linux/fs/gfs2/trans.c

292 lines
7.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/kallsyms.h>
#include <linux/gfs2_ondisk.h>
#include "gfs2.h"
#include "incore.h"
#include "glock.h"
#include "inode.h"
#include "log.h"
#include "lops.h"
#include "meta_io.h"
#include "trans.h"
#include "util.h"
#include "trace_gfs2.h"
int gfs2_trans_begin(struct gfs2_sbd *sdp, unsigned int blocks,
unsigned int revokes)
{
struct gfs2_trans *tr;
int error;
BUG_ON(current->journal_info);
BUG_ON(blocks == 0 && revokes == 0);
if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
return -EROFS;
tr = kmem_cache_zalloc(gfs2_trans_cachep, GFP_NOFS);
if (!tr)
return -ENOMEM;
tr->tr_ip = _RET_IP_;
tr->tr_blocks = blocks;
tr->tr_revokes = revokes;
tr->tr_reserved = 1;
set_bit(TR_ALLOCED, &tr->tr_flags);
if (blocks)
tr->tr_reserved += 6 + blocks;
if (revokes)
tr->tr_reserved += gfs2_struct2blk(sdp, revokes);
INIT_LIST_HEAD(&tr->tr_databuf);
INIT_LIST_HEAD(&tr->tr_buf);
INIT_LIST_HEAD(&tr->tr_ail1_list);
INIT_LIST_HEAD(&tr->tr_ail2_list);
sb_start_intwrite(sdp->sd_vfs);
error = gfs2_log_reserve(sdp, tr->tr_reserved);
if (error)
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 03:26:55 +00:00
goto fail;
current->journal_info = tr;
return 0;
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 03:26:55 +00:00
fail:
sb_end_intwrite(sdp->sd_vfs);
kmem_cache_free(gfs2_trans_cachep, tr);
return error;
}
static void gfs2_print_trans(struct gfs2_sbd *sdp, const struct gfs2_trans *tr)
{
fs_warn(sdp, "Transaction created at: %pSR\n", (void *)tr->tr_ip);
fs_warn(sdp, "blocks=%u revokes=%u reserved=%u touched=%u\n",
tr->tr_blocks, tr->tr_revokes, tr->tr_reserved,
test_bit(TR_TOUCHED, &tr->tr_flags));
fs_warn(sdp, "Buf %u/%u Databuf %u/%u Revoke %u/%u\n",
tr->tr_num_buf_new, tr->tr_num_buf_rm,
tr->tr_num_databuf_new, tr->tr_num_databuf_rm,
tr->tr_num_revoke, tr->tr_num_revoke_rm);
}
void gfs2_trans_end(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr = current->journal_info;
s64 nbuf;
int alloced = test_bit(TR_ALLOCED, &tr->tr_flags);
current->journal_info = NULL;
if (!test_bit(TR_TOUCHED, &tr->tr_flags)) {
gfs2_log_release(sdp, tr->tr_reserved);
if (alloced) {
gfs2_trans_free(sdp, tr);
sb_end_intwrite(sdp->sd_vfs);
}
return;
}
nbuf = tr->tr_num_buf_new + tr->tr_num_databuf_new;
nbuf -= tr->tr_num_buf_rm;
nbuf -= tr->tr_num_databuf_rm;
if (gfs2_assert_withdraw(sdp, (nbuf <= tr->tr_blocks) &&
(tr->tr_num_revoke <= tr->tr_revokes)))
gfs2_print_trans(sdp, tr);
gfs2_log_commit(sdp, tr);
if (alloced && !test_bit(TR_ATTACHED, &tr->tr_flags))
gfs2_trans_free(sdp, tr);
up_read(&sdp->sd_log_flush_lock);
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 21:05:09 +00:00
if (sdp->sd_vfs->s_flags & SB_SYNCHRONOUS)
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_TRANS_END);
if (alloced)
sb_end_intwrite(sdp->sd_vfs);
}
static struct gfs2_bufdata *gfs2_alloc_bufdata(struct gfs2_glock *gl,
struct buffer_head *bh)
{
struct gfs2_bufdata *bd;
bd = kmem_cache_zalloc(gfs2_bufdata_cachep, GFP_NOFS | __GFP_NOFAIL);
bd->bd_bh = bh;
bd->bd_gl = gl;
INIT_LIST_HEAD(&bd->bd_list);
bh->b_private = bd;
return bd;
}
/**
* gfs2_trans_add_data - Add a databuf to the transaction.
* @gl: The inode glock associated with the buffer
* @bh: The buffer to add
*
* This is used in journaled data mode.
* We need to journal the data block in the same way as metadata in
* the functions above. The difference is that here we have a tag
* which is two __be64's being the block number (as per meta data)
* and a flag which says whether the data block needs escaping or
* not. This means we need a new log entry for each 251 or so data
* blocks, which isn't an enormous overhead but twice as much as
* for normal metadata blocks.
*/
void gfs2_trans_add_data(struct gfs2_glock *gl, struct buffer_head *bh)
{
struct gfs2_trans *tr = current->journal_info;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_bufdata *bd;
lock_buffer(bh);
if (buffer_pinned(bh)) {
set_bit(TR_TOUCHED, &tr->tr_flags);
goto out;
}
gfs2_log_lock(sdp);
bd = bh->b_private;
if (bd == NULL) {
gfs2_log_unlock(sdp);
unlock_buffer(bh);
if (bh->b_private == NULL)
bd = gfs2_alloc_bufdata(gl, bh);
else
bd = bh->b_private;
lock_buffer(bh);
gfs2_log_lock(sdp);
}
gfs2_assert(sdp, bd->bd_gl == gl);
set_bit(TR_TOUCHED, &tr->tr_flags);
if (list_empty(&bd->bd_list)) {
set_bit(GLF_LFLUSH, &bd->bd_gl->gl_flags);
set_bit(GLF_DIRTY, &bd->bd_gl->gl_flags);
gfs2_pin(sdp, bd->bd_bh);
tr->tr_num_databuf_new++;
list_add_tail(&bd->bd_list, &tr->tr_databuf);
}
gfs2_log_unlock(sdp);
out:
unlock_buffer(bh);
}
void gfs2_trans_add_meta(struct gfs2_glock *gl, struct buffer_head *bh)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_bufdata *bd;
struct gfs2_meta_header *mh;
struct gfs2_trans *tr = current->journal_info;
enum gfs2_freeze_state state = atomic_read(&sdp->sd_freeze_state);
lock_buffer(bh);
if (buffer_pinned(bh)) {
set_bit(TR_TOUCHED, &tr->tr_flags);
goto out;
}
gfs2_log_lock(sdp);
bd = bh->b_private;
if (bd == NULL) {
gfs2_log_unlock(sdp);
unlock_buffer(bh);
lock_page(bh->b_page);
if (bh->b_private == NULL)
bd = gfs2_alloc_bufdata(gl, bh);
else
bd = bh->b_private;
unlock_page(bh->b_page);
lock_buffer(bh);
gfs2_log_lock(sdp);
}
gfs2_assert(sdp, bd->bd_gl == gl);
set_bit(TR_TOUCHED, &tr->tr_flags);
if (!list_empty(&bd->bd_list))
goto out_unlock;
set_bit(GLF_LFLUSH, &bd->bd_gl->gl_flags);
set_bit(GLF_DIRTY, &bd->bd_gl->gl_flags);
mh = (struct gfs2_meta_header *)bd->bd_bh->b_data;
if (unlikely(mh->mh_magic != cpu_to_be32(GFS2_MAGIC))) {
fs_err(sdp, "Attempting to add uninitialised block to "
"journal (inplace block=%lld)\n",
(unsigned long long)bd->bd_bh->b_blocknr);
BUG();
}
if (unlikely(state == SFS_FROZEN)) {
fs_info(sdp, "GFS2:adding buf while frozen\n");
gfs2_assert_withdraw(sdp, 0);
}
if (unlikely(gfs2_withdrawn(sdp))) {
fs_info(sdp, "GFS2:adding buf while withdrawn! 0x%llx\n",
(unsigned long long)bd->bd_bh->b_blocknr);
}
gfs2_pin(sdp, bd->bd_bh);
mh->__pad0 = cpu_to_be64(0);
mh->mh_jid = cpu_to_be32(sdp->sd_jdesc->jd_jid);
list_add(&bd->bd_list, &tr->tr_buf);
tr->tr_num_buf_new++;
out_unlock:
gfs2_log_unlock(sdp);
out:
unlock_buffer(bh);
}
void gfs2_trans_add_revoke(struct gfs2_sbd *sdp, struct gfs2_bufdata *bd)
{
struct gfs2_trans *tr = current->journal_info;
BUG_ON(!list_empty(&bd->bd_list));
gfs2_add_revoke(sdp, bd);
set_bit(TR_TOUCHED, &tr->tr_flags);
tr->tr_num_revoke++;
}
void gfs2_trans_remove_revoke(struct gfs2_sbd *sdp, u64 blkno, unsigned int len)
{
struct gfs2_bufdata *bd, *tmp;
struct gfs2_trans *tr = current->journal_info;
unsigned int n = len;
gfs2_log_lock(sdp);
list_for_each_entry_safe(bd, tmp, &sdp->sd_log_revokes, bd_list) {
if ((bd->bd_blkno >= blkno) && (bd->bd_blkno < (blkno + len))) {
list_del_init(&bd->bd_list);
gfs2_assert_withdraw(sdp, sdp->sd_log_num_revoke);
sdp->sd_log_num_revoke--;
if (bd->bd_gl)
gfs2_glock_remove_revoke(bd->bd_gl);
kmem_cache_free(gfs2_bufdata_cachep, bd);
tr->tr_num_revoke_rm++;
if (--n == 0)
break;
}
}
gfs2_log_unlock(sdp);
}
void gfs2_trans_free(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
if (tr == NULL)
return;
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail1_list));
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail2_list));
gfs2_assert_warn(sdp, list_empty(&tr->tr_databuf));
gfs2_assert_warn(sdp, list_empty(&tr->tr_buf));
kmem_cache_free(gfs2_trans_cachep, tr);
}