2018-12-28 00:31:14 -08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2018-12-28 00:29:45 -08:00
|
|
|
/*
|
2020-12-22 12:00:32 -08:00
|
|
|
* This file contains common KASAN code.
|
2018-12-28 00:29:45 -08:00
|
|
|
*
|
|
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
|
|
*
|
|
|
|
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
|
|
|
* Andrey Konovalov <andreyknvl@gmail.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kasan.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
#include <linux/memblock.h>
|
|
|
|
#include <linux/memory.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/printk.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/sched/task_stack.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/bug.h>
|
|
|
|
|
|
|
|
#include "kasan.h"
|
|
|
|
#include "../slab.h"
|
|
|
|
|
2022-09-05 23:05:38 +02:00
|
|
|
struct slab *kasan_addr_to_slab(const void *addr)
|
|
|
|
{
|
|
|
|
if (virt_addr_valid(addr))
|
|
|
|
return virt_to_slab(addr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2021-11-05 13:35:43 -07:00
|
|
|
depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
|
|
|
unsigned long entries[KASAN_STACK_DEPTH];
|
2019-04-25 11:45:02 +02:00
|
|
|
unsigned int nr_entries;
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2019-04-25 11:45:02 +02:00
|
|
|
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
|
2022-09-15 17:03:36 +02:00
|
|
|
return __stack_depot_save(entries, nr_entries, 0, flags, can_alloc);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2020-08-06 23:24:39 -07:00
|
|
|
void kasan_set_track(struct kasan_track *track, gfp_t flags)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
|
|
|
track->pid = current->pid;
|
2021-11-05 13:35:43 -07:00
|
|
|
track->stack = kasan_save_stack(flags, true);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2020-12-22 12:00:56 -08:00
|
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
2018-12-28 00:29:45 -08:00
|
|
|
void kasan_enable_current(void)
|
|
|
|
{
|
|
|
|
current->kasan_depth++;
|
|
|
|
}
|
2021-06-28 19:34:33 -07:00
|
|
|
EXPORT_SYMBOL(kasan_enable_current);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
|
|
|
void kasan_disable_current(void)
|
|
|
|
{
|
|
|
|
current->kasan_depth--;
|
|
|
|
}
|
2021-06-28 19:34:33 -07:00
|
|
|
EXPORT_SYMBOL(kasan_disable_current);
|
|
|
|
|
2020-12-22 12:00:56 -08:00
|
|
|
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void __kasan_unpoison_range(const void *address, size_t size)
|
2020-12-22 12:00:21 -08:00
|
|
|
{
|
2021-04-29 22:59:59 -07:00
|
|
|
kasan_unpoison(address, size, false);
|
2020-12-22 12:00:21 -08:00
|
|
|
}
|
|
|
|
|
2021-04-16 15:46:00 -07:00
|
|
|
#ifdef CONFIG_KASAN_STACK
|
2018-12-28 00:29:45 -08:00
|
|
|
/* Unpoison the entire stack for a task. */
|
|
|
|
void kasan_unpoison_task_stack(struct task_struct *task)
|
|
|
|
{
|
2020-12-22 12:02:49 -08:00
|
|
|
void *base = task_stack_page(task);
|
|
|
|
|
2021-04-29 22:59:59 -07:00
|
|
|
kasan_unpoison(base, THREAD_SIZE, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Unpoison the stack for the current task beyond a watermark sp value. */
|
|
|
|
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Calculate the task stack base address. Avoid using 'current'
|
|
|
|
* because this function is called by early resume code which hasn't
|
|
|
|
* yet set up the percpu register (%gs).
|
|
|
|
*/
|
|
|
|
void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
|
|
|
|
|
2021-04-29 22:59:59 -07:00
|
|
|
kasan_unpoison(base, watermark - base, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
2020-12-22 12:02:42 -08:00
|
|
|
#endif /* CONFIG_KASAN_STACK */
|
2018-12-28 00:29:45 -08:00
|
|
|
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 19:09:18 +01:00
|
|
|
bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2018-12-28 00:30:57 -08:00
|
|
|
u8 tag;
|
|
|
|
unsigned long i;
|
|
|
|
|
2018-12-28 00:30:50 -08:00
|
|
|
if (unlikely(PageHighMem(page)))
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 19:09:18 +01:00
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!kasan_sample_page_alloc(order))
|
|
|
|
return false;
|
2018-12-28 00:30:57 -08:00
|
|
|
|
2021-02-24 12:05:05 -08:00
|
|
|
tag = kasan_random_tag();
|
2022-06-10 16:21:38 +01:00
|
|
|
kasan_unpoison(set_tag(page_address(page), tag),
|
|
|
|
PAGE_SIZE << order, init);
|
2018-12-28 00:30:57 -08:00
|
|
|
for (i = 0; i < (1 << order); i++)
|
|
|
|
page_kasan_tag_set(page + i, tag);
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 19:09:18 +01:00
|
|
|
|
|
|
|
return true;
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2021-06-02 16:52:28 -07:00
|
|
|
void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
|
|
|
if (likely(!PageHighMem(page)))
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_poison(page_address(page), PAGE_SIZE << order,
|
2022-05-12 20:23:08 -07:00
|
|
|
KASAN_PAGE_FREE, init);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2021-02-25 17:19:55 -08:00
|
|
|
void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
|
|
|
|
{
|
|
|
|
cache->kasan_info.is_kmalloc = true;
|
|
|
|
}
|
|
|
|
|
2021-10-04 14:46:46 +01:00
|
|
|
void __kasan_poison_slab(struct slab *slab)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2021-10-04 14:46:46 +01:00
|
|
|
struct page *page = slab_page(slab);
|
2018-12-28 00:30:57 -08:00
|
|
|
unsigned long i;
|
|
|
|
|
2019-09-23 15:34:30 -07:00
|
|
|
for (i = 0; i < compound_nr(page); i++)
|
2018-12-28 00:30:57 -08:00
|
|
|
page_kasan_tag_reset(page + i);
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_poison(page_address(page), page_size(page),
|
2022-05-12 20:23:08 -07:00
|
|
|
KASAN_SLAB_REDZONE, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2021-04-29 22:59:59 -07:00
|
|
|
kasan_unpoison(object, cache->object_size, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2021-02-25 17:20:27 -08:00
|
|
|
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
|
2022-05-12 20:23:08 -07:00
|
|
|
KASAN_SLAB_REDZONE, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2018-12-28 00:30:50 -08:00
|
|
|
/*
|
2019-01-08 15:23:18 -08:00
|
|
|
* This function assigns a tag to an object considering the following:
|
|
|
|
* 1. A cache might have a constructor, which might save a pointer to a slab
|
|
|
|
* object somewhere (e.g. in the object itself). We preassign a tag for
|
|
|
|
* each object in caches with constructors during slab creation and reuse
|
|
|
|
* the same tag each time a particular object is allocated.
|
|
|
|
* 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
|
|
|
|
* accessed after being freed. We preassign tags for objects in these
|
|
|
|
* caches as well.
|
|
|
|
* 3. For SLAB allocator we can't preassign tags randomly since the freelist
|
|
|
|
* is stored as an array of indexes instead of a linked list. Assign tags
|
|
|
|
* based on objects indexes, so that objects that are next to each other
|
|
|
|
* get different tags.
|
2018-12-28 00:30:50 -08:00
|
|
|
*/
|
2021-02-25 17:20:35 -08:00
|
|
|
static inline u8 assign_tag(struct kmem_cache *cache,
|
|
|
|
const void *object, bool init)
|
2018-12-28 00:30:50 -08:00
|
|
|
{
|
2020-12-22 12:03:20 -08:00
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
|
|
return 0xff;
|
|
|
|
|
2019-01-08 15:23:18 -08:00
|
|
|
/*
|
|
|
|
* If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
|
|
|
|
* set, assign a tag when the object is being allocated (init == false).
|
|
|
|
*/
|
2018-12-28 00:30:50 -08:00
|
|
|
if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
2021-02-24 12:05:05 -08:00
|
|
|
return init ? KASAN_TAG_KERNEL : kasan_random_tag();
|
2018-12-28 00:30:50 -08:00
|
|
|
|
2019-01-08 15:23:18 -08:00
|
|
|
/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
|
2018-12-28 00:30:50 -08:00
|
|
|
#ifdef CONFIG_SLAB
|
2019-01-08 15:23:18 -08:00
|
|
|
/* For SLAB assign tags based on the object index in the freelist. */
|
2021-11-02 15:42:04 +01:00
|
|
|
return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object);
|
2018-12-28 00:30:50 -08:00
|
|
|
#else
|
2019-01-08 15:23:18 -08:00
|
|
|
/*
|
|
|
|
* For SLUB assign a random tag during slab creation, otherwise reuse
|
|
|
|
* the already assigned tag.
|
|
|
|
*/
|
2021-02-24 12:05:05 -08:00
|
|
|
return init ? kasan_random_tag() : get_tag(object);
|
2018-12-28 00:30:50 -08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
|
2018-12-28 00:31:01 -08:00
|
|
|
const void *object)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2022-09-05 23:05:23 +02:00
|
|
|
/* Initialize per-object metadata if it is present. */
|
2022-09-05 23:05:26 +02:00
|
|
|
if (kasan_requires_meta())
|
2022-09-05 23:05:23 +02:00
|
|
|
kasan_init_object_meta(cache, object);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2020-12-22 12:03:20 -08:00
|
|
|
/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
object = set_tag(object, assign_tag(cache, object, true));
|
2018-12-28 00:30:50 -08:00
|
|
|
|
2018-12-28 00:29:45 -08:00
|
|
|
return (void *)object;
|
|
|
|
}
|
|
|
|
|
2021-04-29 23:00:09 -07:00
|
|
|
static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
|
|
|
|
unsigned long ip, bool quarantine, bool init)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2018-12-28 00:30:50 -08:00
|
|
|
void *tagged_object;
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2021-06-28 19:40:42 -07:00
|
|
|
if (!kasan_arch_is_ready())
|
|
|
|
return false;
|
|
|
|
|
2018-12-28 00:30:50 -08:00
|
|
|
tagged_object = object;
|
2020-12-22 12:02:52 -08:00
|
|
|
object = kasan_reset_tag(object);
|
2018-12-28 00:30:50 -08:00
|
|
|
|
2021-02-25 17:19:21 -08:00
|
|
|
if (is_kfence_address(object))
|
|
|
|
return false;
|
|
|
|
|
2021-11-02 15:42:04 +01:00
|
|
|
if (unlikely(nearest_obj(cache, virt_to_slab(object), object) !=
|
2018-12-28 00:29:45 -08:00
|
|
|
object)) {
|
2022-06-15 14:22:18 +08:00
|
|
|
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
|
2018-12-28 00:29:45 -08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* RCU slabs could be legally used after free within the RCU period */
|
|
|
|
if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
|
|
|
return false;
|
|
|
|
|
2021-02-24 12:05:50 -08:00
|
|
|
if (!kasan_byte_accessible(tagged_object)) {
|
2022-06-15 14:22:18 +08:00
|
|
|
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
|
2018-12-28 00:29:45 -08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-02-25 17:20:27 -08:00
|
|
|
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
|
2022-05-12 20:23:08 -07:00
|
|
|
KASAN_SLAB_FREE, init);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2020-12-22 12:03:28 -08:00
|
|
|
if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
|
2018-12-28 00:29:45 -08:00
|
|
|
return false;
|
|
|
|
|
2021-02-25 17:20:07 -08:00
|
|
|
if (kasan_stack_collection_enabled())
|
2022-09-05 23:05:34 +02:00
|
|
|
kasan_save_free_info(cache, tagged_object);
|
2019-09-23 15:34:13 -07:00
|
|
|
|
2021-02-24 12:05:05 -08:00
|
|
|
return kasan_quarantine_put(cache, object);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2021-04-29 23:00:09 -07:00
|
|
|
bool __kasan_slab_free(struct kmem_cache *cache, void *object,
|
|
|
|
unsigned long ip, bool init)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2021-04-29 23:00:09 -07:00
|
|
|
return ____kasan_slab_free(cache, object, ip, true, init);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2021-02-25 17:20:35 -08:00
|
|
|
static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
|
2021-02-25 17:20:11 -08:00
|
|
|
{
|
|
|
|
if (ptr != page_address(virt_to_head_page(ptr))) {
|
2022-06-15 14:22:18 +08:00
|
|
|
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
|
2021-02-25 17:20:11 -08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!kasan_byte_accessible(ptr)) {
|
2022-06-15 14:22:18 +08:00
|
|
|
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
|
2021-02-25 17:20:11 -08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-03-24 18:10:10 -07:00
|
|
|
* The object will be poisoned by kasan_poison_pages() or
|
2021-02-25 17:20:11 -08:00
|
|
|
* kasan_slab_free_mempool().
|
|
|
|
*/
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __kasan_kfree_large(void *ptr, unsigned long ip)
|
|
|
|
{
|
|
|
|
____kasan_kfree_large(ptr, ip);
|
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:13 -08:00
|
|
|
void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
|
|
|
|
{
|
2021-10-04 14:46:46 +01:00
|
|
|
struct folio *folio;
|
2020-12-22 12:03:13 -08:00
|
|
|
|
2021-10-04 14:46:46 +01:00
|
|
|
folio = virt_to_folio(ptr);
|
2020-12-22 12:03:13 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Even though this function is only called for kmem_cache_alloc and
|
|
|
|
* kmalloc backed mempool allocations, those allocations can still be
|
|
|
|
* !PageSlab() when the size provided to kmalloc is larger than
|
|
|
|
* KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
|
|
|
|
*/
|
2021-10-04 14:46:46 +01:00
|
|
|
if (unlikely(!folio_test_slab(folio))) {
|
2021-02-25 17:20:11 -08:00
|
|
|
if (____kasan_kfree_large(ptr, ip))
|
2020-12-22 12:03:13 -08:00
|
|
|
return;
|
2022-05-12 20:23:08 -07:00
|
|
|
kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
|
2020-12-22 12:03:13 -08:00
|
|
|
} else {
|
2021-10-04 14:46:46 +01:00
|
|
|
struct slab *slab = folio_slab(folio);
|
|
|
|
|
|
|
|
____kasan_slab_free(slab->slab_cache, ptr, ip, false, false);
|
2020-12-22 12:03:13 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
|
2021-04-29 23:00:06 -07:00
|
|
|
void *object, gfp_t flags, bool init)
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
{
|
|
|
|
u8 tag;
|
|
|
|
void *tagged_object;
|
|
|
|
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
|
|
|
kasan_quarantine_reduce();
|
|
|
|
|
|
|
|
if (unlikely(object == NULL))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (is_kfence_address(object))
|
|
|
|
return (void *)object;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate and assign random tag for tag-based modes.
|
|
|
|
* Tag is ignored in set_tag() for the generic mode.
|
|
|
|
*/
|
|
|
|
tag = assign_tag(cache, object, false);
|
|
|
|
tagged_object = set_tag(object, tag);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unpoison the whole object.
|
|
|
|
* For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
|
|
|
|
*/
|
2021-04-29 23:00:06 -07:00
|
|
|
kasan_unpoison(tagged_object, cache->object_size, init);
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
|
|
|
|
/* Save alloc info (if possible) for non-kmalloc() allocations. */
|
2022-09-05 23:05:18 +02:00
|
|
|
if (kasan_stack_collection_enabled() && !cache->kasan_info.is_kmalloc)
|
2022-09-05 23:05:34 +02:00
|
|
|
kasan_save_alloc_info(cache, tagged_object, flags);
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
|
|
|
|
return tagged_object;
|
|
|
|
}
|
|
|
|
|
2021-02-25 17:20:35 -08:00
|
|
|
static inline void *____kasan_kmalloc(struct kmem_cache *cache,
|
|
|
|
const void *object, size_t size, gfp_t flags)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
|
|
|
unsigned long redzone_start;
|
|
|
|
unsigned long redzone_end;
|
|
|
|
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_quarantine_reduce();
|
2018-12-28 00:29:45 -08:00
|
|
|
|
|
|
|
if (unlikely(object == NULL))
|
|
|
|
return NULL;
|
|
|
|
|
2021-02-25 17:19:21 -08:00
|
|
|
if (is_kfence_address(kasan_reset_tag(object)))
|
|
|
|
return (void *)object;
|
|
|
|
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
/*
|
|
|
|
* The object has already been unpoisoned by kasan_slab_alloc() for
|
2021-02-25 17:20:23 -08:00
|
|
|
* kmalloc() or by kasan_krealloc() for krealloc().
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The redzone has byte-level precision for the generic mode.
|
|
|
|
* Partially poison the last object granule to cover the unaligned
|
|
|
|
* part of the redzone.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
|
|
kasan_poison_last_granule((void *)object, size);
|
|
|
|
|
|
|
|
/* Poison the aligned part of the redzone. */
|
2018-12-28 00:29:45 -08:00
|
|
|
redzone_start = round_up((unsigned long)(object + size),
|
2020-12-22 12:00:24 -08:00
|
|
|
KASAN_GRANULE_SIZE);
|
2021-02-25 17:20:27 -08:00
|
|
|
redzone_end = round_up((unsigned long)(object + cache->object_size),
|
|
|
|
KASAN_GRANULE_SIZE);
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
|
2022-05-12 20:23:08 -07:00
|
|
|
KASAN_SLAB_REDZONE, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
/*
|
|
|
|
* Save alloc info (if possible) for kmalloc() allocations.
|
|
|
|
* This also rewrites the alloc info when called from kasan_krealloc().
|
|
|
|
*/
|
2022-09-05 23:05:18 +02:00
|
|
|
if (kasan_stack_collection_enabled() && cache->kasan_info.is_kmalloc)
|
2022-09-05 23:05:19 +02:00
|
|
|
kasan_save_alloc_info(cache, (void *)object, flags);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
/* Keep the tag that was set by kasan_slab_alloc(). */
|
|
|
|
return (void *)object;
|
2019-02-20 22:19:01 -08:00
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
|
|
|
|
size_t size, gfp_t flags)
|
2019-01-08 15:23:18 -08:00
|
|
|
{
|
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:59 -08:00
|
|
|
return ____kasan_kmalloc(cache, object, size, flags);
|
2019-01-08 15:23:18 -08:00
|
|
|
}
|
2020-12-22 12:03:10 -08:00
|
|
|
EXPORT_SYMBOL(__kasan_kmalloc);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
|
2018-12-28 00:31:01 -08:00
|
|
|
gfp_t flags)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
|
|
|
unsigned long redzone_start;
|
|
|
|
unsigned long redzone_end;
|
|
|
|
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_quarantine_reduce();
|
2018-12-28 00:29:45 -08:00
|
|
|
|
|
|
|
if (unlikely(ptr == NULL))
|
|
|
|
return NULL;
|
|
|
|
|
2021-02-25 17:20:03 -08:00
|
|
|
/*
|
2022-03-24 18:10:31 -07:00
|
|
|
* The object has already been unpoisoned by kasan_unpoison_pages() for
|
2021-02-25 17:20:23 -08:00
|
|
|
* alloc_pages() or by kasan_krealloc() for krealloc().
|
2021-02-25 17:20:03 -08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The redzone has byte-level precision for the generic mode.
|
|
|
|
* Partially poison the last object granule to cover the unaligned
|
|
|
|
* part of the redzone.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
|
|
kasan_poison_last_granule(ptr, size);
|
|
|
|
|
|
|
|
/* Poison the aligned part of the redzone. */
|
2018-12-28 00:29:45 -08:00
|
|
|
redzone_start = round_up((unsigned long)(ptr + size),
|
2020-12-22 12:00:24 -08:00
|
|
|
KASAN_GRANULE_SIZE);
|
2021-02-25 17:20:03 -08:00
|
|
|
redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
|
2021-02-24 12:05:05 -08:00
|
|
|
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
|
2021-04-29 22:59:59 -07:00
|
|
|
KASAN_PAGE_REDZONE, false);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
|
|
|
return (void *)ptr;
|
|
|
|
}
|
|
|
|
|
2020-12-22 12:03:10 -08:00
|
|
|
void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
|
2018-12-28 00:29:45 -08:00
|
|
|
{
|
2021-10-04 14:46:46 +01:00
|
|
|
struct slab *slab;
|
2018-12-28 00:29:45 -08:00
|
|
|
|
|
|
|
if (unlikely(object == ZERO_SIZE_PTR))
|
|
|
|
return (void *)object;
|
|
|
|
|
2021-02-25 17:20:23 -08:00
|
|
|
/*
|
|
|
|
* Unpoison the object's data.
|
|
|
|
* Part of it might already have been unpoisoned, but it's unknown
|
|
|
|
* how big that part is.
|
|
|
|
*/
|
2021-04-29 22:59:59 -07:00
|
|
|
kasan_unpoison(object, size, false);
|
2021-02-25 17:20:23 -08:00
|
|
|
|
2021-10-04 14:46:46 +01:00
|
|
|
slab = virt_to_slab(object);
|
2018-12-28 00:29:45 -08:00
|
|
|
|
2021-02-25 17:20:23 -08:00
|
|
|
/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
|
2021-10-04 14:46:46 +01:00
|
|
|
if (unlikely(!slab))
|
2020-12-22 12:03:10 -08:00
|
|
|
return __kasan_kmalloc_large(object, size, flags);
|
2018-12-28 00:29:45 -08:00
|
|
|
else
|
2021-10-04 14:46:46 +01:00
|
|
|
return ____kasan_kmalloc(slab->slab_cache, object, size, flags);
|
2018-12-28 00:29:45 -08:00
|
|
|
}
|
|
|
|
|
2021-02-24 12:05:50 -08:00
|
|
|
bool __kasan_check_byte(const void *address, unsigned long ip)
|
|
|
|
{
|
|
|
|
if (!kasan_byte_accessible(address)) {
|
|
|
|
kasan_report((unsigned long)address, 1, false, ip);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|