linux/fs/btrfs/acl.c

130 lines
2.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Red Hat. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/xattr.h>
#include <linux/posix_acl_xattr.h>
#include <linux/posix_acl.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include "ctree.h"
#include "xattr.h"
#include "acl.h"
struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu)
{
int size;
const char *name;
char *value = NULL;
struct posix_acl *acl;
if (rcu)
return ERR_PTR(-ECHILD);
switch (type) {
case ACL_TYPE_ACCESS:
name = XATTR_NAME_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return ERR_PTR(-EINVAL);
}
size = btrfs_getxattr(inode, name, NULL, 0);
if (size > 0) {
value = kzalloc(size, GFP_KERNEL);
if (!value)
return ERR_PTR(-ENOMEM);
size = btrfs_getxattr(inode, name, value, size);
}
if (size > 0)
acl = posix_acl_from_xattr(&init_user_ns, value, size);
else if (size == -ENODATA || size == 0)
acl = NULL;
else
acl = ERR_PTR(size);
kfree(value);
return acl;
}
int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
struct posix_acl *acl, int type)
{
int ret, size = 0;
const char *name;
char *value = NULL;
switch (type) {
case ACL_TYPE_ACCESS:
name = XATTR_NAME_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
if (!S_ISDIR(inode->i_mode))
return acl ? -EINVAL : 0;
name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return -EINVAL;
}
if (acl) {
unsigned int nofs_flag;
size = posix_acl_xattr_size(acl->a_count);
/*
* We're holding a transaction handle, so use a NOFS memory
* allocation context to avoid deadlock if reclaim happens.
*/
nofs_flag = memalloc_nofs_save();
value = kmalloc(size, GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!value) {
ret = -ENOMEM;
goto out;
}
ret = posix_acl_to_xattr(&init_user_ns, acl, value, size);
if (ret < 0)
goto out;
}
if (trans)
ret = btrfs_setxattr(trans, inode, name, value, size, 0);
else
ret = btrfs_setxattr_trans(inode, name, value, size, 0);
out:
kfree(value);
if (!ret)
set_cached_acl(inode, type, acl);
return ret;
}
int btrfs_set_acl(struct mnt_idmap *idmap, struct dentry *dentry,
struct posix_acl *acl, int type)
{
int ret;
fs: pass dentry to set acl method The current way of setting and getting posix acls through the generic xattr interface is error prone and type unsafe. The vfs needs to interpret and fixup posix acls before storing or reporting it to userspace. Various hacks exist to make this work. The code is hard to understand and difficult to maintain in it's current form. Instead of making this work by hacking posix acls through xattr handlers we are building a dedicated posix acl api around the get and set inode operations. This removes a lot of hackiness and makes the codepaths easier to maintain. A lot of background can be found in [1]. Since some filesystem rely on the dentry being available to them when setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode operation. But since ->set_acl() is required in order to use the generic posix acl xattr handlers filesystems that do not implement this inode operation cannot use the handler and need to implement their own dedicated posix acl handlers. Update the ->set_acl() inode method to take a dentry argument. This allows all filesystems to rely on ->set_acl(). As far as I can tell all codepaths can be switched to rely on the dentry instead of just the inode. Note that the original motivation for passing the dentry separate from the inode instead of just the dentry in the xattr handlers was because of security modules that call security_d_instantiate(). This hook is called during d_instantiate_new(), d_add(), __d_instantiate_anon(), and d_splice_alias() to initialize the inode's security context and possibly to set security.* xattrs. Since this only affects security.* xattrs this is completely irrelevant for posix acls. Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1] Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-09-23 10:29:39 +02:00
struct inode *inode = d_inode(dentry);
umode_t old_mode = inode->i_mode;
if (type == ACL_TYPE_ACCESS && acl) {
ret = posix_acl_update_mode(idmap, inode,
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 14:19:27 +01:00
&inode->i_mode, &acl);
if (ret)
return ret;
}
ret = __btrfs_set_acl(NULL, inode, acl, type);
if (ret)
inode->i_mode = old_mode;
return ret;
}