mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 23:00:21 +00:00
2206 lines
52 KiB
C
2206 lines
52 KiB
C
|
/*
|
||
|
* Primary bucket allocation code
|
||
|
*
|
||
|
* Copyright 2012 Google, Inc.
|
||
|
*
|
||
|
* Allocation in bcache is done in terms of buckets:
|
||
|
*
|
||
|
* Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
|
||
|
* btree pointers - they must match for the pointer to be considered valid.
|
||
|
*
|
||
|
* Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
|
||
|
* bucket simply by incrementing its gen.
|
||
|
*
|
||
|
* The gens (along with the priorities; it's really the gens are important but
|
||
|
* the code is named as if it's the priorities) are written in an arbitrary list
|
||
|
* of buckets on disk, with a pointer to them in the journal header.
|
||
|
*
|
||
|
* When we invalidate a bucket, we have to write its new gen to disk and wait
|
||
|
* for that write to complete before we use it - otherwise after a crash we
|
||
|
* could have pointers that appeared to be good but pointed to data that had
|
||
|
* been overwritten.
|
||
|
*
|
||
|
* Since the gens and priorities are all stored contiguously on disk, we can
|
||
|
* batch this up: We fill up the free_inc list with freshly invalidated buckets,
|
||
|
* call prio_write(), and when prio_write() finishes we pull buckets off the
|
||
|
* free_inc list and optionally discard them.
|
||
|
*
|
||
|
* free_inc isn't the only freelist - if it was, we'd often have to sleep while
|
||
|
* priorities and gens were being written before we could allocate. c->free is a
|
||
|
* smaller freelist, and buckets on that list are always ready to be used.
|
||
|
*
|
||
|
* If we've got discards enabled, that happens when a bucket moves from the
|
||
|
* free_inc list to the free list.
|
||
|
*
|
||
|
* It's important to ensure that gens don't wrap around - with respect to
|
||
|
* either the oldest gen in the btree or the gen on disk. This is quite
|
||
|
* difficult to do in practice, but we explicitly guard against it anyways - if
|
||
|
* a bucket is in danger of wrapping around we simply skip invalidating it that
|
||
|
* time around, and we garbage collect or rewrite the priorities sooner than we
|
||
|
* would have otherwise.
|
||
|
*
|
||
|
* bch2_bucket_alloc() allocates a single bucket from a specific device.
|
||
|
*
|
||
|
* bch2_bucket_alloc_set() allocates one or more buckets from different devices
|
||
|
* in a given filesystem.
|
||
|
*
|
||
|
* invalidate_buckets() drives all the processes described above. It's called
|
||
|
* from bch2_bucket_alloc() and a few other places that need to make sure free
|
||
|
* buckets are ready.
|
||
|
*
|
||
|
* invalidate_buckets_(lru|fifo)() find buckets that are available to be
|
||
|
* invalidated, and then invalidate them and stick them on the free_inc list -
|
||
|
* in either lru or fifo order.
|
||
|
*/
|
||
|
|
||
|
#include "bcachefs.h"
|
||
|
#include "alloc.h"
|
||
|
#include "btree_cache.h"
|
||
|
#include "btree_io.h"
|
||
|
#include "btree_update.h"
|
||
|
#include "btree_update_interior.h"
|
||
|
#include "btree_gc.h"
|
||
|
#include "buckets.h"
|
||
|
#include "checksum.h"
|
||
|
#include "clock.h"
|
||
|
#include "debug.h"
|
||
|
#include "disk_groups.h"
|
||
|
#include "error.h"
|
||
|
#include "extents.h"
|
||
|
#include "io.h"
|
||
|
#include "journal.h"
|
||
|
#include "journal_io.h"
|
||
|
#include "super-io.h"
|
||
|
#include "trace.h"
|
||
|
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/rculist.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/sched/task.h>
|
||
|
#include <linux/sort.h>
|
||
|
|
||
|
static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int);
|
||
|
|
||
|
/* Ratelimiting/PD controllers */
|
||
|
|
||
|
static void pd_controllers_update(struct work_struct *work)
|
||
|
{
|
||
|
struct bch_fs *c = container_of(to_delayed_work(work),
|
||
|
struct bch_fs,
|
||
|
pd_controllers_update);
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i;
|
||
|
|
||
|
for_each_member_device(ca, c, i) {
|
||
|
struct bch_dev_usage stats = bch2_dev_usage_read(c, ca);
|
||
|
|
||
|
u64 free = bucket_to_sector(ca,
|
||
|
__dev_buckets_free(ca, stats)) << 9;
|
||
|
/*
|
||
|
* Bytes of internal fragmentation, which can be
|
||
|
* reclaimed by copy GC
|
||
|
*/
|
||
|
s64 fragmented = (bucket_to_sector(ca,
|
||
|
stats.buckets[BCH_DATA_USER] +
|
||
|
stats.buckets[BCH_DATA_CACHED]) -
|
||
|
(stats.sectors[BCH_DATA_USER] +
|
||
|
stats.sectors[BCH_DATA_CACHED])) << 9;
|
||
|
|
||
|
fragmented = max(0LL, fragmented);
|
||
|
|
||
|
bch2_pd_controller_update(&ca->copygc_pd,
|
||
|
free, fragmented, -1);
|
||
|
}
|
||
|
|
||
|
schedule_delayed_work(&c->pd_controllers_update,
|
||
|
c->pd_controllers_update_seconds * HZ);
|
||
|
}
|
||
|
|
||
|
/* Persistent alloc info: */
|
||
|
|
||
|
static unsigned bch_alloc_val_u64s(const struct bch_alloc *a)
|
||
|
{
|
||
|
unsigned bytes = offsetof(struct bch_alloc, data);
|
||
|
|
||
|
if (a->fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
|
||
|
bytes += 2;
|
||
|
if (a->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
|
||
|
bytes += 2;
|
||
|
|
||
|
return DIV_ROUND_UP(bytes, sizeof(u64));
|
||
|
}
|
||
|
|
||
|
const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k)
|
||
|
{
|
||
|
if (k.k->p.inode >= c->sb.nr_devices ||
|
||
|
!c->devs[k.k->p.inode])
|
||
|
return "invalid device";
|
||
|
|
||
|
switch (k.k->type) {
|
||
|
case BCH_ALLOC: {
|
||
|
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
|
||
|
|
||
|
if (bch_alloc_val_u64s(a.v) != bkey_val_u64s(a.k))
|
||
|
return "incorrect value size";
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
return "invalid type";
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void bch2_alloc_to_text(struct bch_fs *c, char *buf,
|
||
|
size_t size, struct bkey_s_c k)
|
||
|
{
|
||
|
buf[0] = '\0';
|
||
|
|
||
|
switch (k.k->type) {
|
||
|
case BCH_ALLOC:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline unsigned get_alloc_field(const u8 **p, unsigned bytes)
|
||
|
{
|
||
|
unsigned v;
|
||
|
|
||
|
switch (bytes) {
|
||
|
case 1:
|
||
|
v = **p;
|
||
|
break;
|
||
|
case 2:
|
||
|
v = le16_to_cpup((void *) *p);
|
||
|
break;
|
||
|
case 4:
|
||
|
v = le32_to_cpup((void *) *p);
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
*p += bytes;
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
static inline void put_alloc_field(u8 **p, unsigned bytes, unsigned v)
|
||
|
{
|
||
|
switch (bytes) {
|
||
|
case 1:
|
||
|
**p = v;
|
||
|
break;
|
||
|
case 2:
|
||
|
*((__le16 *) *p) = cpu_to_le16(v);
|
||
|
break;
|
||
|
case 4:
|
||
|
*((__le32 *) *p) = cpu_to_le32(v);
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
*p += bytes;
|
||
|
}
|
||
|
|
||
|
static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
struct bkey_s_c_alloc a;
|
||
|
struct bucket_mark new;
|
||
|
struct bucket *g;
|
||
|
const u8 *d;
|
||
|
|
||
|
if (k.k->type != BCH_ALLOC)
|
||
|
return;
|
||
|
|
||
|
a = bkey_s_c_to_alloc(k);
|
||
|
ca = bch_dev_bkey_exists(c, a.k->p.inode);
|
||
|
|
||
|
if (a.k->p.offset >= ca->mi.nbuckets)
|
||
|
return;
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
|
||
|
g = bucket(ca, a.k->p.offset);
|
||
|
bucket_cmpxchg(g, new, ({
|
||
|
new.gen = a.v->gen;
|
||
|
new.gen_valid = 1;
|
||
|
}));
|
||
|
|
||
|
d = a.v->data;
|
||
|
if (a.v->fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
|
||
|
g->io_time[READ] = get_alloc_field(&d, 2);
|
||
|
if (a.v->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
|
||
|
g->io_time[WRITE] = get_alloc_field(&d, 2);
|
||
|
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
}
|
||
|
|
||
|
int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list)
|
||
|
{
|
||
|
struct journal_replay *r;
|
||
|
struct btree_iter iter;
|
||
|
struct bkey_s_c k;
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i;
|
||
|
int ret;
|
||
|
|
||
|
for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) {
|
||
|
bch2_alloc_read_key(c, k);
|
||
|
bch2_btree_iter_cond_resched(&iter);
|
||
|
}
|
||
|
|
||
|
ret = bch2_btree_iter_unlock(&iter);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
list_for_each_entry(r, journal_replay_list, list) {
|
||
|
struct bkey_i *k, *n;
|
||
|
struct jset_entry *entry;
|
||
|
|
||
|
for_each_jset_key(k, n, entry, &r->j)
|
||
|
if (entry->btree_id == BTREE_ID_ALLOC)
|
||
|
bch2_alloc_read_key(c, bkey_i_to_s_c(k));
|
||
|
}
|
||
|
|
||
|
mutex_lock(&c->bucket_clock[READ].lock);
|
||
|
for_each_member_device(ca, c, i) {
|
||
|
down_read(&ca->bucket_lock);
|
||
|
bch2_recalc_oldest_io(c, ca, READ);
|
||
|
up_read(&ca->bucket_lock);
|
||
|
}
|
||
|
mutex_unlock(&c->bucket_clock[READ].lock);
|
||
|
|
||
|
mutex_lock(&c->bucket_clock[WRITE].lock);
|
||
|
for_each_member_device(ca, c, i) {
|
||
|
down_read(&ca->bucket_lock);
|
||
|
bch2_recalc_oldest_io(c, ca, WRITE);
|
||
|
up_read(&ca->bucket_lock);
|
||
|
}
|
||
|
mutex_unlock(&c->bucket_clock[WRITE].lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca,
|
||
|
size_t b, struct btree_iter *iter,
|
||
|
u64 *journal_seq, bool nowait)
|
||
|
{
|
||
|
struct bucket_mark m;
|
||
|
__BKEY_PADDED(k, DIV_ROUND_UP(sizeof(struct bch_alloc), 8)) alloc_key;
|
||
|
struct bucket *g;
|
||
|
struct bkey_i_alloc *a;
|
||
|
u8 *d;
|
||
|
int ret;
|
||
|
unsigned flags = BTREE_INSERT_ATOMIC|
|
||
|
BTREE_INSERT_NOFAIL|
|
||
|
BTREE_INSERT_USE_RESERVE|
|
||
|
BTREE_INSERT_USE_ALLOC_RESERVE;
|
||
|
|
||
|
if (nowait)
|
||
|
flags |= BTREE_INSERT_NOWAIT;
|
||
|
|
||
|
bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b));
|
||
|
|
||
|
do {
|
||
|
ret = btree_iter_err(bch2_btree_iter_peek_slot(iter));
|
||
|
if (ret)
|
||
|
break;
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
g = bucket(ca, b);
|
||
|
|
||
|
/* read mark under btree node lock: */
|
||
|
m = READ_ONCE(g->mark);
|
||
|
a = bkey_alloc_init(&alloc_key.k);
|
||
|
a->k.p = iter->pos;
|
||
|
a->v.fields = 0;
|
||
|
a->v.gen = m.gen;
|
||
|
set_bkey_val_u64s(&a->k, bch_alloc_val_u64s(&a->v));
|
||
|
|
||
|
d = a->v.data;
|
||
|
if (a->v.fields & (1 << BCH_ALLOC_FIELD_READ_TIME))
|
||
|
put_alloc_field(&d, 2, g->io_time[READ]);
|
||
|
if (a->v.fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME))
|
||
|
put_alloc_field(&d, 2, g->io_time[WRITE]);
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
|
||
|
ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, flags,
|
||
|
BTREE_INSERT_ENTRY(iter, &a->k_i));
|
||
|
bch2_btree_iter_cond_resched(iter);
|
||
|
} while (ret == -EINTR);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int bch2_alloc_replay_key(struct bch_fs *c, struct bpos pos)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
struct btree_iter iter;
|
||
|
int ret;
|
||
|
|
||
|
if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode])
|
||
|
return 0;
|
||
|
|
||
|
ca = bch_dev_bkey_exists(c, pos.inode);
|
||
|
|
||
|
if (pos.offset >= ca->mi.nbuckets)
|
||
|
return 0;
|
||
|
|
||
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
|
||
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
||
|
|
||
|
ret = __bch2_alloc_write_key(c, ca, pos.offset, &iter,
|
||
|
NULL, false);
|
||
|
bch2_btree_iter_unlock(&iter);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int bch2_alloc_write(struct bch_fs *c)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i;
|
||
|
int ret = 0;
|
||
|
|
||
|
for_each_rw_member(ca, c, i) {
|
||
|
struct btree_iter iter;
|
||
|
unsigned long bucket;
|
||
|
|
||
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
|
||
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
||
|
|
||
|
down_read(&ca->bucket_lock);
|
||
|
for_each_set_bit(bucket, ca->buckets_dirty, ca->mi.nbuckets) {
|
||
|
ret = __bch2_alloc_write_key(c, ca, bucket, &iter,
|
||
|
NULL, false);
|
||
|
if (ret)
|
||
|
break;
|
||
|
|
||
|
clear_bit(bucket, ca->buckets_dirty);
|
||
|
}
|
||
|
up_read(&ca->bucket_lock);
|
||
|
bch2_btree_iter_unlock(&iter);
|
||
|
|
||
|
if (ret) {
|
||
|
percpu_ref_put(&ca->io_ref);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Bucket IO clocks: */
|
||
|
|
||
|
static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw)
|
||
|
{
|
||
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
||
|
struct bucket_array *buckets = bucket_array(ca);
|
||
|
struct bucket *g;
|
||
|
u16 max_last_io = 0;
|
||
|
unsigned i;
|
||
|
|
||
|
lockdep_assert_held(&c->bucket_clock[rw].lock);
|
||
|
|
||
|
/* Recalculate max_last_io for this device: */
|
||
|
for_each_bucket(g, buckets)
|
||
|
max_last_io = max(max_last_io, bucket_last_io(c, g, rw));
|
||
|
|
||
|
ca->max_last_bucket_io[rw] = max_last_io;
|
||
|
|
||
|
/* Recalculate global max_last_io: */
|
||
|
max_last_io = 0;
|
||
|
|
||
|
for_each_member_device(ca, c, i)
|
||
|
max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]);
|
||
|
|
||
|
clock->max_last_io = max_last_io;
|
||
|
}
|
||
|
|
||
|
static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw)
|
||
|
{
|
||
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
||
|
struct bucket_array *buckets;
|
||
|
struct bch_dev *ca;
|
||
|
struct bucket *g;
|
||
|
unsigned i;
|
||
|
|
||
|
trace_rescale_prios(c);
|
||
|
|
||
|
for_each_member_device(ca, c, i) {
|
||
|
down_read(&ca->bucket_lock);
|
||
|
buckets = bucket_array(ca);
|
||
|
|
||
|
for_each_bucket(g, buckets)
|
||
|
g->io_time[rw] = clock->hand -
|
||
|
bucket_last_io(c, g, rw) / 2;
|
||
|
|
||
|
bch2_recalc_oldest_io(c, ca, rw);
|
||
|
|
||
|
up_read(&ca->bucket_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void bch2_inc_clock_hand(struct io_timer *timer)
|
||
|
{
|
||
|
struct bucket_clock *clock = container_of(timer,
|
||
|
struct bucket_clock, rescale);
|
||
|
struct bch_fs *c = container_of(clock,
|
||
|
struct bch_fs, bucket_clock[clock->rw]);
|
||
|
struct bch_dev *ca;
|
||
|
u64 capacity;
|
||
|
unsigned i;
|
||
|
|
||
|
mutex_lock(&clock->lock);
|
||
|
|
||
|
/* if clock cannot be advanced more, rescale prio */
|
||
|
if (clock->max_last_io >= U16_MAX - 2)
|
||
|
bch2_rescale_bucket_io_times(c, clock->rw);
|
||
|
|
||
|
BUG_ON(clock->max_last_io >= U16_MAX - 2);
|
||
|
|
||
|
for_each_member_device(ca, c, i)
|
||
|
ca->max_last_bucket_io[clock->rw]++;
|
||
|
clock->max_last_io++;
|
||
|
clock->hand++;
|
||
|
|
||
|
mutex_unlock(&clock->lock);
|
||
|
|
||
|
capacity = READ_ONCE(c->capacity);
|
||
|
|
||
|
if (!capacity)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* we only increment when 0.1% of the filesystem capacity has been read
|
||
|
* or written too, this determines if it's time
|
||
|
*
|
||
|
* XXX: we shouldn't really be going off of the capacity of devices in
|
||
|
* RW mode (that will be 0 when we're RO, yet we can still service
|
||
|
* reads)
|
||
|
*/
|
||
|
timer->expire += capacity >> 10;
|
||
|
|
||
|
bch2_io_timer_add(&c->io_clock[clock->rw], timer);
|
||
|
}
|
||
|
|
||
|
static void bch2_bucket_clock_init(struct bch_fs *c, int rw)
|
||
|
{
|
||
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
||
|
|
||
|
clock->hand = 1;
|
||
|
clock->rw = rw;
|
||
|
clock->rescale.fn = bch2_inc_clock_hand;
|
||
|
clock->rescale.expire = c->capacity >> 10;
|
||
|
mutex_init(&clock->lock);
|
||
|
}
|
||
|
|
||
|
/* Background allocator thread: */
|
||
|
|
||
|
/*
|
||
|
* Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
|
||
|
* (marking them as invalidated on disk), then optionally issues discard
|
||
|
* commands to the newly free buckets, then puts them on the various freelists.
|
||
|
*/
|
||
|
|
||
|
static void verify_not_on_freelist(struct bch_fs *c, struct bch_dev *ca,
|
||
|
size_t bucket)
|
||
|
{
|
||
|
if (expensive_debug_checks(c) &&
|
||
|
test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) {
|
||
|
size_t iter;
|
||
|
long i;
|
||
|
unsigned j;
|
||
|
|
||
|
for (j = 0; j < RESERVE_NR; j++)
|
||
|
fifo_for_each_entry(i, &ca->free[j], iter)
|
||
|
BUG_ON(i == bucket);
|
||
|
fifo_for_each_entry(i, &ca->free_inc, iter)
|
||
|
BUG_ON(i == bucket);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define BUCKET_GC_GEN_MAX 96U
|
||
|
|
||
|
/**
|
||
|
* wait_buckets_available - wait on reclaimable buckets
|
||
|
*
|
||
|
* If there aren't enough available buckets to fill up free_inc, wait until
|
||
|
* there are.
|
||
|
*/
|
||
|
static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
unsigned long gc_count = c->gc_count;
|
||
|
int ret = 0;
|
||
|
|
||
|
while (1) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
if (kthread_should_stop()) {
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (gc_count != c->gc_count)
|
||
|
ca->inc_gen_really_needs_gc = 0;
|
||
|
|
||
|
if ((ssize_t) (dev_buckets_available(c, ca) -
|
||
|
ca->inc_gen_really_needs_gc) >=
|
||
|
(ssize_t) fifo_free(&ca->free_inc))
|
||
|
break;
|
||
|
|
||
|
up_read(&c->gc_lock);
|
||
|
schedule();
|
||
|
try_to_freeze();
|
||
|
down_read(&c->gc_lock);
|
||
|
}
|
||
|
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static bool bch2_can_invalidate_bucket(struct bch_dev *ca,
|
||
|
size_t bucket,
|
||
|
struct bucket_mark mark)
|
||
|
{
|
||
|
u8 gc_gen;
|
||
|
|
||
|
if (!is_available_bucket(mark))
|
||
|
return false;
|
||
|
|
||
|
gc_gen = bucket_gc_gen(ca, bucket);
|
||
|
|
||
|
if (gc_gen >= BUCKET_GC_GEN_MAX / 2)
|
||
|
ca->inc_gen_needs_gc++;
|
||
|
|
||
|
if (gc_gen >= BUCKET_GC_GEN_MAX)
|
||
|
ca->inc_gen_really_needs_gc++;
|
||
|
|
||
|
return gc_gen < BUCKET_GC_GEN_MAX;
|
||
|
}
|
||
|
|
||
|
static void bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
|
||
|
size_t bucket)
|
||
|
{
|
||
|
struct bucket_mark m;
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
|
||
|
if (!bch2_invalidate_bucket(c, ca, bucket, &m)) {
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
verify_not_on_freelist(c, ca, bucket);
|
||
|
BUG_ON(!fifo_push(&ca->free_inc, bucket));
|
||
|
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
|
||
|
/* gc lock held: */
|
||
|
bucket_io_clock_reset(c, ca, bucket, READ);
|
||
|
bucket_io_clock_reset(c, ca, bucket, WRITE);
|
||
|
|
||
|
if (m.cached_sectors) {
|
||
|
ca->allocator_invalidating_data = true;
|
||
|
} else if (m.journal_seq_valid) {
|
||
|
u64 journal_seq = atomic64_read(&c->journal.seq);
|
||
|
u64 bucket_seq = journal_seq;
|
||
|
|
||
|
bucket_seq &= ~((u64) U16_MAX);
|
||
|
bucket_seq |= m.journal_seq;
|
||
|
|
||
|
if (bucket_seq > journal_seq)
|
||
|
bucket_seq -= 1 << 16;
|
||
|
|
||
|
ca->allocator_journal_seq_flush =
|
||
|
max(ca->allocator_journal_seq_flush, bucket_seq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determines what order we're going to reuse buckets, smallest bucket_key()
|
||
|
* first.
|
||
|
*
|
||
|
*
|
||
|
* - We take into account the read prio of the bucket, which gives us an
|
||
|
* indication of how hot the data is -- we scale the prio so that the prio
|
||
|
* farthest from the clock is worth 1/8th of the closest.
|
||
|
*
|
||
|
* - The number of sectors of cached data in the bucket, which gives us an
|
||
|
* indication of the cost in cache misses this eviction will cause.
|
||
|
*
|
||
|
* - If hotness * sectors used compares equal, we pick the bucket with the
|
||
|
* smallest bucket_gc_gen() - since incrementing the same bucket's generation
|
||
|
* number repeatedly forces us to run mark and sweep gc to avoid generation
|
||
|
* number wraparound.
|
||
|
*/
|
||
|
|
||
|
static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca,
|
||
|
size_t b, struct bucket_mark m)
|
||
|
{
|
||
|
unsigned last_io = bucket_last_io(c, bucket(ca, b), READ);
|
||
|
unsigned max_last_io = ca->max_last_bucket_io[READ];
|
||
|
|
||
|
/*
|
||
|
* Time since last read, scaled to [0, 8) where larger value indicates
|
||
|
* more recently read data:
|
||
|
*/
|
||
|
unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io;
|
||
|
|
||
|
/* How much we want to keep the data in this bucket: */
|
||
|
unsigned long data_wantness =
|
||
|
(hotness + 1) * bucket_sectors_used(m);
|
||
|
|
||
|
unsigned long needs_journal_commit =
|
||
|
bucket_needs_journal_commit(m, c->journal.last_seq_ondisk);
|
||
|
|
||
|
return (data_wantness << 9) |
|
||
|
(needs_journal_commit << 8) |
|
||
|
bucket_gc_gen(ca, b);
|
||
|
}
|
||
|
|
||
|
static inline int bucket_alloc_cmp(alloc_heap *h,
|
||
|
struct alloc_heap_entry l,
|
||
|
struct alloc_heap_entry r)
|
||
|
{
|
||
|
return (l.key > r.key) - (l.key < r.key) ?:
|
||
|
(l.nr < r.nr) - (l.nr > r.nr) ?:
|
||
|
(l.bucket > r.bucket) - (l.bucket < r.bucket);
|
||
|
}
|
||
|
|
||
|
static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
struct bucket_array *buckets;
|
||
|
struct alloc_heap_entry e = { 0 };
|
||
|
size_t b;
|
||
|
|
||
|
ca->alloc_heap.used = 0;
|
||
|
|
||
|
mutex_lock(&c->bucket_clock[READ].lock);
|
||
|
down_read(&ca->bucket_lock);
|
||
|
|
||
|
buckets = bucket_array(ca);
|
||
|
|
||
|
bch2_recalc_oldest_io(c, ca, READ);
|
||
|
|
||
|
/*
|
||
|
* Find buckets with lowest read priority, by building a maxheap sorted
|
||
|
* by read priority and repeatedly replacing the maximum element until
|
||
|
* all buckets have been visited.
|
||
|
*/
|
||
|
for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
|
||
|
struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
|
||
|
unsigned long key = bucket_sort_key(c, ca, b, m);
|
||
|
|
||
|
if (!bch2_can_invalidate_bucket(ca, b, m))
|
||
|
continue;
|
||
|
|
||
|
if (e.nr && e.bucket + e.nr == b && e.key == key) {
|
||
|
e.nr++;
|
||
|
} else {
|
||
|
if (e.nr)
|
||
|
heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp);
|
||
|
|
||
|
e = (struct alloc_heap_entry) {
|
||
|
.bucket = b,
|
||
|
.nr = 1,
|
||
|
.key = key,
|
||
|
};
|
||
|
}
|
||
|
|
||
|
cond_resched();
|
||
|
}
|
||
|
|
||
|
if (e.nr)
|
||
|
heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp);
|
||
|
|
||
|
up_read(&ca->bucket_lock);
|
||
|
mutex_unlock(&c->bucket_clock[READ].lock);
|
||
|
|
||
|
heap_resort(&ca->alloc_heap, bucket_alloc_cmp);
|
||
|
|
||
|
while (heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp)) {
|
||
|
for (b = e.bucket;
|
||
|
b < e.bucket + e.nr;
|
||
|
b++) {
|
||
|
if (fifo_full(&ca->free_inc))
|
||
|
return;
|
||
|
|
||
|
bch2_invalidate_one_bucket(c, ca, b);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
struct bucket_array *buckets = bucket_array(ca);
|
||
|
struct bucket_mark m;
|
||
|
size_t b, checked;
|
||
|
|
||
|
for (checked = 0;
|
||
|
checked < ca->mi.nbuckets && !fifo_full(&ca->free_inc);
|
||
|
checked++) {
|
||
|
if (ca->fifo_last_bucket < ca->mi.first_bucket ||
|
||
|
ca->fifo_last_bucket >= ca->mi.nbuckets)
|
||
|
ca->fifo_last_bucket = ca->mi.first_bucket;
|
||
|
|
||
|
b = ca->fifo_last_bucket++;
|
||
|
|
||
|
m = READ_ONCE(buckets->b[b].mark);
|
||
|
|
||
|
if (bch2_can_invalidate_bucket(ca, b, m))
|
||
|
bch2_invalidate_one_bucket(c, ca, b);
|
||
|
|
||
|
cond_resched();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
struct bucket_array *buckets = bucket_array(ca);
|
||
|
struct bucket_mark m;
|
||
|
size_t checked;
|
||
|
|
||
|
for (checked = 0;
|
||
|
checked < ca->mi.nbuckets / 2 && !fifo_full(&ca->free_inc);
|
||
|
checked++) {
|
||
|
size_t b = bch2_rand_range(ca->mi.nbuckets -
|
||
|
ca->mi.first_bucket) +
|
||
|
ca->mi.first_bucket;
|
||
|
|
||
|
m = READ_ONCE(buckets->b[b].mark);
|
||
|
|
||
|
if (bch2_can_invalidate_bucket(ca, b, m))
|
||
|
bch2_invalidate_one_bucket(c, ca, b);
|
||
|
|
||
|
cond_resched();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
ca->inc_gen_needs_gc = 0;
|
||
|
ca->inc_gen_really_needs_gc = 0;
|
||
|
|
||
|
switch (ca->mi.replacement) {
|
||
|
case CACHE_REPLACEMENT_LRU:
|
||
|
find_reclaimable_buckets_lru(c, ca);
|
||
|
break;
|
||
|
case CACHE_REPLACEMENT_FIFO:
|
||
|
find_reclaimable_buckets_fifo(c, ca);
|
||
|
break;
|
||
|
case CACHE_REPLACEMENT_RANDOM:
|
||
|
find_reclaimable_buckets_random(c, ca);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int size_t_cmp(const void *_l, const void *_r)
|
||
|
{
|
||
|
const size_t *l = _l, *r = _r;
|
||
|
|
||
|
return (*l > *r) - (*l < *r);
|
||
|
}
|
||
|
|
||
|
static void sort_free_inc(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
BUG_ON(ca->free_inc.front);
|
||
|
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
sort(ca->free_inc.data,
|
||
|
ca->free_inc.back,
|
||
|
sizeof(ca->free_inc.data[0]),
|
||
|
size_t_cmp, NULL);
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
}
|
||
|
|
||
|
static int bch2_invalidate_free_inc(struct bch_fs *c, struct bch_dev *ca,
|
||
|
u64 *journal_seq, size_t nr,
|
||
|
bool nowait)
|
||
|
{
|
||
|
struct btree_iter iter;
|
||
|
int ret = 0;
|
||
|
|
||
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0),
|
||
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
||
|
|
||
|
/* Only use nowait if we've already invalidated at least one bucket: */
|
||
|
while (ca->nr_invalidated < min(nr, fifo_used(&ca->free_inc))) {
|
||
|
size_t b = fifo_idx_entry(&ca->free_inc, ca->nr_invalidated);
|
||
|
|
||
|
ret = __bch2_alloc_write_key(c, ca, b, &iter, journal_seq,
|
||
|
nowait && ca->nr_invalidated);
|
||
|
if (ret)
|
||
|
break;
|
||
|
|
||
|
ca->nr_invalidated++;
|
||
|
}
|
||
|
|
||
|
bch2_btree_iter_unlock(&iter);
|
||
|
|
||
|
/* If we used NOWAIT, don't return the error: */
|
||
|
return ca->nr_invalidated ? 0 : ret;
|
||
|
}
|
||
|
|
||
|
static bool __push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
|
||
|
{
|
||
|
unsigned i;
|
||
|
|
||
|
/*
|
||
|
* Don't remove from free_inc until after it's added to
|
||
|
* freelist, so gc can find it:
|
||
|
*/
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
for (i = 0; i < RESERVE_NR; i++)
|
||
|
if (fifo_push(&ca->free[i], bucket)) {
|
||
|
fifo_pop(&ca->free_inc, bucket);
|
||
|
--ca->nr_invalidated;
|
||
|
closure_wake_up(&c->freelist_wait);
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
return true;
|
||
|
}
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
while (1) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
if (__push_invalidated_bucket(c, ca, bucket))
|
||
|
break;
|
||
|
|
||
|
if ((current->flags & PF_KTHREAD) &&
|
||
|
kthread_should_stop()) {
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
schedule();
|
||
|
try_to_freeze();
|
||
|
}
|
||
|
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Given an invalidated, ready to use bucket: issue a discard to it if enabled,
|
||
|
* then add it to the freelist, waiting until there's room if necessary:
|
||
|
*/
|
||
|
static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
while (ca->nr_invalidated) {
|
||
|
size_t bucket = fifo_peek(&ca->free_inc);
|
||
|
|
||
|
BUG_ON(fifo_empty(&ca->free_inc) || !ca->nr_invalidated);
|
||
|
|
||
|
if (ca->mi.discard &&
|
||
|
bdev_max_discard_sectors(ca->disk_sb.bdev))
|
||
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
||
|
bucket_to_sector(ca, bucket),
|
||
|
ca->mi.bucket_size, GFP_NOIO);
|
||
|
|
||
|
if (push_invalidated_bucket(c, ca, bucket))
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* bch_allocator_thread - move buckets from free_inc to reserves
|
||
|
*
|
||
|
* The free_inc FIFO is populated by find_reclaimable_buckets(), and
|
||
|
* the reserves are depleted by bucket allocation. When we run out
|
||
|
* of free_inc, try to invalidate some buckets and write out
|
||
|
* prios and gens.
|
||
|
*/
|
||
|
static int bch2_allocator_thread(void *arg)
|
||
|
{
|
||
|
struct bch_dev *ca = arg;
|
||
|
struct bch_fs *c = ca->fs;
|
||
|
u64 journal_seq;
|
||
|
int ret;
|
||
|
|
||
|
set_freezable();
|
||
|
|
||
|
while (1) {
|
||
|
while (1) {
|
||
|
cond_resched();
|
||
|
|
||
|
pr_debug("discarding %zu invalidated buckets",
|
||
|
ca->nr_invalidated);
|
||
|
|
||
|
ret = discard_invalidated_buckets(c, ca);
|
||
|
if (ret)
|
||
|
goto stop;
|
||
|
|
||
|
if (fifo_empty(&ca->free_inc))
|
||
|
break;
|
||
|
|
||
|
pr_debug("invalidating %zu buckets",
|
||
|
fifo_used(&ca->free_inc));
|
||
|
|
||
|
journal_seq = 0;
|
||
|
ret = bch2_invalidate_free_inc(c, ca, &journal_seq,
|
||
|
SIZE_MAX, true);
|
||
|
if (ret) {
|
||
|
bch_err(ca, "error invalidating buckets: %i", ret);
|
||
|
goto stop;
|
||
|
}
|
||
|
|
||
|
if (!ca->nr_invalidated) {
|
||
|
bch_err(ca, "allocator thread unable to make forward progress!");
|
||
|
goto stop;
|
||
|
}
|
||
|
|
||
|
if (ca->allocator_invalidating_data)
|
||
|
ret = bch2_journal_flush_seq(&c->journal, journal_seq);
|
||
|
else if (ca->allocator_journal_seq_flush)
|
||
|
ret = bch2_journal_flush_seq(&c->journal,
|
||
|
ca->allocator_journal_seq_flush);
|
||
|
|
||
|
/*
|
||
|
* journal error - buckets haven't actually been
|
||
|
* invalidated, can't discard them:
|
||
|
*/
|
||
|
if (ret) {
|
||
|
bch_err(ca, "journal error: %i", ret);
|
||
|
goto stop;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pr_debug("free_inc now empty");
|
||
|
|
||
|
/* Reset front/back so we can easily sort fifo entries later: */
|
||
|
ca->free_inc.front = ca->free_inc.back = 0;
|
||
|
ca->allocator_journal_seq_flush = 0;
|
||
|
ca->allocator_invalidating_data = false;
|
||
|
|
||
|
down_read(&c->gc_lock);
|
||
|
while (1) {
|
||
|
size_t prev = fifo_used(&ca->free_inc);
|
||
|
|
||
|
if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) {
|
||
|
up_read(&c->gc_lock);
|
||
|
bch_err(ca, "gc failure");
|
||
|
goto stop;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find some buckets that we can invalidate, either
|
||
|
* they're completely unused, or only contain clean data
|
||
|
* that's been written back to the backing device or
|
||
|
* another cache tier
|
||
|
*/
|
||
|
|
||
|
pr_debug("scanning for reclaimable buckets");
|
||
|
|
||
|
find_reclaimable_buckets(c, ca);
|
||
|
|
||
|
pr_debug("found %zu buckets (free_inc %zu/%zu)",
|
||
|
fifo_used(&ca->free_inc) - prev,
|
||
|
fifo_used(&ca->free_inc), ca->free_inc.size);
|
||
|
|
||
|
trace_alloc_batch(ca, fifo_used(&ca->free_inc),
|
||
|
ca->free_inc.size);
|
||
|
|
||
|
if ((ca->inc_gen_needs_gc >= ca->free_inc.size ||
|
||
|
(!fifo_full(&ca->free_inc) &&
|
||
|
ca->inc_gen_really_needs_gc >=
|
||
|
fifo_free(&ca->free_inc))) &&
|
||
|
c->gc_thread) {
|
||
|
atomic_inc(&c->kick_gc);
|
||
|
wake_up_process(c->gc_thread);
|
||
|
}
|
||
|
|
||
|
if (fifo_full(&ca->free_inc))
|
||
|
break;
|
||
|
|
||
|
if (!fifo_empty(&ca->free_inc) &&
|
||
|
!fifo_full(&ca->free[RESERVE_MOVINGGC]))
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* copygc may be waiting until either its reserve fills
|
||
|
* up, or we can't make forward progress:
|
||
|
*/
|
||
|
ca->allocator_blocked = true;
|
||
|
closure_wake_up(&c->freelist_wait);
|
||
|
|
||
|
ret = wait_buckets_available(c, ca);
|
||
|
if (ret) {
|
||
|
up_read(&c->gc_lock);
|
||
|
goto stop;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ca->allocator_blocked = false;
|
||
|
up_read(&c->gc_lock);
|
||
|
|
||
|
pr_debug("free_inc now %zu/%zu",
|
||
|
fifo_used(&ca->free_inc),
|
||
|
ca->free_inc.size);
|
||
|
|
||
|
sort_free_inc(c, ca);
|
||
|
|
||
|
/*
|
||
|
* free_inc is now full of newly-invalidated buckets: next,
|
||
|
* write out the new bucket gens:
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
stop:
|
||
|
pr_debug("alloc thread stopping (ret %i)", ret);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Allocation */
|
||
|
|
||
|
/*
|
||
|
* Open buckets represent a bucket that's currently being allocated from. They
|
||
|
* serve two purposes:
|
||
|
*
|
||
|
* - They track buckets that have been partially allocated, allowing for
|
||
|
* sub-bucket sized allocations - they're used by the sector allocator below
|
||
|
*
|
||
|
* - They provide a reference to the buckets they own that mark and sweep GC
|
||
|
* can find, until the new allocation has a pointer to it inserted into the
|
||
|
* btree
|
||
|
*
|
||
|
* When allocating some space with the sector allocator, the allocation comes
|
||
|
* with a reference to an open bucket - the caller is required to put that
|
||
|
* reference _after_ doing the index update that makes its allocation reachable.
|
||
|
*/
|
||
|
|
||
|
void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob)
|
||
|
{
|
||
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
spin_lock(&ob->lock);
|
||
|
|
||
|
bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr),
|
||
|
false, gc_pos_alloc(c, ob), 0);
|
||
|
ob->valid = false;
|
||
|
|
||
|
spin_unlock(&ob->lock);
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
ob->freelist = c->open_buckets_freelist;
|
||
|
c->open_buckets_freelist = ob - c->open_buckets;
|
||
|
c->open_buckets_nr_free++;
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
|
||
|
closure_wake_up(&c->open_buckets_wait);
|
||
|
}
|
||
|
|
||
|
static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c)
|
||
|
{
|
||
|
struct open_bucket *ob;
|
||
|
|
||
|
BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free);
|
||
|
|
||
|
ob = c->open_buckets + c->open_buckets_freelist;
|
||
|
c->open_buckets_freelist = ob->freelist;
|
||
|
atomic_set(&ob->pin, 1);
|
||
|
|
||
|
c->open_buckets_nr_free--;
|
||
|
return ob;
|
||
|
}
|
||
|
|
||
|
/* _only_ for allocating the journal on a new device: */
|
||
|
long bch2_bucket_alloc_new_fs(struct bch_dev *ca)
|
||
|
{
|
||
|
struct bucket_array *buckets;
|
||
|
ssize_t b;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
buckets = bucket_array(ca);
|
||
|
|
||
|
for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++)
|
||
|
if (is_available_bucket(buckets->b[b].mark))
|
||
|
goto success;
|
||
|
b = -1;
|
||
|
success:
|
||
|
rcu_read_unlock();
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
static inline unsigned open_buckets_reserved(enum alloc_reserve reserve)
|
||
|
{
|
||
|
switch (reserve) {
|
||
|
case RESERVE_ALLOC:
|
||
|
return 0;
|
||
|
case RESERVE_BTREE:
|
||
|
return BTREE_NODE_RESERVE / 2;
|
||
|
default:
|
||
|
return BTREE_NODE_RESERVE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* bch_bucket_alloc - allocate a single bucket from a specific device
|
||
|
*
|
||
|
* Returns index of bucket on success, 0 on failure
|
||
|
* */
|
||
|
int bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca,
|
||
|
enum alloc_reserve reserve,
|
||
|
bool may_alloc_partial,
|
||
|
struct closure *cl)
|
||
|
{
|
||
|
struct bucket_array *buckets;
|
||
|
struct open_bucket *ob;
|
||
|
long bucket;
|
||
|
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
|
||
|
if (may_alloc_partial &&
|
||
|
ca->open_buckets_partial_nr) {
|
||
|
int ret = ca->open_buckets_partial[--ca->open_buckets_partial_nr];
|
||
|
c->open_buckets[ret].on_partial_list = false;
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) {
|
||
|
if (cl)
|
||
|
closure_wait(&c->open_buckets_wait, cl);
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
trace_open_bucket_alloc_fail(ca, reserve);
|
||
|
return OPEN_BUCKETS_EMPTY;
|
||
|
}
|
||
|
|
||
|
if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket)))
|
||
|
goto out;
|
||
|
|
||
|
switch (reserve) {
|
||
|
case RESERVE_ALLOC:
|
||
|
if (fifo_pop(&ca->free[RESERVE_BTREE], bucket))
|
||
|
goto out;
|
||
|
break;
|
||
|
case RESERVE_BTREE:
|
||
|
if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >=
|
||
|
ca->free[RESERVE_BTREE].size &&
|
||
|
fifo_pop(&ca->free[RESERVE_BTREE], bucket))
|
||
|
goto out;
|
||
|
break;
|
||
|
case RESERVE_MOVINGGC:
|
||
|
if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket))
|
||
|
goto out;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (cl)
|
||
|
closure_wait(&c->freelist_wait, cl);
|
||
|
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
|
||
|
trace_bucket_alloc_fail(ca, reserve);
|
||
|
return FREELIST_EMPTY;
|
||
|
out:
|
||
|
verify_not_on_freelist(c, ca, bucket);
|
||
|
|
||
|
ob = bch2_open_bucket_alloc(c);
|
||
|
|
||
|
spin_lock(&ob->lock);
|
||
|
buckets = bucket_array(ca);
|
||
|
|
||
|
ob->valid = true;
|
||
|
ob->sectors_free = ca->mi.bucket_size;
|
||
|
ob->ptr = (struct bch_extent_ptr) {
|
||
|
.gen = buckets->b[bucket].mark.gen,
|
||
|
.offset = bucket_to_sector(ca, bucket),
|
||
|
.dev = ca->dev_idx,
|
||
|
};
|
||
|
|
||
|
bucket_io_clock_reset(c, ca, bucket, READ);
|
||
|
bucket_io_clock_reset(c, ca, bucket, WRITE);
|
||
|
spin_unlock(&ob->lock);
|
||
|
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
|
||
|
bch2_wake_allocator(ca);
|
||
|
|
||
|
trace_bucket_alloc(ca, reserve);
|
||
|
return ob - c->open_buckets;
|
||
|
}
|
||
|
|
||
|
static int __dev_alloc_cmp(struct write_point *wp,
|
||
|
unsigned l, unsigned r)
|
||
|
{
|
||
|
return ((wp->next_alloc[l] > wp->next_alloc[r]) -
|
||
|
(wp->next_alloc[l] < wp->next_alloc[r]));
|
||
|
}
|
||
|
|
||
|
#define dev_alloc_cmp(l, r) __dev_alloc_cmp(wp, l, r)
|
||
|
|
||
|
struct dev_alloc_list bch2_wp_alloc_list(struct bch_fs *c,
|
||
|
struct write_point *wp,
|
||
|
struct bch_devs_mask *devs)
|
||
|
{
|
||
|
struct dev_alloc_list ret = { .nr = 0 };
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i;
|
||
|
|
||
|
for_each_member_device_rcu(ca, c, i, devs)
|
||
|
ret.devs[ret.nr++] = i;
|
||
|
|
||
|
bubble_sort(ret.devs, ret.nr, dev_alloc_cmp);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void bch2_wp_rescale(struct bch_fs *c, struct bch_dev *ca,
|
||
|
struct write_point *wp)
|
||
|
{
|
||
|
u64 *v = wp->next_alloc + ca->dev_idx;
|
||
|
u64 free_space = dev_buckets_free(c, ca);
|
||
|
u64 free_space_inv = free_space
|
||
|
? div64_u64(1ULL << 48, free_space)
|
||
|
: 1ULL << 48;
|
||
|
u64 scale = *v / 4;
|
||
|
|
||
|
if (*v + free_space_inv >= *v)
|
||
|
*v += free_space_inv;
|
||
|
else
|
||
|
*v = U64_MAX;
|
||
|
|
||
|
for (v = wp->next_alloc;
|
||
|
v < wp->next_alloc + ARRAY_SIZE(wp->next_alloc); v++)
|
||
|
*v = *v < scale ? 0 : *v - scale;
|
||
|
}
|
||
|
|
||
|
static enum bucket_alloc_ret bch2_bucket_alloc_set(struct bch_fs *c,
|
||
|
struct write_point *wp,
|
||
|
unsigned nr_replicas,
|
||
|
enum alloc_reserve reserve,
|
||
|
struct bch_devs_mask *devs,
|
||
|
struct closure *cl)
|
||
|
{
|
||
|
enum bucket_alloc_ret ret = NO_DEVICES;
|
||
|
struct dev_alloc_list devs_sorted;
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i, nr_ptrs_effective = 0;
|
||
|
bool have_cache_dev = false;
|
||
|
|
||
|
BUG_ON(nr_replicas > ARRAY_SIZE(wp->ptrs));
|
||
|
|
||
|
for (i = wp->first_ptr; i < wp->nr_ptrs; i++) {
|
||
|
ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev);
|
||
|
|
||
|
nr_ptrs_effective += ca->mi.durability;
|
||
|
have_cache_dev |= !ca->mi.durability;
|
||
|
}
|
||
|
|
||
|
if (nr_ptrs_effective >= nr_replicas)
|
||
|
return ALLOC_SUCCESS;
|
||
|
|
||
|
devs_sorted = bch2_wp_alloc_list(c, wp, devs);
|
||
|
|
||
|
for (i = 0; i < devs_sorted.nr; i++) {
|
||
|
int ob;
|
||
|
|
||
|
ca = rcu_dereference(c->devs[devs_sorted.devs[i]]);
|
||
|
if (!ca)
|
||
|
continue;
|
||
|
|
||
|
if (!ca->mi.durability &&
|
||
|
(have_cache_dev ||
|
||
|
wp->type != BCH_DATA_USER))
|
||
|
continue;
|
||
|
|
||
|
ob = bch2_bucket_alloc(c, ca, reserve,
|
||
|
wp->type == BCH_DATA_USER, cl);
|
||
|
if (ob < 0) {
|
||
|
ret = ob;
|
||
|
if (ret == OPEN_BUCKETS_EMPTY)
|
||
|
break;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
BUG_ON(ob <= 0 || ob > U8_MAX);
|
||
|
BUG_ON(wp->nr_ptrs >= ARRAY_SIZE(wp->ptrs));
|
||
|
|
||
|
wp->ptrs[wp->nr_ptrs++] = c->open_buckets + ob;
|
||
|
|
||
|
bch2_wp_rescale(c, ca, wp);
|
||
|
|
||
|
nr_ptrs_effective += ca->mi.durability;
|
||
|
have_cache_dev |= !ca->mi.durability;
|
||
|
|
||
|
__clear_bit(ca->dev_idx, devs->d);
|
||
|
|
||
|
if (nr_ptrs_effective >= nr_replicas) {
|
||
|
ret = ALLOC_SUCCESS;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EBUG_ON(reserve == RESERVE_MOVINGGC &&
|
||
|
ret != ALLOC_SUCCESS &&
|
||
|
ret != OPEN_BUCKETS_EMPTY);
|
||
|
|
||
|
switch (ret) {
|
||
|
case ALLOC_SUCCESS:
|
||
|
return 0;
|
||
|
case NO_DEVICES:
|
||
|
return -EROFS;
|
||
|
case FREELIST_EMPTY:
|
||
|
case OPEN_BUCKETS_EMPTY:
|
||
|
return cl ? -EAGAIN : -ENOSPC;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Sector allocator */
|
||
|
|
||
|
static void writepoint_drop_ptr(struct bch_fs *c,
|
||
|
struct write_point *wp,
|
||
|
unsigned i)
|
||
|
{
|
||
|
struct open_bucket *ob = wp->ptrs[i];
|
||
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
|
||
|
BUG_ON(ca->open_buckets_partial_nr >=
|
||
|
ARRAY_SIZE(ca->open_buckets_partial));
|
||
|
|
||
|
if (wp->type == BCH_DATA_USER) {
|
||
|
spin_lock(&c->freelist_lock);
|
||
|
ob->on_partial_list = true;
|
||
|
ca->open_buckets_partial[ca->open_buckets_partial_nr++] =
|
||
|
ob - c->open_buckets;
|
||
|
spin_unlock(&c->freelist_lock);
|
||
|
|
||
|
closure_wake_up(&c->open_buckets_wait);
|
||
|
closure_wake_up(&c->freelist_wait);
|
||
|
} else {
|
||
|
bch2_open_bucket_put(c, ob);
|
||
|
}
|
||
|
|
||
|
array_remove_item(wp->ptrs, wp->nr_ptrs, i);
|
||
|
|
||
|
if (i < wp->first_ptr)
|
||
|
wp->first_ptr--;
|
||
|
}
|
||
|
|
||
|
static void writepoint_drop_ptrs(struct bch_fs *c,
|
||
|
struct write_point *wp,
|
||
|
u16 target, bool in_target)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = wp->first_ptr - 1; i >= 0; --i)
|
||
|
if (bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev,
|
||
|
target) == in_target)
|
||
|
writepoint_drop_ptr(c, wp, i);
|
||
|
}
|
||
|
|
||
|
static void verify_not_stale(struct bch_fs *c, const struct write_point *wp)
|
||
|
{
|
||
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
||
|
struct open_bucket *ob;
|
||
|
unsigned i;
|
||
|
|
||
|
writepoint_for_each_ptr_all(wp, ob, i) {
|
||
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
|
||
|
BUG_ON(ptr_stale(ca, &ob->ptr));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static int open_bucket_add_buckets(struct bch_fs *c,
|
||
|
u16 target,
|
||
|
struct write_point *wp,
|
||
|
struct bch_devs_list *devs_have,
|
||
|
unsigned nr_replicas,
|
||
|
enum alloc_reserve reserve,
|
||
|
struct closure *cl)
|
||
|
{
|
||
|
struct bch_devs_mask devs = c->rw_devs[wp->type];
|
||
|
const struct bch_devs_mask *t;
|
||
|
struct open_bucket *ob;
|
||
|
unsigned i;
|
||
|
int ret;
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
rcu_read_lock();
|
||
|
|
||
|
/* Don't allocate from devices we already have pointers to: */
|
||
|
for (i = 0; i < devs_have->nr; i++)
|
||
|
__clear_bit(devs_have->devs[i], devs.d);
|
||
|
|
||
|
writepoint_for_each_ptr_all(wp, ob, i)
|
||
|
__clear_bit(ob->ptr.dev, devs.d);
|
||
|
|
||
|
t = bch2_target_to_mask(c, target);
|
||
|
if (t)
|
||
|
bitmap_and(devs.d, devs.d, t->d, BCH_SB_MEMBERS_MAX);
|
||
|
|
||
|
ret = bch2_bucket_alloc_set(c, wp, nr_replicas, reserve, &devs, cl);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static struct write_point *__writepoint_find(struct hlist_head *head,
|
||
|
unsigned long write_point)
|
||
|
{
|
||
|
struct write_point *wp;
|
||
|
|
||
|
hlist_for_each_entry_rcu(wp, head, node)
|
||
|
if (wp->write_point == write_point)
|
||
|
return wp;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static struct hlist_head *writepoint_hash(struct bch_fs *c,
|
||
|
unsigned long write_point)
|
||
|
{
|
||
|
unsigned hash =
|
||
|
hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash)));
|
||
|
|
||
|
return &c->write_points_hash[hash];
|
||
|
}
|
||
|
|
||
|
static struct write_point *writepoint_find(struct bch_fs *c,
|
||
|
unsigned long write_point)
|
||
|
{
|
||
|
struct write_point *wp, *oldest;
|
||
|
struct hlist_head *head;
|
||
|
|
||
|
if (!(write_point & 1UL)) {
|
||
|
wp = (struct write_point *) write_point;
|
||
|
mutex_lock(&wp->lock);
|
||
|
return wp;
|
||
|
}
|
||
|
|
||
|
head = writepoint_hash(c, write_point);
|
||
|
restart_find:
|
||
|
wp = __writepoint_find(head, write_point);
|
||
|
if (wp) {
|
||
|
lock_wp:
|
||
|
mutex_lock(&wp->lock);
|
||
|
if (wp->write_point == write_point)
|
||
|
goto out;
|
||
|
mutex_unlock(&wp->lock);
|
||
|
goto restart_find;
|
||
|
}
|
||
|
|
||
|
oldest = NULL;
|
||
|
for (wp = c->write_points;
|
||
|
wp < c->write_points + ARRAY_SIZE(c->write_points);
|
||
|
wp++)
|
||
|
if (!oldest || time_before64(wp->last_used, oldest->last_used))
|
||
|
oldest = wp;
|
||
|
|
||
|
mutex_lock(&oldest->lock);
|
||
|
mutex_lock(&c->write_points_hash_lock);
|
||
|
wp = __writepoint_find(head, write_point);
|
||
|
if (wp && wp != oldest) {
|
||
|
mutex_unlock(&c->write_points_hash_lock);
|
||
|
mutex_unlock(&oldest->lock);
|
||
|
goto lock_wp;
|
||
|
}
|
||
|
|
||
|
wp = oldest;
|
||
|
hlist_del_rcu(&wp->node);
|
||
|
wp->write_point = write_point;
|
||
|
hlist_add_head_rcu(&wp->node, head);
|
||
|
mutex_unlock(&c->write_points_hash_lock);
|
||
|
out:
|
||
|
wp->last_used = sched_clock();
|
||
|
return wp;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get us an open_bucket we can allocate from, return with it locked:
|
||
|
*/
|
||
|
struct write_point *bch2_alloc_sectors_start(struct bch_fs *c,
|
||
|
unsigned target,
|
||
|
struct write_point_specifier write_point,
|
||
|
struct bch_devs_list *devs_have,
|
||
|
unsigned nr_replicas,
|
||
|
unsigned nr_replicas_required,
|
||
|
enum alloc_reserve reserve,
|
||
|
unsigned flags,
|
||
|
struct closure *cl)
|
||
|
{
|
||
|
struct write_point *wp;
|
||
|
struct open_bucket *ob;
|
||
|
struct bch_dev *ca;
|
||
|
unsigned nr_ptrs_have, nr_ptrs_effective;
|
||
|
int ret, i, cache_idx = -1;
|
||
|
|
||
|
BUG_ON(!nr_replicas || !nr_replicas_required);
|
||
|
|
||
|
wp = writepoint_find(c, write_point.v);
|
||
|
|
||
|
wp->first_ptr = 0;
|
||
|
|
||
|
/* does writepoint have ptrs we can't use? */
|
||
|
writepoint_for_each_ptr(wp, ob, i)
|
||
|
if (bch2_dev_list_has_dev(*devs_have, ob->ptr.dev)) {
|
||
|
swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
|
||
|
wp->first_ptr++;
|
||
|
}
|
||
|
|
||
|
nr_ptrs_have = wp->first_ptr;
|
||
|
|
||
|
/* does writepoint have ptrs we don't want to use? */
|
||
|
if (target)
|
||
|
writepoint_for_each_ptr(wp, ob, i)
|
||
|
if (!bch2_dev_in_target(c, ob->ptr.dev, target)) {
|
||
|
swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
|
||
|
wp->first_ptr++;
|
||
|
}
|
||
|
|
||
|
if (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS) {
|
||
|
ret = open_bucket_add_buckets(c, target, wp, devs_have,
|
||
|
nr_replicas, reserve, cl);
|
||
|
} else {
|
||
|
ret = open_bucket_add_buckets(c, target, wp, devs_have,
|
||
|
nr_replicas, reserve, NULL);
|
||
|
if (!ret)
|
||
|
goto alloc_done;
|
||
|
|
||
|
wp->first_ptr = nr_ptrs_have;
|
||
|
|
||
|
ret = open_bucket_add_buckets(c, 0, wp, devs_have,
|
||
|
nr_replicas, reserve, cl);
|
||
|
}
|
||
|
|
||
|
if (ret && ret != -EROFS)
|
||
|
goto err;
|
||
|
alloc_done:
|
||
|
/* check for more than one cache: */
|
||
|
for (i = wp->nr_ptrs - 1; i >= wp->first_ptr; --i) {
|
||
|
ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev);
|
||
|
|
||
|
if (ca->mi.durability)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* if we ended up with more than one cache device, prefer the
|
||
|
* one in the target we want:
|
||
|
*/
|
||
|
if (cache_idx >= 0) {
|
||
|
if (!bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev,
|
||
|
target)) {
|
||
|
writepoint_drop_ptr(c, wp, i);
|
||
|
} else {
|
||
|
writepoint_drop_ptr(c, wp, cache_idx);
|
||
|
cache_idx = i;
|
||
|
}
|
||
|
} else {
|
||
|
cache_idx = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* we might have more effective replicas than required: */
|
||
|
nr_ptrs_effective = 0;
|
||
|
writepoint_for_each_ptr(wp, ob, i) {
|
||
|
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
nr_ptrs_effective += ca->mi.durability;
|
||
|
}
|
||
|
|
||
|
if (ret == -EROFS &&
|
||
|
nr_ptrs_effective >= nr_replicas_required)
|
||
|
ret = 0;
|
||
|
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
if (nr_ptrs_effective > nr_replicas) {
|
||
|
writepoint_for_each_ptr(wp, ob, i) {
|
||
|
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
|
||
|
if (ca->mi.durability &&
|
||
|
ca->mi.durability <= nr_ptrs_effective - nr_replicas &&
|
||
|
!bch2_dev_in_target(c, ob->ptr.dev, target)) {
|
||
|
swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
|
||
|
wp->first_ptr++;
|
||
|
nr_ptrs_effective -= ca->mi.durability;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (nr_ptrs_effective > nr_replicas) {
|
||
|
writepoint_for_each_ptr(wp, ob, i) {
|
||
|
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
|
||
|
if (ca->mi.durability &&
|
||
|
ca->mi.durability <= nr_ptrs_effective - nr_replicas) {
|
||
|
swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]);
|
||
|
wp->first_ptr++;
|
||
|
nr_ptrs_effective -= ca->mi.durability;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Remove pointers we don't want to use: */
|
||
|
if (target)
|
||
|
writepoint_drop_ptrs(c, wp, target, false);
|
||
|
|
||
|
BUG_ON(wp->first_ptr >= wp->nr_ptrs);
|
||
|
BUG_ON(nr_ptrs_effective < nr_replicas_required);
|
||
|
|
||
|
wp->sectors_free = UINT_MAX;
|
||
|
|
||
|
writepoint_for_each_ptr(wp, ob, i)
|
||
|
wp->sectors_free = min(wp->sectors_free, ob->sectors_free);
|
||
|
|
||
|
BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX);
|
||
|
|
||
|
verify_not_stale(c, wp);
|
||
|
|
||
|
return wp;
|
||
|
err:
|
||
|
mutex_unlock(&wp->lock);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Append pointers to the space we just allocated to @k, and mark @sectors space
|
||
|
* as allocated out of @ob
|
||
|
*/
|
||
|
void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp,
|
||
|
struct bkey_i_extent *e, unsigned sectors)
|
||
|
{
|
||
|
struct open_bucket *ob;
|
||
|
unsigned i;
|
||
|
|
||
|
BUG_ON(sectors > wp->sectors_free);
|
||
|
wp->sectors_free -= sectors;
|
||
|
|
||
|
writepoint_for_each_ptr(wp, ob, i) {
|
||
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
||
|
struct bch_extent_ptr tmp = ob->ptr;
|
||
|
|
||
|
EBUG_ON(bch2_extent_has_device(extent_i_to_s_c(e), ob->ptr.dev));
|
||
|
|
||
|
tmp.cached = bkey_extent_is_cached(&e->k) ||
|
||
|
(!ca->mi.durability && wp->type == BCH_DATA_USER);
|
||
|
|
||
|
tmp.offset += ca->mi.bucket_size - ob->sectors_free;
|
||
|
extent_ptr_append(e, tmp);
|
||
|
|
||
|
BUG_ON(sectors > ob->sectors_free);
|
||
|
ob->sectors_free -= sectors;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Append pointers to the space we just allocated to @k, and mark @sectors space
|
||
|
* as allocated out of @ob
|
||
|
*/
|
||
|
void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = wp->nr_ptrs - 1; i >= 0; --i) {
|
||
|
struct open_bucket *ob = wp->ptrs[i];
|
||
|
|
||
|
if (!ob->sectors_free) {
|
||
|
array_remove_item(wp->ptrs, wp->nr_ptrs, i);
|
||
|
bch2_open_bucket_put(c, ob);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&wp->lock);
|
||
|
}
|
||
|
|
||
|
/* Startup/shutdown (ro/rw): */
|
||
|
|
||
|
void bch2_recalc_capacity(struct bch_fs *c)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
u64 total_capacity, capacity = 0, reserved_sectors = 0;
|
||
|
unsigned long ra_pages = 0;
|
||
|
unsigned i, j;
|
||
|
|
||
|
lockdep_assert_held(&c->state_lock);
|
||
|
|
||
|
for_each_online_member(ca, c, i) {
|
||
|
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
|
||
|
|
||
|
ra_pages += bdi->ra_pages;
|
||
|
}
|
||
|
|
||
|
bch2_set_ra_pages(c, ra_pages);
|
||
|
|
||
|
for_each_rw_member(ca, c, i) {
|
||
|
size_t reserve = 0;
|
||
|
|
||
|
/*
|
||
|
* We need to reserve buckets (from the number
|
||
|
* of currently available buckets) against
|
||
|
* foreground writes so that mainly copygc can
|
||
|
* make forward progress.
|
||
|
*
|
||
|
* We need enough to refill the various reserves
|
||
|
* from scratch - copygc will use its entire
|
||
|
* reserve all at once, then run against when
|
||
|
* its reserve is refilled (from the formerly
|
||
|
* available buckets).
|
||
|
*
|
||
|
* This reserve is just used when considering if
|
||
|
* allocations for foreground writes must wait -
|
||
|
* not -ENOSPC calculations.
|
||
|
*/
|
||
|
for (j = 0; j < RESERVE_NONE; j++)
|
||
|
reserve += ca->free[j].size;
|
||
|
|
||
|
reserve += ca->free_inc.size;
|
||
|
|
||
|
reserve += ARRAY_SIZE(c->write_points);
|
||
|
|
||
|
reserve += 1; /* btree write point */
|
||
|
|
||
|
reserved_sectors += bucket_to_sector(ca, reserve);
|
||
|
|
||
|
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
|
||
|
ca->mi.first_bucket);
|
||
|
}
|
||
|
|
||
|
total_capacity = capacity;
|
||
|
|
||
|
capacity *= (100 - c->opts.gc_reserve_percent);
|
||
|
capacity = div64_u64(capacity, 100);
|
||
|
|
||
|
BUG_ON(reserved_sectors > total_capacity);
|
||
|
|
||
|
capacity = min(capacity, total_capacity - reserved_sectors);
|
||
|
|
||
|
c->capacity = capacity;
|
||
|
|
||
|
if (c->capacity) {
|
||
|
bch2_io_timer_add(&c->io_clock[READ],
|
||
|
&c->bucket_clock[READ].rescale);
|
||
|
bch2_io_timer_add(&c->io_clock[WRITE],
|
||
|
&c->bucket_clock[WRITE].rescale);
|
||
|
} else {
|
||
|
bch2_io_timer_del(&c->io_clock[READ],
|
||
|
&c->bucket_clock[READ].rescale);
|
||
|
bch2_io_timer_del(&c->io_clock[WRITE],
|
||
|
&c->bucket_clock[WRITE].rescale);
|
||
|
}
|
||
|
|
||
|
/* Wake up case someone was waiting for buckets */
|
||
|
closure_wake_up(&c->freelist_wait);
|
||
|
}
|
||
|
|
||
|
static void bch2_stop_write_point(struct bch_fs *c, struct bch_dev *ca,
|
||
|
struct write_point *wp)
|
||
|
{
|
||
|
struct bch_devs_mask not_self;
|
||
|
|
||
|
bitmap_complement(not_self.d, ca->self.d, BCH_SB_MEMBERS_MAX);
|
||
|
|
||
|
mutex_lock(&wp->lock);
|
||
|
wp->first_ptr = wp->nr_ptrs;
|
||
|
writepoint_drop_ptrs(c, wp, dev_to_target(ca->dev_idx), true);
|
||
|
mutex_unlock(&wp->lock);
|
||
|
}
|
||
|
|
||
|
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
struct open_bucket *ob;
|
||
|
bool ret = false;
|
||
|
|
||
|
for (ob = c->open_buckets;
|
||
|
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
|
||
|
ob++) {
|
||
|
spin_lock(&ob->lock);
|
||
|
if (ob->valid && !ob->on_partial_list &&
|
||
|
ob->ptr.dev == ca->dev_idx)
|
||
|
ret = true;
|
||
|
spin_unlock(&ob->lock);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* device goes ro: */
|
||
|
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
unsigned i;
|
||
|
|
||
|
BUG_ON(ca->alloc_thread);
|
||
|
|
||
|
/* First, remove device from allocation groups: */
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
|
||
|
clear_bit(ca->dev_idx, c->rw_devs[i].d);
|
||
|
|
||
|
/*
|
||
|
* Capacity is calculated based off of devices in allocation groups:
|
||
|
*/
|
||
|
bch2_recalc_capacity(c);
|
||
|
|
||
|
/* Next, close write points that point to this device... */
|
||
|
for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
|
||
|
bch2_stop_write_point(c, ca, &c->write_points[i]);
|
||
|
|
||
|
bch2_stop_write_point(c, ca, &ca->copygc_write_point);
|
||
|
bch2_stop_write_point(c, ca, &c->rebalance_write_point);
|
||
|
bch2_stop_write_point(c, ca, &c->btree_write_point);
|
||
|
|
||
|
mutex_lock(&c->btree_reserve_cache_lock);
|
||
|
while (c->btree_reserve_cache_nr) {
|
||
|
struct btree_alloc *a =
|
||
|
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
|
||
|
|
||
|
bch2_open_bucket_put_refs(c, &a->ob.nr, a->ob.refs);
|
||
|
}
|
||
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
||
|
|
||
|
/*
|
||
|
* Wake up threads that were blocked on allocation, so they can notice
|
||
|
* the device can no longer be removed and the capacity has changed:
|
||
|
*/
|
||
|
closure_wake_up(&c->freelist_wait);
|
||
|
|
||
|
/*
|
||
|
* journal_res_get() can block waiting for free space in the journal -
|
||
|
* it needs to notice there may not be devices to allocate from anymore:
|
||
|
*/
|
||
|
wake_up(&c->journal.wait);
|
||
|
|
||
|
/* Now wait for any in flight writes: */
|
||
|
|
||
|
closure_wait_event(&c->open_buckets_wait,
|
||
|
!bch2_dev_has_open_write_point(c, ca));
|
||
|
}
|
||
|
|
||
|
/* device goes rw: */
|
||
|
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
|
||
|
{
|
||
|
unsigned i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
|
||
|
if (ca->mi.data_allowed & (1 << i))
|
||
|
set_bit(ca->dev_idx, c->rw_devs[i].d);
|
||
|
}
|
||
|
|
||
|
/* stop allocator thread: */
|
||
|
void bch2_dev_allocator_stop(struct bch_dev *ca)
|
||
|
{
|
||
|
struct task_struct *p;
|
||
|
|
||
|
p = rcu_dereference_protected(ca->alloc_thread, 1);
|
||
|
ca->alloc_thread = NULL;
|
||
|
|
||
|
/*
|
||
|
* We need an rcu barrier between setting ca->alloc_thread = NULL and
|
||
|
* the thread shutting down to avoid bch2_wake_allocator() racing:
|
||
|
*
|
||
|
* XXX: it would be better to have the rcu barrier be asynchronous
|
||
|
* instead of blocking us here
|
||
|
*/
|
||
|
synchronize_rcu();
|
||
|
|
||
|
if (p) {
|
||
|
kthread_stop(p);
|
||
|
put_task_struct(p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* start allocator thread: */
|
||
|
int bch2_dev_allocator_start(struct bch_dev *ca)
|
||
|
{
|
||
|
struct task_struct *p;
|
||
|
|
||
|
/*
|
||
|
* allocator thread already started?
|
||
|
*/
|
||
|
if (ca->alloc_thread)
|
||
|
return 0;
|
||
|
|
||
|
p = kthread_create(bch2_allocator_thread, ca,
|
||
|
"bch_alloc[%s]", ca->name);
|
||
|
if (IS_ERR(p))
|
||
|
return PTR_ERR(p);
|
||
|
|
||
|
get_task_struct(p);
|
||
|
rcu_assign_pointer(ca->alloc_thread, p);
|
||
|
wake_up_process(p);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void allocator_start_issue_discards(struct bch_fs *c)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
unsigned dev_iter;
|
||
|
size_t i, bu;
|
||
|
|
||
|
for_each_rw_member(ca, c, dev_iter) {
|
||
|
unsigned done = 0;
|
||
|
|
||
|
fifo_for_each_entry(bu, &ca->free_inc, i) {
|
||
|
if (done == ca->nr_invalidated)
|
||
|
break;
|
||
|
|
||
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
||
|
bucket_to_sector(ca, bu),
|
||
|
ca->mi.bucket_size, GFP_NOIO);
|
||
|
done++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int __bch2_fs_allocator_start(struct bch_fs *c)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
size_t bu, i;
|
||
|
unsigned dev_iter;
|
||
|
u64 journal_seq = 0;
|
||
|
bool invalidating_data = false;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
|
||
|
return -1;
|
||
|
|
||
|
/* Scan for buckets that are already invalidated: */
|
||
|
for_each_rw_member(ca, c, dev_iter) {
|
||
|
struct btree_iter iter;
|
||
|
struct bucket_mark m;
|
||
|
struct bkey_s_c k;
|
||
|
|
||
|
for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), 0, k) {
|
||
|
if (k.k->type != BCH_ALLOC)
|
||
|
continue;
|
||
|
|
||
|
bu = k.k->p.offset;
|
||
|
m = READ_ONCE(bucket(ca, bu)->mark);
|
||
|
|
||
|
if (!is_available_bucket(m) || m.cached_sectors)
|
||
|
continue;
|
||
|
|
||
|
percpu_down_read(&c->usage_lock);
|
||
|
bch2_mark_alloc_bucket(c, ca, bu, true,
|
||
|
gc_pos_alloc(c, NULL),
|
||
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
||
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
||
|
percpu_up_read(&c->usage_lock);
|
||
|
|
||
|
fifo_push(&ca->free_inc, bu);
|
||
|
ca->nr_invalidated++;
|
||
|
|
||
|
if (fifo_full(&ca->free_inc))
|
||
|
break;
|
||
|
}
|
||
|
bch2_btree_iter_unlock(&iter);
|
||
|
}
|
||
|
|
||
|
/* did we find enough buckets? */
|
||
|
for_each_rw_member(ca, c, dev_iter)
|
||
|
if (fifo_used(&ca->free_inc) < ca->free[RESERVE_BTREE].size) {
|
||
|
percpu_ref_put(&ca->io_ref);
|
||
|
goto not_enough;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
not_enough:
|
||
|
pr_debug("did not find enough empty buckets; issuing discards");
|
||
|
|
||
|
/* clear out free_inc - find_reclaimable_buckets() assumes it's empty */
|
||
|
for_each_rw_member(ca, c, dev_iter)
|
||
|
discard_invalidated_buckets(c, ca);
|
||
|
|
||
|
pr_debug("scanning for reclaimable buckets");
|
||
|
|
||
|
for_each_rw_member(ca, c, dev_iter) {
|
||
|
BUG_ON(!fifo_empty(&ca->free_inc));
|
||
|
ca->free_inc.front = ca->free_inc.back = 0;
|
||
|
|
||
|
find_reclaimable_buckets(c, ca);
|
||
|
sort_free_inc(c, ca);
|
||
|
|
||
|
invalidating_data |= ca->allocator_invalidating_data;
|
||
|
|
||
|
fifo_for_each_entry(bu, &ca->free_inc, i)
|
||
|
if (!fifo_push(&ca->free[RESERVE_BTREE], bu))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pr_debug("done scanning for reclaimable buckets");
|
||
|
|
||
|
/*
|
||
|
* We're moving buckets to freelists _before_ they've been marked as
|
||
|
* invalidated on disk - we have to so that we can allocate new btree
|
||
|
* nodes to mark them as invalidated on disk.
|
||
|
*
|
||
|
* However, we can't _write_ to any of these buckets yet - they might
|
||
|
* have cached data in them, which is live until they're marked as
|
||
|
* invalidated on disk:
|
||
|
*/
|
||
|
if (invalidating_data) {
|
||
|
pr_debug("invalidating existing data");
|
||
|
set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
|
||
|
} else {
|
||
|
pr_debug("issuing discards");
|
||
|
allocator_start_issue_discards(c);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XXX: it's possible for this to deadlock waiting on journal reclaim,
|
||
|
* since we're holding btree writes. What then?
|
||
|
*/
|
||
|
|
||
|
for_each_rw_member(ca, c, dev_iter) {
|
||
|
ret = bch2_invalidate_free_inc(c, ca, &journal_seq,
|
||
|
ca->free[RESERVE_BTREE].size,
|
||
|
false);
|
||
|
if (ret) {
|
||
|
percpu_ref_put(&ca->io_ref);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (invalidating_data) {
|
||
|
pr_debug("flushing journal");
|
||
|
|
||
|
ret = bch2_journal_flush_seq(&c->journal, journal_seq);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
pr_debug("issuing discards");
|
||
|
allocator_start_issue_discards(c);
|
||
|
}
|
||
|
|
||
|
for_each_rw_member(ca, c, dev_iter)
|
||
|
while (ca->nr_invalidated) {
|
||
|
BUG_ON(!fifo_pop(&ca->free_inc, bu));
|
||
|
ca->nr_invalidated--;
|
||
|
}
|
||
|
|
||
|
set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
|
||
|
|
||
|
/* now flush dirty btree nodes: */
|
||
|
if (invalidating_data) {
|
||
|
struct bucket_table *tbl;
|
||
|
struct rhash_head *pos;
|
||
|
struct btree *b;
|
||
|
bool flush_updates;
|
||
|
size_t nr_pending_updates;
|
||
|
|
||
|
clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
|
||
|
again:
|
||
|
pr_debug("flushing dirty btree nodes");
|
||
|
cond_resched();
|
||
|
|
||
|
flush_updates = false;
|
||
|
nr_pending_updates = bch2_btree_interior_updates_nr_pending(c);
|
||
|
|
||
|
|
||
|
rcu_read_lock();
|
||
|
for_each_cached_btree(b, c, tbl, i, pos)
|
||
|
if (btree_node_dirty(b) && (!b->written || b->level)) {
|
||
|
if (btree_node_may_write(b)) {
|
||
|
rcu_read_unlock();
|
||
|
btree_node_lock_type(c, b, SIX_LOCK_read);
|
||
|
bch2_btree_node_write(c, b, SIX_LOCK_read);
|
||
|
six_unlock_read(&b->lock);
|
||
|
goto again;
|
||
|
} else {
|
||
|
flush_updates = true;
|
||
|
}
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/*
|
||
|
* This is ugly, but it's needed to flush btree node writes
|
||
|
* without spinning...
|
||
|
*/
|
||
|
if (flush_updates) {
|
||
|
closure_wait_event(&c->btree_interior_update_wait,
|
||
|
bch2_btree_interior_updates_nr_pending(c) <
|
||
|
nr_pending_updates);
|
||
|
goto again;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int bch2_fs_allocator_start(struct bch_fs *c)
|
||
|
{
|
||
|
struct bch_dev *ca;
|
||
|
unsigned i;
|
||
|
int ret;
|
||
|
|
||
|
down_read(&c->gc_lock);
|
||
|
ret = __bch2_fs_allocator_start(c);
|
||
|
up_read(&c->gc_lock);
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
for_each_rw_member(ca, c, i) {
|
||
|
ret = bch2_dev_allocator_start(ca);
|
||
|
if (ret) {
|
||
|
percpu_ref_put(&ca->io_ref);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return bch2_alloc_write(c);
|
||
|
}
|
||
|
|
||
|
void bch2_fs_allocator_init(struct bch_fs *c)
|
||
|
{
|
||
|
struct open_bucket *ob;
|
||
|
struct write_point *wp;
|
||
|
|
||
|
mutex_init(&c->write_points_hash_lock);
|
||
|
spin_lock_init(&c->freelist_lock);
|
||
|
bch2_bucket_clock_init(c, READ);
|
||
|
bch2_bucket_clock_init(c, WRITE);
|
||
|
|
||
|
/* open bucket 0 is a sentinal NULL: */
|
||
|
spin_lock_init(&c->open_buckets[0].lock);
|
||
|
|
||
|
for (ob = c->open_buckets + 1;
|
||
|
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) {
|
||
|
spin_lock_init(&ob->lock);
|
||
|
c->open_buckets_nr_free++;
|
||
|
|
||
|
ob->freelist = c->open_buckets_freelist;
|
||
|
c->open_buckets_freelist = ob - c->open_buckets;
|
||
|
}
|
||
|
|
||
|
writepoint_init(&c->btree_write_point, BCH_DATA_BTREE);
|
||
|
writepoint_init(&c->rebalance_write_point, BCH_DATA_USER);
|
||
|
|
||
|
for (wp = c->write_points;
|
||
|
wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) {
|
||
|
writepoint_init(wp, BCH_DATA_USER);
|
||
|
|
||
|
wp->last_used = sched_clock();
|
||
|
wp->write_point = (unsigned long) wp;
|
||
|
hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point));
|
||
|
}
|
||
|
|
||
|
c->pd_controllers_update_seconds = 5;
|
||
|
INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);
|
||
|
}
|