l_start += i_size_read(inode);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2019-10-25 05:26:02 +00:00
|
|
|
return vfs_fallocate(filp, mode | FALLOC_FL_KEEP_SIZE, sr.l_start,
|
|
|
|
sr.l_len);
|
2009-06-19 18:28:07 +00:00
|
|
|
}
|
|
|
|
|
2019-04-21 23:24:03 +00:00
|
|
|
/* on ia32 l_start is on a 32-bit boundary */
|
|
|
|
#if defined CONFIG_COMPAT && defined(CONFIG_X86_64)
|
|
|
|
/* just account for different alignment */
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
static int compat_ioctl_preallocate(struct file *file, int mode,
|
|
|
|
struct space_resv_32 __user *argp)
|
2019-04-21 23:24:03 +00:00
|
|
|
{
|
|
|
|
struct inode *inode = file_inode(file);
|
|
|
|
struct space_resv_32 sr;
|
|
|
|
|
|
|
|
if (copy_from_user(&sr, argp, sizeof(sr)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
switch (sr.l_whence) {
|
|
|
|
case SEEK_SET:
|
|
|
|
break;
|
|
|
|
case SEEK_CUR:
|
|
|
|
sr.l_start += file->f_pos;
|
|
|
|
break;
|
|
|
|
case SEEK_END:
|
|
|
|
sr.l_start += i_size_read(inode);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2019-12-02 22:46:22 +00:00
|
|
|
return vfs_fallocate(file, mode | FALLOC_FL_KEEP_SIZE, sr.l_start, sr.l_len);
|
2019-04-21 23:24:03 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
static int file_ioctl(struct file *filp, unsigned int cmd, int __user *p)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
switch (cmd) {
|
2008-02-07 08:13:23 +00:00
|
|
|
case FIBMAP:
|
2008-02-07 08:13:25 +00:00
|
|
|
return ioctl_fibmap(filp, p);
|
2009-06-19 18:28:07 +00:00
|
|
|
case FS_IOC_RESVSP:
|
|
|
|
case FS_IOC_RESVSP64:
|
2019-10-25 05:26:02 +00:00
|
|
|
return ioctl_preallocate(filp, 0, p);
|
|
|
|
case FS_IOC_UNRESVSP:
|
|
|
|
case FS_IOC_UNRESVSP64:
|
|
|
|
return ioctl_preallocate(filp, FALLOC_FL_PUNCH_HOLE, p);
|
|
|
|
case FS_IOC_ZERO_RANGE:
|
|
|
|
return ioctl_preallocate(filp, FALLOC_FL_ZERO_RANGE, p);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return -ENOIOCTLCMD;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-02-07 08:13:25 +00:00
|
|
|
static int ioctl_fionbio(struct file *filp, int __user *argp)
|
|
|
|
{
|
|
|
|
unsigned int flag;
|
|
|
|
int on, error;
|
|
|
|
|
|
|
|
error = get_user(on, argp);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
flag = O_NONBLOCK;
|
|
|
|
#ifdef __sparc__
|
|
|
|
/* SunOS compatibility item. */
|
|
|
|
if (O_NONBLOCK != O_NDELAY)
|
|
|
|
flag |= O_NDELAY;
|
|
|
|
#endif
|
2009-02-06 22:25:24 +00:00
|
|
|
spin_lock(&filp->f_lock);
|
2008-02-07 08:13:25 +00:00
|
|
|
if (on)
|
|
|
|
filp->f_flags |= flag;
|
|
|
|
else
|
|
|
|
filp->f_flags &= ~flag;
|
2009-02-06 22:25:24 +00:00
|
|
|
spin_unlock(&filp->f_lock);
|
2008-02-07 08:13:25 +00:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ioctl_fioasync(unsigned int fd, struct file *filp,
|
|
|
|
int __user *argp)
|
|
|
|
{
|
|
|
|
unsigned int flag;
|
|
|
|
int on, error;
|
|
|
|
|
|
|
|
error = get_user(on, argp);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
flag = on ? FASYNC : 0;
|
|
|
|
|
|
|
|
/* Did FASYNC state change ? */
|
|
|
|
if ((flag ^ filp->f_flags) & FASYNC) {
|
2013-09-22 20:27:52 +00:00
|
|
|
if (filp->f_op->fasync)
|
2009-02-01 21:26:59 +00:00
|
|
|
/* fasync() adjusts filp->f_flags */
|
2008-02-07 08:13:25 +00:00
|
|
|
error = filp->f_op->fasync(fd, filp, on);
|
2008-12-05 23:12:48 +00:00
|
|
|
else
|
2008-02-07 08:13:25 +00:00
|
|
|
error = -ENOTTY;
|
|
|
|
}
|
2009-02-01 21:52:56 +00:00
|
|
|
return error < 0 ? error : 0;
|
2008-02-07 08:13:25 +00:00
|
|
|
}
|
|
|
|
|
2009-01-10 00:40:59 +00:00
|
|
|
static int ioctl_fsfreeze(struct file *filp)
|
|
|
|
{
|
2013-01-23 22:07:38 +00:00
|
|
|
struct super_block *sb = file_inode(filp)->i_sb;
|
2009-01-10 00:40:59 +00:00
|
|
|
|
2015-02-15 20:35:35 +00:00
|
|
|
if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
|
2009-01-10 00:40:59 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
/* If filesystem doesn't support freeze feature, return. */
|
fs: add freeze_super/thaw_super fs hooks
Currently, freezing a filesystem involves calling freeze_super, which locks
sb->s_umount and then calls the fs-specific freeze_fs hook. This makes it
hard for gfs2 (and potentially other cluster filesystems) to use the vfs
freezing code to do freezes on all the cluster nodes.
In order to communicate that a freeze has been requested, and to make sure
that only one node is trying to freeze at a time, gfs2 uses a glock
(sd_freeze_gl). The problem is that there is no hook for gfs2 to acquire
this lock before calling freeze_super. This means that two nodes can
attempt to freeze the filesystem by both calling freeze_super, acquiring
the sb->s_umount lock, and then attempting to grab the cluster glock
sd_freeze_gl. Only one will succeed, and the other will be stuck in
freeze_super, making it impossible to finish freezing the node.
To solve this problem, this patch adds the freeze_super and thaw_super
hooks. If a filesystem implements these hooks, they are called instead of
the vfs freeze_super and thaw_super functions. This means that every
filesystem that implements these hooks must call the vfs freeze_super and
thaw_super functions itself within the hook function to make use of the vfs
freezing code.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-11-14 02:42:03 +00:00
|
|
|
if (sb->s_op->freeze_fs == NULL && sb->s_op->freeze_super == NULL)
|
2009-01-10 00:40:59 +00:00
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
/* Freeze */
|
fs: add freeze_super/thaw_super fs hooks
Currently, freezing a filesystem involves calling freeze_super, which locks
sb->s_umount and then calls the fs-specific freeze_fs hook. This makes it
hard for gfs2 (and potentially other cluster filesystems) to use the vfs
freezing code to do freezes on all the cluster nodes.
In order to communicate that a freeze has been requested, and to make sure
that only one node is trying to freeze at a time, gfs2 uses a glock
(sd_freeze_gl). The problem is that there is no hook for gfs2 to acquire
this lock before calling freeze_super. This means that two nodes can
attempt to freeze the filesystem by both calling freeze_super, acquiring
the sb->s_umount lock, and then attempting to grab the cluster glock
sd_freeze_gl. Only one will succeed, and the other will be stuck in
freeze_super, making it impossible to finish freezing the node.
To solve this problem, this patch adds the freeze_super and thaw_super
hooks. If a filesystem implements these hooks, they are called instead of
the vfs freeze_super and thaw_super functions. This means that every
filesystem that implements these hooks must call the vfs freeze_super and
thaw_super functions itself within the hook function to make use of the vfs
freezing code.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-11-14 02:42:03 +00:00
|
|
|
if (sb->s_op->freeze_super)
|
2023-07-17 16:00:09 +00:00
|
|
|
return sb->s_op->freeze_super(sb, FREEZE_HOLDER_USERSPACE);
|
|
|
|
return freeze_super(sb, FREEZE_HOLDER_USERSPACE);
|
2009-01-10 00:40:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int ioctl_fsthaw(struct file *filp)
|
|
|
|
{
|
2013-01-23 22:07:38 +00:00
|
|
|
struct super_block *sb = file_inode(filp)->i_sb;
|
2009-01-10 00:40:59 +00:00
|
|
|
|
2015-02-15 20:35:35 +00:00
|
|
|
if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
|
2009-01-10 00:40:59 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
/* Thaw */
|
fs: add freeze_super/thaw_super fs hooks
Currently, freezing a filesystem involves calling freeze_super, which locks
sb->s_umount and then calls the fs-specific freeze_fs hook. This makes it
hard for gfs2 (and potentially other cluster filesystems) to use the vfs
freezing code to do freezes on all the cluster nodes.
In order to communicate that a freeze has been requested, and to make sure
that only one node is trying to freeze at a time, gfs2 uses a glock
(sd_freeze_gl). The problem is that there is no hook for gfs2 to acquire
this lock before calling freeze_super. This means that two nodes can
attempt to freeze the filesystem by both calling freeze_super, acquiring
the sb->s_umount lock, and then attempting to grab the cluster glock
sd_freeze_gl. Only one will succeed, and the other will be stuck in
freeze_super, making it impossible to finish freezing the node.
To solve this problem, this patch adds the freeze_super and thaw_super
hooks. If a filesystem implements these hooks, they are called instead of
the vfs freeze_super and thaw_super functions. This means that every
filesystem that implements these hooks must call the vfs freeze_super and
thaw_super functions itself within the hook function to make use of the vfs
freezing code.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-11-14 02:42:03 +00:00
|
|
|
if (sb->s_op->thaw_super)
|
2023-07-17 16:00:09 +00:00
|
|
|
return sb->s_op->thaw_super(sb, FREEZE_HOLDER_USERSPACE);
|
|
|
|
return thaw_super(sb, FREEZE_HOLDER_USERSPACE);
|
2009-01-10 00:40:59 +00:00
|
|
|
}
|
|
|
|
|
2019-04-21 22:45:28 +00:00
|
|
|
static int ioctl_file_dedupe_range(struct file *file,
|
|
|
|
struct file_dedupe_range __user *argp)
|
2015-12-19 08:55:59 +00:00
|
|
|
{
|
|
|
|
struct file_dedupe_range *same = NULL;
|
|
|
|
int ret;
|
|
|
|
unsigned long size;
|
|
|
|
u16 count;
|
|
|
|
|
|
|
|
if (get_user(count, &argp->dest_count)) {
|
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2022-01-14 22:03:55 +00:00
|
|
|
size = offsetof(struct file_dedupe_range, info[count]);
|
2016-09-15 03:20:44 +00:00
|
|
|
if (size > PAGE_SIZE) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
2015-12-19 08:55:59 +00:00
|
|
|
|
|
|
|
same = memdup_user(argp, size);
|
|
|
|
if (IS_ERR(same)) {
|
|
|
|
ret = PTR_ERR(same);
|
|
|
|
same = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-07-28 01:11:29 +00:00
|
|
|
same->dest_count = count;
|
2015-12-19 08:55:59 +00:00
|
|
|
ret = vfs_dedupe_file_range(file, same);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = copy_to_user(argp, same, size);
|
|
|
|
if (ret)
|
|
|
|
ret = -EFAULT;
|
|
|
|
|
|
|
|
out:
|
|
|
|
kfree(same);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2021-04-07 12:36:42 +00:00
|
|
|
/**
|
|
|
|
* fileattr_fill_xflags - initialize fileattr with xflags
|
|
|
|
* @fa: fileattr pointer
|
|
|
|
* @xflags: FS_XFLAG_* flags
|
|
|
|
*
|
|
|
|
* Set ->fsx_xflags, ->fsx_valid and ->flags (translated xflags). All
|
|
|
|
* other fields are zeroed.
|
|
|
|
*/
|
|
|
|
void fileattr_fill_xflags(struct fileattr *fa, u32 xflags)
|
|
|
|
{
|
|
|
|
memset(fa, 0, sizeof(*fa));
|
|
|
|
fa->fsx_valid = true;
|
|
|
|
fa->fsx_xflags = xflags;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_IMMUTABLE)
|
|
|
|
fa->flags |= FS_IMMUTABLE_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_APPEND)
|
|
|
|
fa->flags |= FS_APPEND_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_SYNC)
|
|
|
|
fa->flags |= FS_SYNC_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_NOATIME)
|
|
|
|
fa->flags |= FS_NOATIME_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_NODUMP)
|
|
|
|
fa->flags |= FS_NODUMP_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_DAX)
|
|
|
|
fa->flags |= FS_DAX_FL;
|
|
|
|
if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
|
|
|
|
fa->flags |= FS_PROJINHERIT_FL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fileattr_fill_xflags);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fileattr_fill_flags - initialize fileattr with flags
|
|
|
|
* @fa: fileattr pointer
|
|
|
|
* @flags: FS_*_FL flags
|
|
|
|
*
|
|
|
|
* Set ->flags, ->flags_valid and ->fsx_xflags (translated flags).
|
|
|
|
* All other fields are zeroed.
|
|
|
|
*/
|
|
|
|
void fileattr_fill_flags(struct fileattr *fa, u32 flags)
|
|
|
|
{
|
|
|
|
memset(fa, 0, sizeof(*fa));
|
|
|
|
fa->flags_valid = true;
|
|
|
|
fa->flags = flags;
|
|
|
|
if (fa->flags & FS_SYNC_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_SYNC;
|
|
|
|
if (fa->flags & FS_IMMUTABLE_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_IMMUTABLE;
|
|
|
|
if (fa->flags & FS_APPEND_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_APPEND;
|
|
|
|
if (fa->flags & FS_NODUMP_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_NODUMP;
|
|
|
|
if (fa->flags & FS_NOATIME_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_NOATIME;
|
|
|
|
if (fa->flags & FS_DAX_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_DAX;
|
|
|
|
if (fa->flags & FS_PROJINHERIT_FL)
|
|
|
|
fa->fsx_xflags |= FS_XFLAG_PROJINHERIT;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fileattr_fill_flags);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* vfs_fileattr_get - retrieve miscellaneous file attributes
|
|
|
|
* @dentry: the object to retrieve from
|
|
|
|
* @fa: fileattr pointer
|
|
|
|
*
|
|
|
|
* Call i_op->fileattr_get() callback, if exists.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, or a negative error on failure.
|
|
|
|
*/
|
|
|
|
int vfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
|
|
|
|
{
|
|
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
|
|
|
|
if (!inode->i_op->fileattr_get)
|
|
|
|
return -ENOIOCTLCMD;
|
|
|
|
|
|
|
|
return inode->i_op->fileattr_get(dentry, fa);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(vfs_fileattr_get);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* copy_fsxattr_to_user - copy fsxattr to userspace.
|
|
|
|
* @fa: fileattr pointer
|
|
|
|
* @ufa: fsxattr user pointer
|
|
|
|
*
|
|
|
|
* Return: 0 on success, or -EFAULT on failure.
|
|
|
|
*/
|
|
|
|
int copy_fsxattr_to_user(const struct fileattr *fa, struct fsxattr __user *ufa)
|
|
|
|
{
|
|
|
|
struct fsxattr xfa;
|
|
|
|
|
|
|
|
memset(&xfa, 0, sizeof(xfa));
|
|
|
|
xfa.fsx_xflags = fa->fsx_xflags;
|
|
|
|
xfa.fsx_extsize = fa->fsx_extsize;
|
|
|
|
xfa.fsx_nextents = fa->fsx_nextents;
|
|
|
|
xfa.fsx_projid = fa->fsx_projid;
|
|
|
|
xfa.fsx_cowextsize = fa->fsx_cowextsize;
|
|
|
|
|
|
|
|
if (copy_to_user(ufa, &xfa, sizeof(xfa)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(copy_fsxattr_to_user);
|
|
|
|
|
|
|
|
static int copy_fsxattr_from_user(struct fileattr *fa,
|
|
|
|
struct fsxattr __user *ufa)
|
|
|
|
{
|
|
|
|
struct fsxattr xfa;
|
|
|
|
|
|
|
|
if (copy_from_user(&xfa, ufa, sizeof(xfa)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
fileattr_fill_xflags(fa, xfa.fsx_xflags);
|
|
|
|
fa->fsx_extsize = xfa.fsx_extsize;
|
|
|
|
fa->fsx_nextents = xfa.fsx_nextents;
|
|
|
|
fa->fsx_projid = xfa.fsx_projid;
|
|
|
|
fa->fsx_cowextsize = xfa.fsx_cowextsize;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generic function to check FS_IOC_FSSETXATTR/FS_IOC_SETFLAGS values and reject
|
|
|
|
* any invalid configurations.
|
|
|
|
*
|
|
|
|
* Note: must be called with inode lock held.
|
|
|
|
*/
|
|
|
|
static int fileattr_set_prepare(struct inode *inode,
|
|
|
|
const struct fileattr *old_ma,
|
|
|
|
struct fileattr *fa)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The IMMUTABLE and APPEND_ONLY flags can only be changed by
|
|
|
|
* the relevant capability.
|
|
|
|
*/
|
|
|
|
if ((fa->flags ^ old_ma->flags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
|
|
|
|
!capable(CAP_LINUX_IMMUTABLE))
|
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
err = fscrypt_prepare_setflags(inode, old_ma->flags, fa->flags);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Project Quota ID state is only allowed to change from within the init
|
|
|
|
* namespace. Enforce that restriction only if we are trying to change
|
|
|
|
* the quota ID state. Everything else is allowed in user namespaces.
|
|
|
|
*/
|
|
|
|
if (current_user_ns() != &init_user_ns) {
|
|
|
|
if (old_ma->fsx_projid != fa->fsx_projid)
|
|
|
|
return -EINVAL;
|
|
|
|
if ((old_ma->fsx_xflags ^ fa->fsx_xflags) &
|
|
|
|
FS_XFLAG_PROJINHERIT)
|
|
|
|
return -EINVAL;
|
2021-08-03 16:48:04 +00:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Caller is allowed to change the project ID. If it is being
|
|
|
|
* changed, make sure that the new value is valid.
|
|
|
|
*/
|
|
|
|
if (old_ma->fsx_projid != fa->fsx_projid &&
|
|
|
|
!projid_valid(make_kprojid(&init_user_ns, fa->fsx_projid)))
|
|
|
|
return -EINVAL;
|
2021-04-07 12:36:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Check extent size hints. */
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
|
|
|
|
!S_ISDIR(inode->i_mode))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
|
|
|
|
!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It is only valid to set the DAX flag on regular files and
|
|
|
|
* directories on filesystems.
|
|
|
|
*/
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
|
|
|
|
!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Extent size hints of zero turn off the flags. */
|
|
|
|
if (fa->fsx_extsize == 0)
|
|
|
|
fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
|
|
|
|
if (fa->fsx_cowextsize == 0)
|
|
|
|
fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* vfs_fileattr_set - change miscellaneous file attributes
|
2023-01-13 11:49:21 +00:00
|
|
|
* @idmap: idmap of the mount
|
2021-04-07 12:36:42 +00:00
|
|
|
* @dentry: the object to change
|
|
|
|
* @fa: fileattr pointer
|
|
|
|
*
|
|
|
|
* After verifying permissions, call i_op->fileattr_set() callback, if
|
|
|
|
* exists.
|
|
|
|
*
|
|
|
|
* Verifying attributes involves retrieving current attributes with
|
|
|
|
* i_op->fileattr_get(), this also allows initializing attributes that have
|
|
|
|
* not been set by the caller to current values. Inode lock is held
|
|
|
|
* thoughout to prevent racing with another instance.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, or a negative error on failure.
|
|
|
|
*/
|
2023-01-13 11:49:21 +00:00
|
|
|
int vfs_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry,
|
2021-04-07 12:36:42 +00:00
|
|
|
struct fileattr *fa)
|
|
|
|
{
|
|
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
struct fileattr old_ma = {};
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!inode->i_op->fileattr_set)
|
|
|
|
return -ENOIOCTLCMD;
|
|
|
|
|
2023-01-13 11:49:26 +00:00
|
|
|
if (!inode_owner_or_capable(idmap, inode))
|
2021-04-07 12:36:42 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
inode_lock(inode);
|
|
|
|
err = vfs_fileattr_get(dentry, &old_ma);
|
|
|
|
if (!err) {
|
|
|
|
/* initialize missing bits from old_ma */
|
|
|
|
if (fa->flags_valid) {
|
|
|
|
fa->fsx_xflags |= old_ma.fsx_xflags & ~FS_XFLAG_COMMON;
|
|
|
|
fa->fsx_extsize = old_ma.fsx_extsize;
|
|
|
|
fa->fsx_nextents = old_ma.fsx_nextents;
|
|
|
|
fa->fsx_projid = old_ma.fsx_projid;
|
|
|
|
fa->fsx_cowextsize = old_ma.fsx_cowextsize;
|
|
|
|
} else {
|
|
|
|
fa->flags |= old_ma.flags & ~FS_COMMON_FL;
|
|
|
|
}
|
|
|
|
err = fileattr_set_prepare(inode, &old_ma, fa);
|
|
|
|
if (!err)
|
2023-01-13 11:49:21 +00:00
|
|
|
err = inode->i_op->fileattr_set(idmap, dentry, fa);
|
2021-04-07 12:36:42 +00:00
|
|
|
}
|
|
|
|
inode_unlock(inode);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(vfs_fileattr_set);
|
|
|
|
|
|
|
|
static int ioctl_getflags(struct file *file, unsigned int __user *argp)
|
|
|
|
{
|
|
|
|
struct fileattr fa = { .flags_valid = true }; /* hint only */
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = vfs_fileattr_get(file->f_path.dentry, &fa);
|
|
|
|
if (!err)
|
|
|
|
err = put_user(fa.flags, argp);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ioctl_setflags(struct file *file, unsigned int __user *argp)
|
|
|
|
{
|
2023-01-13 11:49:21 +00:00
|
|
|
struct mnt_idmap *idmap = file_mnt_idmap(file);
|
2021-04-07 12:36:42 +00:00
|
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
|
|
struct fileattr fa;
|
|
|
|
unsigned int flags;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = get_user(flags, argp);
|
|
|
|
if (!err) {
|
|
|
|
err = mnt_want_write_file(file);
|
|
|
|
if (!err) {
|
|
|
|
fileattr_fill_flags(&fa, flags);
|
2023-01-13 11:49:21 +00:00
|
|
|
err = vfs_fileattr_set(idmap, dentry, &fa);
|
2021-04-07 12:36:42 +00:00
|
|
|
mnt_drop_write_file(file);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ioctl_fsgetxattr(struct file *file, void __user *argp)
|
|
|
|
{
|
|
|
|
struct fileattr fa = { .fsx_valid = true }; /* hint only */
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = vfs_fileattr_get(file->f_path.dentry, &fa);
|
|
|
|
if (!err)
|
|
|
|
err = copy_fsxattr_to_user(&fa, argp);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ioctl_fssetxattr(struct file *file, void __user *argp)
|
|
|
|
{
|
2023-01-13 11:49:21 +00:00
|
|
|
struct mnt_idmap *idmap = file_mnt_idmap(file);
|
2021-04-07 12:36:42 +00:00
|
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
|
|
struct fileattr fa;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = copy_fsxattr_from_user(&fa, argp);
|
|
|
|
if (!err) {
|
|
|
|
err = mnt_want_write_file(file);
|
|
|
|
if (!err) {
|
2023-01-13 11:49:21 +00:00
|
|
|
err = vfs_fileattr_set(idmap, dentry, &fa);
|
2021-04-07 12:36:42 +00:00
|
|
|
mnt_drop_write_file(file);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2008-02-07 08:13:25 +00:00
|
|
|
* do_vfs_ioctl() is not for drivers and not intended to be EXPORT_SYMBOL()'d.
|
2005-04-16 22:20:36 +00:00
|
|
|
* It's just a simple helper for sys_ioctl and compat_sys_ioctl.
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
*
|
|
|
|
* When you add any new common ioctls to the switches above and below,
|
|
|
|
* please ensure they have compatible arguments in compat mode.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
static int do_vfs_ioctl(struct file *filp, unsigned int fd,
|
|
|
|
unsigned int cmd, unsigned long arg)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2019-04-21 22:45:28 +00:00
|
|
|
void __user *argp = (void __user *)arg;
|
2013-01-23 22:07:38 +00:00
|
|
|
struct inode *inode = file_inode(filp);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
switch (cmd) {
|
2008-02-07 08:13:23 +00:00
|
|
|
case FIOCLEX:
|
|
|
|
set_close_on_exec(fd, 1);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-02-07 08:13:23 +00:00
|
|
|
case FIONCLEX:
|
|
|
|
set_close_on_exec(fd, 0);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-02-07 08:13:23 +00:00
|
|
|
case FIONBIO:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return ioctl_fionbio(filp, argp);
|
2008-02-07 08:13:23 +00:00
|
|
|
|
|
|
|
case FIOASYNC:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return ioctl_fioasync(fd, filp, argp);
|
2008-02-07 08:13:23 +00:00
|
|
|
|
|
|
|
case FIOQSIZE:
|
2011-01-16 15:48:17 +00:00
|
|
|
if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode) ||
|
|
|
|
S_ISLNK(inode->i_mode)) {
|
|
|
|
loff_t res = inode_get_bytes(inode);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return copy_to_user(argp, &res, sizeof(res)) ?
|
|
|
|
-EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -ENOTTY;
|
2009-01-10 00:40:59 +00:00
|
|
|
|
|
|
|
case FIFREEZE:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return ioctl_fsfreeze(filp);
|
2009-01-10 00:40:59 +00:00
|
|
|
|
|
|
|
case FITHAW:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return ioctl_fsthaw(filp);
|
2009-01-10 00:40:59 +00:00
|
|
|
|
2009-05-13 22:12:05 +00:00
|
|
|
case FS_IOC_FIEMAP:
|
2019-04-21 22:45:28 +00:00
|
|
|
return ioctl_fiemap(filp, argp);
|
2009-05-13 22:12:05 +00:00
|
|
|
|
|
|
|
case FIGETBSZ:
|
2018-10-11 14:38:14 +00:00
|
|
|
/* anon_bdev filesystems may not have a block size */
|
|
|
|
if (!inode->i_sb->s_blocksize)
|
|
|
|
return -EINVAL;
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
|
2019-04-21 22:45:28 +00:00
|
|
|
return put_user(inode->i_sb->s_blocksize, (int __user *)argp);
|
2009-05-13 22:12:05 +00:00
|
|
|
|
2015-12-03 11:59:50 +00:00
|
|
|
case FICLONE:
|
|
|
|
return ioctl_file_clone(filp, arg, 0, 0, 0);
|
|
|
|
|
|
|
|
case FICLONERANGE:
|
|
|
|
return ioctl_file_clone_range(filp, argp);
|
|
|
|
|
2015-12-19 08:55:59 +00:00
|
|
|
case FIDEDUPERANGE:
|
|
|
|
return ioctl_file_dedupe_range(filp, argp);
|
|
|
|
|
2020-02-07 16:55:48 +00:00
|
|
|
case FIONREAD:
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
|
|
return vfs_ioctl(filp, cmd, arg);
|
|
|
|
|
|
|
|
return put_user(i_size_read(inode) - filp->f_pos,
|
|
|
|
(int __user *)argp);
|
|
|
|
|
2021-04-07 12:36:42 +00:00
|
|
|
case FS_IOC_GETFLAGS:
|
|
|
|
return ioctl_getflags(filp, argp);
|
|
|
|
|
|
|
|
case FS_IOC_SETFLAGS:
|
|
|
|
return ioctl_setflags(filp, argp);
|
|
|
|
|
|
|
|
case FS_IOC_FSGETXATTR:
|
|
|
|
return ioctl_fsgetxattr(filp, argp);
|
|
|
|
|
|
|
|
case FS_IOC_FSSETXATTR:
|
|
|
|
return ioctl_fssetxattr(filp, argp);
|
|
|
|
|
2008-02-07 08:13:23 +00:00
|
|
|
default:
|
2011-01-16 15:48:17 +00:00
|
|
|
if (S_ISREG(inode->i_mode))
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return file_ioctl(filp, cmd, argp);
|
2008-02-07 08:13:23 +00:00
|
|
|
break;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
|
|
|
|
return -ENOIOCTLCMD;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2020-07-14 07:00:51 +00:00
|
|
|
SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2012-08-28 16:52:22 +00:00
|
|
|
struct fd f = fdget(fd);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
int error;
|
2012-08-28 16:52:22 +00:00
|
|
|
|
|
|
|
if (!f.file)
|
|
|
|
return -EBADF;
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
|
2012-08-28 16:52:22 +00:00
|
|
|
error = security_file_ioctl(f.file, cmd, arg);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
error = do_vfs_ioctl(f.file, fd, cmd, arg);
|
|
|
|
if (error == -ENOIOCTLCMD)
|
|
|
|
error = vfs_ioctl(f.file, cmd, arg);
|
|
|
|
|
|
|
|
out:
|
2012-08-28 16:52:22 +00:00
|
|
|
fdput(f);
|
2005-04-16 22:20:36 +00:00
|
|
|
return error;
|
|
|
|
}
|
2018-03-13 20:43:59 +00:00
|
|
|
|
2018-09-11 14:55:03 +00:00
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
/**
|
|
|
|
* compat_ptr_ioctl - generic implementation of .compat_ioctl file operation
|
2023-08-18 20:08:24 +00:00
|
|
|
* @file: The file to operate on.
|
|
|
|
* @cmd: The ioctl command number.
|
|
|
|
* @arg: The argument to the ioctl.
|
2018-09-11 14:55:03 +00:00
|
|
|
*
|
|
|
|
* This is not normally called as a function, but instead set in struct
|
|
|
|
* file_operations as
|
|
|
|
*
|
|
|
|
* .compat_ioctl = compat_ptr_ioctl,
|
|
|
|
*
|
|
|
|
* On most architectures, the compat_ptr_ioctl() just passes all arguments
|
|
|
|
* to the corresponding ->ioctl handler. The exception is arch/s390, where
|
|
|
|
* compat_ptr() clears the top bit of a 32-bit pointer value, so user space
|
|
|
|
* pointers to the second 2GB alias the first 2GB, as is the case for
|
|
|
|
* native 32-bit s390 user space.
|
|
|
|
*
|
|
|
|
* The compat_ptr_ioctl() function must therefore be used only with ioctl
|
|
|
|
* functions that either ignore the argument or pass a pointer to a
|
|
|
|
* compatible data type.
|
|
|
|
*
|
|
|
|
* If any ioctl command handled by fops->unlocked_ioctl passes a plain
|
|
|
|
* integer instead of a pointer, or any of the passed data types
|
|
|
|
* is incompatible between 32-bit and 64-bit architectures, a proper
|
|
|
|
* handler is required instead of compat_ptr_ioctl.
|
|
|
|
*/
|
|
|
|
long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
if (!file->f_op->unlocked_ioctl)
|
|
|
|
return -ENOIOCTLCMD;
|
|
|
|
|
|
|
|
return file->f_op->unlocked_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(compat_ptr_ioctl);
|
2019-06-07 08:06:42 +00:00
|
|
|
|
|
|
|
COMPAT_SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd,
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
compat_ulong_t, arg)
|
2019-06-07 08:06:42 +00:00
|
|
|
{
|
|
|
|
struct fd f = fdget(fd);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
int error;
|
|
|
|
|
2019-06-07 08:06:42 +00:00
|
|
|
if (!f.file)
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
return -EBADF;
|
2019-06-07 08:06:42 +00:00
|
|
|
|
lsm: new security_file_ioctl_compat() hook
Some ioctl commands do not require ioctl permission, but are routed to
other permissions such as FILE_GETATTR or FILE_SETATTR. This routing is
done by comparing the ioctl cmd to a set of 64-bit flags (FS_IOC_*).
However, if a 32-bit process is running on a 64-bit kernel, it emits
32-bit flags (FS_IOC32_*) for certain ioctl operations. These flags are
being checked erroneously, which leads to these ioctl operations being
routed to the ioctl permission, rather than the correct file
permissions.
This was also noted in a RED-PEN finding from a while back -
"/* RED-PEN how should LSM module know it's handling 32bit? */".
This patch introduces a new hook, security_file_ioctl_compat(), that is
called from the compat ioctl syscall. All current LSMs have been changed
to support this hook.
Reviewing the three places where we are currently using
security_file_ioctl(), it appears that only SELinux needs a dedicated
compat change; TOMOYO and SMACK appear to be functional without any
change.
Cc: stable@vger.kernel.org
Fixes: 0b24dcb7f2f7 ("Revert "selinux: simplify ioctl checking"")
Signed-off-by: Alfred Piccioni <alpic@google.com>
Reviewed-by: Stephen Smalley <stephen.smalley.work@gmail.com>
[PM: subject tweak, line length fixes, and alignment corrections]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-12-19 09:09:09 +00:00
|
|
|
error = security_file_ioctl_compat(f.file, cmd, arg);
|
2019-06-07 08:06:42 +00:00
|
|
|
if (error)
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
goto out;
|
2019-06-07 08:06:42 +00:00
|
|
|
|
|
|
|
switch (cmd) {
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
/* FICLONE takes an int argument, so don't use compat_ptr() */
|
2019-06-07 08:06:42 +00:00
|
|
|
case FICLONE:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
error = ioctl_file_clone(f.file, arg, 0, 0, 0);
|
|
|
|
break;
|
|
|
|
|
2019-06-07 08:06:42 +00:00
|
|
|
#if defined(CONFIG_X86_64)
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
/* these get messy on amd64 due to alignment differences */
|
2019-06-07 08:06:42 +00:00
|
|
|
case FS_IOC_RESVSP_32:
|
|
|
|
case FS_IOC_RESVSP64_32:
|
|
|
|
error = compat_ioctl_preallocate(f.file, 0, compat_ptr(arg));
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
break;
|
2019-06-07 08:06:42 +00:00
|
|
|
case FS_IOC_UNRESVSP_32:
|
|
|
|
case FS_IOC_UNRESVSP64_32:
|
|
|
|
error = compat_ioctl_preallocate(f.file, FALLOC_FL_PUNCH_HOLE,
|
|
|
|
compat_ptr(arg));
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
break;
|
2019-06-07 08:06:42 +00:00
|
|
|
case FS_IOC_ZERO_RANGE_32:
|
|
|
|
error = compat_ioctl_preallocate(f.file, FALLOC_FL_ZERO_RANGE,
|
|
|
|
compat_ptr(arg));
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
break;
|
2019-06-07 08:06:42 +00:00
|
|
|
#endif
|
|
|
|
|
2021-04-07 12:36:42 +00:00
|
|
|
/*
|
|
|
|
* These access 32-bit values anyway so no further handling is
|
|
|
|
* necessary.
|
|
|
|
*/
|
|
|
|
case FS_IOC32_GETFLAGS:
|
|
|
|
case FS_IOC32_SETFLAGS:
|
|
|
|
cmd = (cmd == FS_IOC32_GETFLAGS) ?
|
|
|
|
FS_IOC_GETFLAGS : FS_IOC_SETFLAGS;
|
|
|
|
fallthrough;
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
/*
|
|
|
|
* everything else in do_vfs_ioctl() takes either a compatible
|
|
|
|
* pointer argument or no argument -- call it with a modified
|
|
|
|
* argument.
|
|
|
|
*/
|
2019-06-07 08:06:42 +00:00
|
|
|
default:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
error = do_vfs_ioctl(f.file, fd, cmd,
|
|
|
|
(unsigned long)compat_ptr(arg));
|
|
|
|
if (error != -ENOIOCTLCMD)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (f.file->f_op->compat_ioctl)
|
2019-06-07 08:06:42 +00:00
|
|
|
error = f.file->f_op->compat_ioctl(f.file, cmd, arg);
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
if (error == -ENOIOCTLCMD)
|
|
|
|
error = -ENOTTY;
|
|
|
|
break;
|
2019-06-07 08:06:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
compat_ioctl: simplify the implementation
Now that both native and compat ioctl syscalls are
in the same file, a couple of simplifications can
be made, bringing the implementation closer together:
- do_vfs_ioctl(), ioctl_preallocate(), and compat_ioctl_preallocate()
can become static, allowing the compiler to optimize better
- slightly update the coding style for consistency between
the functions.
- rather than listing each command in two switch statements
for the compat case, just call a single function that has
all the common commands.
As a side-effect, FS_IOC_RESVSP/FS_IOC_RESVSP64 are now available
to x86 compat tasks, along with FS_IOC_RESVSP_32/FS_IOC_RESVSP64_32.
This is harmless for i386 emulation, and can be considered a bugfix
for x32 emulation, which never supported these in the past.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-27 20:25:36 +00:00
|
|
|
fdput(f);
|
|
|
|
|
2019-06-07 08:06:42 +00:00
|
|
|
return error;
|
|
|
|
}
|
2018-09-11 14:55:03 +00:00
|
|
|
#endif
|