2005-11-05 21:14:03 +01:00
|
|
|
#ifndef __NET_SCHED_RED_H
|
|
|
|
#define __NET_SCHED_RED_H
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
2011-11-23 20:12:59 -05:00
|
|
|
#include <linux/bug.h>
|
2005-11-05 21:14:03 +01:00
|
|
|
#include <net/pkt_sched.h>
|
|
|
|
#include <net/inet_ecn.h>
|
|
|
|
#include <net/dsfield.h>
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
#include <linux/reciprocal_div.h>
|
2005-11-05 21:14:03 +01:00
|
|
|
|
|
|
|
/* Random Early Detection (RED) algorithm.
|
|
|
|
=======================================
|
|
|
|
|
|
|
|
Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
|
|
|
|
for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
|
|
|
|
|
|
|
|
This file codes a "divisionless" version of RED algorithm
|
|
|
|
as written down in Fig.17 of the paper.
|
|
|
|
|
|
|
|
Short description.
|
|
|
|
------------------
|
|
|
|
|
|
|
|
When a new packet arrives we calculate the average queue length:
|
|
|
|
|
|
|
|
avg = (1-W)*avg + W*current_queue_len,
|
|
|
|
|
|
|
|
W is the filter time constant (chosen as 2^(-Wlog)), it controls
|
|
|
|
the inertia of the algorithm. To allow larger bursts, W should be
|
|
|
|
decreased.
|
|
|
|
|
|
|
|
if (avg > th_max) -> packet marked (dropped).
|
|
|
|
if (avg < th_min) -> packet passes.
|
|
|
|
if (th_min < avg < th_max) we calculate probability:
|
|
|
|
|
|
|
|
Pb = max_P * (avg - th_min)/(th_max-th_min)
|
|
|
|
|
|
|
|
and mark (drop) packet with this probability.
|
|
|
|
Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
|
|
|
|
max_P should be small (not 1), usually 0.01..0.02 is good value.
|
|
|
|
|
|
|
|
max_P is chosen as a number, so that max_P/(th_max-th_min)
|
|
|
|
is a negative power of two in order arithmetics to contain
|
|
|
|
only shifts.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters, settable by user:
|
|
|
|
-----------------------------
|
|
|
|
|
|
|
|
qth_min - bytes (should be < qth_max/2)
|
|
|
|
qth_max - bytes (should be at least 2*qth_min and less limit)
|
|
|
|
Wlog - bits (<32) log(1/W).
|
|
|
|
Plog - bits (<32)
|
|
|
|
|
|
|
|
Plog is related to max_P by formula:
|
|
|
|
|
|
|
|
max_P = (qth_max-qth_min)/2^Plog;
|
|
|
|
|
|
|
|
F.e. if qth_max=128K and qth_min=32K, then Plog=22
|
|
|
|
corresponds to max_P=0.02
|
|
|
|
|
|
|
|
Scell_log
|
|
|
|
Stab
|
|
|
|
|
|
|
|
Lookup table for log((1-W)^(t/t_ave).
|
|
|
|
|
|
|
|
|
|
|
|
NOTES:
|
|
|
|
|
|
|
|
Upper bound on W.
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
If you want to allow bursts of L packets of size S,
|
|
|
|
you should choose W:
|
|
|
|
|
|
|
|
L + 1 - th_min/S < (1-(1-W)^L)/W
|
|
|
|
|
|
|
|
th_min/S = 32 th_min/S = 4
|
|
|
|
|
|
|
|
log(W) L
|
|
|
|
-1 33
|
|
|
|
-2 35
|
|
|
|
-3 39
|
|
|
|
-4 46
|
|
|
|
-5 57
|
|
|
|
-6 75
|
|
|
|
-7 101
|
|
|
|
-8 135
|
|
|
|
-9 190
|
|
|
|
etc.
|
|
|
|
*/
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
/*
|
|
|
|
* Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
|
|
|
|
* (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
|
|
|
|
*
|
|
|
|
* Every 500 ms:
|
|
|
|
* if (avg > target and max_p <= 0.5)
|
|
|
|
* increase max_p : max_p += alpha;
|
|
|
|
* else if (avg < target and max_p >= 0.01)
|
|
|
|
* decrease max_p : max_p *= beta;
|
|
|
|
*
|
|
|
|
* target :[qth_min + 0.4*(qth_min - qth_max),
|
|
|
|
* qth_min + 0.6*(qth_min - qth_max)].
|
|
|
|
* alpha : min(0.01, max_p / 4)
|
|
|
|
* beta : 0.9
|
|
|
|
* max_P is a Q0.32 fixed point number (with 32 bits mantissa)
|
|
|
|
* max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
|
|
|
|
*/
|
|
|
|
#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
|
|
|
|
|
|
|
|
#define MAX_P_MIN (1 * RED_ONE_PERCENT)
|
|
|
|
#define MAX_P_MAX (50 * RED_ONE_PERCENT)
|
|
|
|
#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
|
|
|
|
|
2005-11-05 21:14:03 +01:00
|
|
|
#define RED_STAB_SIZE 256
|
|
|
|
#define RED_STAB_MASK (RED_STAB_SIZE - 1)
|
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct red_stats {
|
2005-11-05 21:14:03 +01:00
|
|
|
u32 prob_drop; /* Early probability drops */
|
|
|
|
u32 prob_mark; /* Early probability marks */
|
|
|
|
u32 forced_drop; /* Forced drops, qavg > max_thresh */
|
|
|
|
u32 forced_mark; /* Forced marks, qavg > max_thresh */
|
|
|
|
u32 pdrop; /* Drops due to queue limits */
|
|
|
|
u32 other; /* Drops due to drop() calls */
|
|
|
|
};
|
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct red_parms {
|
2005-11-05 21:14:03 +01:00
|
|
|
/* Parameters */
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
u32 qth_min; /* Min avg length threshold: Wlog scaled */
|
|
|
|
u32 qth_max; /* Max avg length threshold: Wlog scaled */
|
2005-11-05 21:14:03 +01:00
|
|
|
u32 Scell_max;
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
|
reciprocal_divide: update/correction of the algorithm
Jakub Zawadzki noticed that some divisions by reciprocal_divide()
were not correct [1][2], which he could also show with BPF code
after divisions are transformed into reciprocal_value() for runtime
invariance which can be passed to reciprocal_divide() later on;
reverse in BPF dump ended up with a different, off-by-one K in
some situations.
This has been fixed by Eric Dumazet in commit aee636c4809fa5
("bpf: do not use reciprocal divide"). This follow-up patch
improves reciprocal_value() and reciprocal_divide() to work in
all cases by using Granlund and Montgomery method, so that also
future use is safe and without any non-obvious side-effects.
Known problems with the old implementation were that division by 1
always returned 0 and some off-by-ones when the dividend and divisor
where very large. This seemed to not be problematic with its
current users, as far as we can tell. Eric Dumazet checked for
the slab usage, we cannot surely say so in the case of flex_array.
Still, in order to fix that, we propose an extension from the
original implementation from commit 6a2d7a955d8d resp. [3][4],
by using the algorithm proposed in "Division by Invariant Integers
Using Multiplication" [5], Torbjörn Granlund and Peter L.
Montgomery, that is, pseudocode for q = n/d where q, n, d is in
u32 universe:
1) Initialization:
int l = ceil(log_2 d)
uword m' = floor((1<<32)*((1<<l)-d)/d)+1
int sh_1 = min(l,1)
int sh_2 = max(l-1,0)
2) For q = n/d, all uword:
uword t = (n*m')>>32
q = (t+((n-t)>>sh_1))>>sh_2
The assembler implementation from Agner Fog [6] also helped a lot
while implementing. We have tested the implementation on x86_64,
ppc64, i686, s390x; on x86_64/haswell we're still half the latency
compared to normal divide.
Joint work with Daniel Borkmann.
[1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c
[2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c
[3] https://gmplib.org/~tege/division-paper.pdf
[4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html
[5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556
[6] http://www.agner.org/optimize/asmlib.zip
Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: linux-kernel@vger.kernel.org
Cc: Jesse Gross <jesse@nicira.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andy Gospodarek <andy@greyhouse.net>
Cc: Veaceslav Falico <vfalico@redhat.com>
Cc: Jay Vosburgh <fubar@us.ibm.com>
Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 02:29:41 +01:00
|
|
|
/* reciprocal_value(max_P / qth_delta) */
|
|
|
|
struct reciprocal_value max_P_reciprocal;
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
u32 qth_delta; /* max_th - min_th */
|
|
|
|
u32 target_min; /* min_th + 0.4*(max_th - min_th) */
|
|
|
|
u32 target_max; /* min_th + 0.6*(max_th - min_th) */
|
2005-11-05 21:14:03 +01:00
|
|
|
u8 Scell_log;
|
|
|
|
u8 Wlog; /* log(W) */
|
|
|
|
u8 Plog; /* random number bits */
|
|
|
|
u8 Stab[RED_STAB_SIZE];
|
2012-01-05 02:25:16 +00:00
|
|
|
};
|
2005-11-05 21:14:03 +01:00
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
struct red_vars {
|
2005-11-05 21:14:03 +01:00
|
|
|
/* Variables */
|
|
|
|
int qcount; /* Number of packets since last random
|
|
|
|
number generation */
|
|
|
|
u32 qR; /* Cached random number */
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
unsigned long qavg; /* Average queue length: Wlog scaled */
|
2011-11-30 12:10:53 +00:00
|
|
|
ktime_t qidlestart; /* Start of current idle period */
|
2005-11-05 21:14:03 +01:00
|
|
|
};
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
static inline u32 red_maxp(u8 Plog)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
return Plog < 32 ? (~0U >> Plog) : ~0U;
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline void red_set_vars(struct red_vars *v)
|
|
|
|
{
|
|
|
|
/* Reset average queue length, the value is strictly bound
|
|
|
|
* to the parameters below, reseting hurts a bit but leaving
|
|
|
|
* it might result in an unreasonable qavg for a while. --TGR
|
|
|
|
*/
|
|
|
|
v->qavg = 0;
|
|
|
|
|
|
|
|
v->qcount = -1;
|
|
|
|
}
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
|
2005-11-05 21:14:03 +01:00
|
|
|
static inline void red_set_parms(struct red_parms *p,
|
|
|
|
u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
|
2011-12-09 02:46:45 +00:00
|
|
|
u8 Scell_log, u8 *stab, u32 max_P)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
int delta = qth_max - qth_min;
|
2011-12-09 02:46:45 +00:00
|
|
|
u32 max_p_delta;
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
|
2005-11-05 21:14:03 +01:00
|
|
|
p->qth_min = qth_min << Wlog;
|
|
|
|
p->qth_max = qth_max << Wlog;
|
|
|
|
p->Wlog = Wlog;
|
|
|
|
p->Plog = Plog;
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
if (delta < 0)
|
|
|
|
delta = 1;
|
|
|
|
p->qth_delta = delta;
|
2011-12-09 02:46:45 +00:00
|
|
|
if (!max_P) {
|
|
|
|
max_P = red_maxp(Plog);
|
|
|
|
max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
|
|
|
|
}
|
|
|
|
p->max_P = max_P;
|
|
|
|
max_p_delta = max_P / delta;
|
|
|
|
max_p_delta = max(max_p_delta, 1U);
|
|
|
|
p->max_P_reciprocal = reciprocal_value(max_p_delta);
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
|
|
|
|
/* RED Adaptative target :
|
|
|
|
* [min_th + 0.4*(min_th - max_th),
|
|
|
|
* min_th + 0.6*(min_th - max_th)].
|
|
|
|
*/
|
|
|
|
delta /= 5;
|
|
|
|
p->target_min = qth_min + 2*delta;
|
|
|
|
p->target_max = qth_min + 3*delta;
|
|
|
|
|
2005-11-05 21:14:03 +01:00
|
|
|
p->Scell_log = Scell_log;
|
|
|
|
p->Scell_max = (255 << Scell_log);
|
|
|
|
|
net_sched: sfq: add optional RED on top of SFQ
Adds an optional Random Early Detection on each SFQ flow queue.
Traditional SFQ limits count of packets, while RED permits to also
control number of bytes per flow, and adds ECN capability as well.
1) We dont handle the idle time management in this RED implementation,
since each 'new flow' begins with a null qavg. We really want to address
backlogged flows.
2) if headdrop is selected, we try to ecn mark first packet instead of
currently enqueued packet. This gives faster feedback for tcp flows
compared to traditional RED [ marking the last packet in queue ]
Example of use :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 4sec sfq \
limit 3000 headdrop flows 512 divisor 16384 \
redflowlimit 100000 min 8000 max 60000 probability 0.20 ecn
qdisc sfq 10: parent 1:1 limit 3000p quantum 1514b depth 127 headdrop
flows 512/16384 divisor 16384
ewma 6 min 8000b max 60000b probability 0.2 ecn
prob_mark 0 prob_mark_head 4876 prob_drop 6131
forced_mark 0 forced_mark_head 0 forced_drop 0
Sent 1175211782 bytes 777537 pkt (dropped 6131, overlimits 11007
requeues 0)
rate 99483Kbit 8219pps backlog 689392b 456p requeues 0
In this test, with 64 netperf TCP_STREAM sessions, 50% using ECN enabled
flows, we can see number of packets CE marked is smaller than number of
drops (for non ECN flows)
If same test is run, without RED, we can check backlog is much bigger.
qdisc sfq 10: parent 1:1 limit 3000p quantum 1514b depth 127 headdrop
flows 512/16384 divisor 16384
Sent 1148683617 bytes 795006 pkt (dropped 0, overlimits 0 requeues 0)
rate 98429Kbit 8521pps backlog 1221290b 841p requeues 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Stephen Hemminger <shemminger@vyatta.com>
CC: Dave Taht <dave.taht@gmail.com>
Tested-by: Dave Taht <dave.taht@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-01-06 06:31:44 +00:00
|
|
|
if (stab)
|
|
|
|
memcpy(p->Stab, stab, sizeof(p->Stab));
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline int red_is_idling(const struct red_vars *v)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
return v->qidlestart.tv64 != 0;
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline void red_start_of_idle_period(struct red_vars *v)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
v->qidlestart = ktime_get();
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline void red_end_of_idle_period(struct red_vars *v)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
v->qidlestart.tv64 = 0;
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline void red_restart(struct red_vars *v)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
red_end_of_idle_period(v);
|
|
|
|
v->qavg = 0;
|
|
|
|
v->qcount = -1;
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
|
|
|
|
const struct red_vars *v)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
|
2011-11-30 12:10:53 +00:00
|
|
|
long us_idle = min_t(s64, delta, p->Scell_max);
|
2005-11-05 21:14:03 +01:00
|
|
|
int shift;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The problem: ideally, average length queue recalcultion should
|
|
|
|
* be done over constant clock intervals. This is too expensive, so
|
|
|
|
* that the calculation is driven by outgoing packets.
|
|
|
|
* When the queue is idle we have to model this clock by hand.
|
|
|
|
*
|
|
|
|
* SF+VJ proposed to "generate":
|
|
|
|
*
|
|
|
|
* m = idletime / (average_pkt_size / bandwidth)
|
|
|
|
*
|
|
|
|
* dummy packets as a burst after idle time, i.e.
|
|
|
|
*
|
2012-04-16 03:17:22 +00:00
|
|
|
* v->qavg *= (1-W)^m
|
2005-11-05 21:14:03 +01:00
|
|
|
*
|
|
|
|
* This is an apparently overcomplicated solution (f.e. we have to
|
|
|
|
* precompute a table to make this calculation in reasonable time)
|
|
|
|
* I believe that a simpler model may be used here,
|
|
|
|
* but it is field for experiments.
|
|
|
|
*/
|
|
|
|
|
|
|
|
shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
|
|
|
|
|
|
|
|
if (shift)
|
2012-01-05 02:25:16 +00:00
|
|
|
return v->qavg >> shift;
|
2005-11-05 21:14:03 +01:00
|
|
|
else {
|
|
|
|
/* Approximate initial part of exponent with linear function:
|
|
|
|
*
|
|
|
|
* (1-W)^m ~= 1-mW + ...
|
|
|
|
*
|
|
|
|
* Seems, it is the best solution to
|
|
|
|
* problem of too coarse exponent tabulation.
|
|
|
|
*/
|
2012-01-05 02:25:16 +00:00
|
|
|
us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
|
2005-11-05 21:14:03 +01:00
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
if (us_idle < (v->qavg >> 1))
|
|
|
|
return v->qavg - us_idle;
|
2005-11-05 21:14:03 +01:00
|
|
|
else
|
2012-01-05 02:25:16 +00:00
|
|
|
return v->qavg >> 1;
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
|
2012-01-05 02:25:16 +00:00
|
|
|
const struct red_vars *v,
|
2005-11-05 21:14:03 +01:00
|
|
|
unsigned int backlog)
|
|
|
|
{
|
|
|
|
/*
|
2012-04-16 03:17:22 +00:00
|
|
|
* NOTE: v->qavg is fixed point number with point at Wlog.
|
2005-11-05 21:14:03 +01:00
|
|
|
* The formula below is equvalent to floating point
|
|
|
|
* version:
|
|
|
|
*
|
|
|
|
* qavg = qavg*(1-W) + backlog*W;
|
|
|
|
*
|
|
|
|
* --ANK (980924)
|
|
|
|
*/
|
2012-01-05 02:25:16 +00:00
|
|
|
return v->qavg + (backlog - (v->qavg >> p->Wlog));
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
static inline unsigned long red_calc_qavg(const struct red_parms *p,
|
2012-01-05 02:25:16 +00:00
|
|
|
const struct red_vars *v,
|
2005-11-05 21:14:03 +01:00
|
|
|
unsigned int backlog)
|
|
|
|
{
|
2012-01-05 02:25:16 +00:00
|
|
|
if (!red_is_idling(v))
|
|
|
|
return red_calc_qavg_no_idle_time(p, v, backlog);
|
2005-11-05 21:14:03 +01:00
|
|
|
else
|
2012-01-05 02:25:16 +00:00
|
|
|
return red_calc_qavg_from_idle_time(p, v);
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
|
|
|
|
static inline u32 red_random(const struct red_parms *p)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
2014-01-11 07:15:59 -05:00
|
|
|
return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline int red_mark_probability(const struct red_parms *p,
|
|
|
|
const struct red_vars *v,
|
|
|
|
unsigned long qavg)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
|
|
|
/* The formula used below causes questions.
|
|
|
|
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
OK. qR is random number in the interval
|
|
|
|
(0..1/max_P)*(qth_max-qth_min)
|
2005-11-05 21:14:03 +01:00
|
|
|
i.e. 0..(2^Plog). If we used floating point
|
|
|
|
arithmetics, it would be: (2^Plog)*rnd_num,
|
|
|
|
where rnd_num is less 1.
|
|
|
|
|
|
|
|
Taking into account, that qavg have fixed
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
point at Wlog, two lines
|
2005-11-05 21:14:03 +01:00
|
|
|
below have the following floating point equivalent:
|
|
|
|
|
|
|
|
max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
|
|
|
|
|
|
|
|
Any questions? --ANK (980924)
|
|
|
|
*/
|
2012-01-05 02:25:16 +00:00
|
|
|
return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
|
2005-11-05 21:14:03 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
enum {
|
|
|
|
RED_BELOW_MIN_THRESH,
|
|
|
|
RED_BETWEEN_TRESH,
|
|
|
|
RED_ABOVE_MAX_TRESH,
|
|
|
|
};
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
|
|
|
if (qavg < p->qth_min)
|
|
|
|
return RED_BELOW_MIN_THRESH;
|
|
|
|
else if (qavg >= p->qth_max)
|
|
|
|
return RED_ABOVE_MAX_TRESH;
|
|
|
|
else
|
|
|
|
return RED_BETWEEN_TRESH;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum {
|
|
|
|
RED_DONT_MARK,
|
|
|
|
RED_PROB_MARK,
|
|
|
|
RED_HARD_MARK,
|
|
|
|
};
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline int red_action(const struct red_parms *p,
|
|
|
|
struct red_vars *v,
|
|
|
|
unsigned long qavg)
|
2005-11-05 21:14:03 +01:00
|
|
|
{
|
|
|
|
switch (red_cmp_thresh(p, qavg)) {
|
|
|
|
case RED_BELOW_MIN_THRESH:
|
2012-01-05 02:25:16 +00:00
|
|
|
v->qcount = -1;
|
2005-11-05 21:14:03 +01:00
|
|
|
return RED_DONT_MARK;
|
|
|
|
|
|
|
|
case RED_BETWEEN_TRESH:
|
2012-01-05 02:25:16 +00:00
|
|
|
if (++v->qcount) {
|
|
|
|
if (red_mark_probability(p, v, qavg)) {
|
|
|
|
v->qcount = 0;
|
|
|
|
v->qR = red_random(p);
|
2005-11-05 21:14:03 +01:00
|
|
|
return RED_PROB_MARK;
|
|
|
|
}
|
|
|
|
} else
|
2012-01-05 02:25:16 +00:00
|
|
|
v->qR = red_random(p);
|
2005-11-05 21:14:03 +01:00
|
|
|
|
|
|
|
return RED_DONT_MARK;
|
|
|
|
|
|
|
|
case RED_ABOVE_MAX_TRESH:
|
2012-01-05 02:25:16 +00:00
|
|
|
v->qcount = -1;
|
2005-11-05 21:14:03 +01:00
|
|
|
return RED_HARD_MARK;
|
|
|
|
}
|
|
|
|
|
|
|
|
BUG();
|
|
|
|
return RED_DONT_MARK;
|
|
|
|
}
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
{
|
|
|
|
unsigned long qavg;
|
|
|
|
u32 max_p_delta;
|
|
|
|
|
2012-01-05 02:25:16 +00:00
|
|
|
qavg = v->qavg;
|
|
|
|
if (red_is_idling(v))
|
|
|
|
qavg = red_calc_qavg_from_idle_time(p, v);
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
|
2012-04-16 03:17:22 +00:00
|
|
|
/* v->qavg is fixed point number with point at Wlog */
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
qavg >>= p->Wlog;
|
|
|
|
|
|
|
|
if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
|
|
|
|
p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
|
|
|
|
else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
|
|
|
|
p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
|
|
|
|
|
|
|
|
max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
|
2011-12-09 02:46:45 +00:00
|
|
|
max_p_delta = max(max_p_delta, 1U);
|
sch_red: Adaptative RED AQM
Adaptative RED AQM for linux, based on paper from Sally FLoyd,
Ramakrishna Gummadi, and Scott Shenker, August 2001 :
http://icir.org/floyd/papers/adaptiveRed.pdf
Goal of Adaptative RED is to make max_p a dynamic value between 1% and
50% to reach the target average queue : (max_th - min_th) / 2
Every 500 ms:
if (avg > target and max_p <= 0.5)
increase max_p : max_p += alpha;
else if (avg < target and max_p >= 0.01)
decrease max_p : max_p *= beta;
target :[min_th + 0.4*(min_th - max_th),
min_th + 0.6*(min_th - max_th)].
alpha : min(0.01, max_p / 4)
beta : 0.9
max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa)
Changes against our RED implementation are :
max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32
fixed point number, to allow full range described in Adatative paper.
To deliver a random number, we now use a reciprocal divide (thats really
a multiply), but this operation is done once per marked/droped packet
when in RED_BETWEEN_TRESH window, so added cost (compared to previous
AND operation) is near zero.
dump operation gives current max_p value in a new TCA_RED_MAX_P
attribute.
Example on a 10Mbit link :
tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \
limit 400000 min 30000 max 90000 avpkt 1000 \
burst 55 ecn adaptative bandwidth 10Mbit
# tc -s -d qdisc show dev eth3
...
qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn
adaptative ewma 5 max_p=0.113335 Scell_log 15
Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0)
rate 9749Kbit 831pps backlog 72056b 16p requeues 0
marked 1357 early 35 pdrop 0 other 0
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 06:06:03 +00:00
|
|
|
p->max_P_reciprocal = reciprocal_value(max_p_delta);
|
|
|
|
}
|
2005-11-05 21:14:03 +01:00
|
|
|
#endif
|