linux/fs/nilfs2/segment.c

2911 lines
78 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* NILFS segment constructor.
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* Written by Ryusuke Konishi.
*
*/
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/bitops.h>
#include <linux/bio.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/crc32.h>
#include <linux/pagevec.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include "nilfs.h"
#include "btnode.h"
#include "page.h"
#include "segment.h"
#include "sufile.h"
#include "cpfile.h"
#include "ifile.h"
#include "segbuf.h"
/*
* Segment constructor
*/
#define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
#define SC_MAX_SEGDELTA 64 /*
* Upper limit of the number of segments
* appended in collection retry loop
*/
/* Construction mode */
enum {
SC_LSEG_SR = 1, /* Make a logical segment having a super root */
SC_LSEG_DSYNC, /*
* Flush data blocks of a given file and make
* a logical segment without a super root.
*/
SC_FLUSH_FILE, /*
* Flush data files, leads to segment writes without
* creating a checkpoint.
*/
SC_FLUSH_DAT, /*
* Flush DAT file. This also creates segments
* without a checkpoint.
*/
};
/* Stage numbers of dirty block collection */
enum {
NILFS_ST_INIT = 0,
NILFS_ST_GC, /* Collecting dirty blocks for GC */
NILFS_ST_FILE,
NILFS_ST_IFILE,
NILFS_ST_CPFILE,
NILFS_ST_SUFILE,
NILFS_ST_DAT,
NILFS_ST_SR, /* Super root */
NILFS_ST_DSYNC, /* Data sync blocks */
NILFS_ST_DONE,
};
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
#define CREATE_TRACE_POINTS
#include <trace/events/nilfs2.h>
/*
* nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
* wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
* the variable must use them because transition of stage count must involve
* trace events (trace_nilfs2_collection_stage_transition).
*
* nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
* produce tracepoint events. It is provided just for making the intention
* clear.
*/
static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
{
sci->sc_stage.scnt++;
trace_nilfs2_collection_stage_transition(sci);
}
static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
{
sci->sc_stage.scnt = next_scnt;
trace_nilfs2_collection_stage_transition(sci);
}
static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
{
return sci->sc_stage.scnt;
}
/* State flags of collection */
#define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
#define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
#define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
#define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
/* Operations depending on the construction mode and file type */
struct nilfs_sc_operations {
int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
struct inode *);
int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
struct inode *);
int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
struct inode *);
void (*write_data_binfo)(struct nilfs_sc_info *,
struct nilfs_segsum_pointer *,
union nilfs_binfo *);
void (*write_node_binfo)(struct nilfs_sc_info *,
struct nilfs_segsum_pointer *,
union nilfs_binfo *);
};
/*
* Other definitions
*/
static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
#define nilfs_cnt32_ge(a, b) \
(typecheck(__u32, a) && typecheck(__u32, b) && \
((__s32)((a) - (b)) >= 0))
static int nilfs_prepare_segment_lock(struct super_block *sb,
struct nilfs_transaction_info *ti)
{
struct nilfs_transaction_info *cur_ti = current->journal_info;
void *save = NULL;
if (cur_ti) {
if (cur_ti->ti_magic == NILFS_TI_MAGIC)
return ++cur_ti->ti_count;
/*
* If journal_info field is occupied by other FS,
* it is saved and will be restored on
* nilfs_transaction_commit().
*/
nilfs_warn(sb, "journal info from a different FS");
save = current->journal_info;
}
if (!ti) {
ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
if (!ti)
return -ENOMEM;
ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
} else {
ti->ti_flags = 0;
}
ti->ti_count = 0;
ti->ti_save = save;
ti->ti_magic = NILFS_TI_MAGIC;
current->journal_info = ti;
return 0;
}
/**
* nilfs_transaction_begin - start indivisible file operations.
* @sb: super block
* @ti: nilfs_transaction_info
* @vacancy_check: flags for vacancy rate checks
*
* nilfs_transaction_begin() acquires a reader/writer semaphore, called
* the segment semaphore, to make a segment construction and write tasks
* exclusive. The function is used with nilfs_transaction_commit() in pairs.
* The region enclosed by these two functions can be nested. To avoid a
* deadlock, the semaphore is only acquired or released in the outermost call.
*
* This function allocates a nilfs_transaction_info struct to keep context
* information on it. It is initialized and hooked onto the current task in
* the outermost call. If a pre-allocated struct is given to @ti, it is used
* instead; otherwise a new struct is assigned from a slab.
*
* When @vacancy_check flag is set, this function will check the amount of
* free space, and will wait for the GC to reclaim disk space if low capacity.
*
* Return Value: On success, 0 is returned. On error, one of the following
* negative error code is returned.
*
* %-ENOMEM - Insufficient memory available.
*
* %-ENOSPC - No space left on device
*/
int nilfs_transaction_begin(struct super_block *sb,
struct nilfs_transaction_info *ti,
int vacancy_check)
{
struct the_nilfs *nilfs;
int ret = nilfs_prepare_segment_lock(sb, ti);
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
struct nilfs_transaction_info *trace_ti;
if (unlikely(ret < 0))
return ret;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
if (ret > 0) {
trace_ti = current->journal_info;
trace_nilfs2_transaction_transition(sb, trace_ti,
trace_ti->ti_count, trace_ti->ti_flags,
TRACE_NILFS2_TRANSACTION_BEGIN);
return 0;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
}
sb_start_intwrite(sb);
nilfs = sb->s_fs_info;
down_read(&nilfs->ns_segctor_sem);
if (vacancy_check && nilfs_near_disk_full(nilfs)) {
up_read(&nilfs->ns_segctor_sem);
ret = -ENOSPC;
goto failed;
}
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_ti = current->journal_info;
trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
trace_ti->ti_flags,
TRACE_NILFS2_TRANSACTION_BEGIN);
return 0;
failed:
ti = current->journal_info;
current->journal_info = ti->ti_save;
if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
kmem_cache_free(nilfs_transaction_cachep, ti);
sb_end_intwrite(sb);
return ret;
}
/**
* nilfs_transaction_commit - commit indivisible file operations.
* @sb: super block
*
* nilfs_transaction_commit() releases the read semaphore which is
* acquired by nilfs_transaction_begin(). This is only performed
* in outermost call of this function. If a commit flag is set,
* nilfs_transaction_commit() sets a timer to start the segment
* constructor. If a sync flag is set, it starts construction
* directly.
*/
int nilfs_transaction_commit(struct super_block *sb)
{
struct nilfs_transaction_info *ti = current->journal_info;
struct the_nilfs *nilfs = sb->s_fs_info;
int err = 0;
BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
ti->ti_flags |= NILFS_TI_COMMIT;
if (ti->ti_count > 0) {
ti->ti_count--;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
return 0;
}
if (nilfs->ns_writer) {
struct nilfs_sc_info *sci = nilfs->ns_writer;
if (ti->ti_flags & NILFS_TI_COMMIT)
nilfs_segctor_start_timer(sci);
if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
nilfs_segctor_do_flush(sci, 0);
}
up_read(&nilfs->ns_segctor_sem);
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
current->journal_info = ti->ti_save;
if (ti->ti_flags & NILFS_TI_SYNC)
err = nilfs_construct_segment(sb);
if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
kmem_cache_free(nilfs_transaction_cachep, ti);
sb_end_intwrite(sb);
return err;
}
void nilfs_transaction_abort(struct super_block *sb)
{
struct nilfs_transaction_info *ti = current->journal_info;
struct the_nilfs *nilfs = sb->s_fs_info;
BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
if (ti->ti_count > 0) {
ti->ti_count--;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
return;
}
up_read(&nilfs->ns_segctor_sem);
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
current->journal_info = ti->ti_save;
if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
kmem_cache_free(nilfs_transaction_cachep, ti);
sb_end_intwrite(sb);
}
void nilfs_relax_pressure_in_lock(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
nilfs2: fix use-after-free bug of ns_writer on remount If a nilfs2 filesystem is downgraded to read-only due to metadata corruption on disk and is remounted read/write, or if emergency read-only remount is performed, detaching a log writer and synchronizing the filesystem can be done at the same time. In these cases, use-after-free of the log writer (hereinafter nilfs->ns_writer) can happen as shown in the scenario below: Task1 Task2 -------------------------------- ------------------------------ nilfs_construct_segment nilfs_segctor_sync init_wait init_waitqueue_entry add_wait_queue schedule nilfs_remount (R/W remount case) nilfs_attach_log_writer nilfs_detach_log_writer nilfs_segctor_destroy kfree finish_wait _raw_spin_lock_irqsave __raw_spin_lock_irqsave do_raw_spin_lock debug_spin_lock_before <-- use-after-free While Task1 is sleeping, nilfs->ns_writer is freed by Task2. After Task1 waked up, Task1 accesses nilfs->ns_writer which is already freed. This scenario diagram is based on the Shigeru Yoshida's post [1]. This patch fixes the issue by not detaching nilfs->ns_writer on remount so that this UAF race doesn't happen. Along with this change, this patch also inserts a few necessary read-only checks with superblock instance where only the ns_writer pointer was used to check if the filesystem is read-only. Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1] Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com Reported-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-04 23:29:59 +09:00
if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
return;
set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
up_read(&nilfs->ns_segctor_sem);
down_write(&nilfs->ns_segctor_sem);
if (sci->sc_flush_request &&
test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
struct nilfs_transaction_info *ti = current->journal_info;
ti->ti_flags |= NILFS_TI_WRITER;
nilfs_segctor_do_immediate_flush(sci);
ti->ti_flags &= ~NILFS_TI_WRITER;
}
downgrade_write(&nilfs->ns_segctor_sem);
}
static void nilfs_transaction_lock(struct super_block *sb,
struct nilfs_transaction_info *ti,
int gcflag)
{
struct nilfs_transaction_info *cur_ti = current->journal_info;
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
WARN_ON(cur_ti);
ti->ti_flags = NILFS_TI_WRITER;
ti->ti_count = 0;
ti->ti_save = cur_ti;
ti->ti_magic = NILFS_TI_MAGIC;
current->journal_info = ti;
for (;;) {
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
down_write(&nilfs->ns_segctor_sem);
if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
break;
nilfs_segctor_do_immediate_flush(sci);
up_write(&nilfs->ns_segctor_sem);
cond_resched();
}
if (gcflag)
ti->ti_flags |= NILFS_TI_GC;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
}
static void nilfs_transaction_unlock(struct super_block *sb)
{
struct nilfs_transaction_info *ti = current->journal_info;
struct the_nilfs *nilfs = sb->s_fs_info;
BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
BUG_ON(ti->ti_count > 0);
up_write(&nilfs->ns_segctor_sem);
current->journal_info = ti->ti_save;
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
}
static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
struct nilfs_segsum_pointer *ssp,
unsigned int bytes)
{
struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
unsigned int blocksize = sci->sc_super->s_blocksize;
void *p;
if (unlikely(ssp->offset + bytes > blocksize)) {
ssp->offset = 0;
BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
&segbuf->sb_segsum_buffers));
ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
}
p = ssp->bh->b_data + ssp->offset;
ssp->offset += bytes;
return p;
}
/**
* nilfs_segctor_reset_segment_buffer - reset the current segment buffer
* @sci: nilfs_sc_info
*/
static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
{
struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
struct buffer_head *sumbh;
unsigned int sumbytes;
unsigned int flags = 0;
int err;
if (nilfs_doing_gc())
flags = NILFS_SS_GC;
err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
if (unlikely(err))
return err;
sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
sumbytes = segbuf->sb_sum.sumbytes;
sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
return 0;
}
/**
* nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
* @sci: segment constructor object
*
* nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
* the current segment summary block.
*/
static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
{
struct nilfs_segsum_pointer *ssp;
ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
if (ssp->offset < ssp->bh->b_size)
memset(ssp->bh->b_data + ssp->offset, 0,
ssp->bh->b_size - ssp->offset);
}
static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
{
sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
return -E2BIG; /*
* The current segment is filled up
* (internal code)
*/
nilfs_segctor_zeropad_segsum(sci);
sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
return nilfs_segctor_reset_segment_buffer(sci);
}
static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
{
struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
int err;
if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
err = nilfs_segctor_feed_segment(sci);
if (err)
return err;
segbuf = sci->sc_curseg;
}
err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
if (likely(!err))
segbuf->sb_sum.flags |= NILFS_SS_SR;
return err;
}
/*
* Functions for making segment summary and payloads
*/
static int nilfs_segctor_segsum_block_required(
struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
unsigned int binfo_size)
{
unsigned int blocksize = sci->sc_super->s_blocksize;
/* Size of finfo and binfo is enough small against blocksize */
return ssp->offset + binfo_size +
(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
blocksize;
}
static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
struct inode *inode)
{
sci->sc_curseg->sb_sum.nfinfo++;
sci->sc_binfo_ptr = sci->sc_finfo_ptr;
nilfs_segctor_map_segsum_entry(
sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
if (NILFS_I(inode)->i_root &&
!test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
/* skip finfo */
}
static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
struct inode *inode)
{
struct nilfs_finfo *finfo;
struct nilfs_inode_info *ii;
struct nilfs_segment_buffer *segbuf;
__u64 cno;
if (sci->sc_blk_cnt == 0)
return;
ii = NILFS_I(inode);
if (ii->i_type & NILFS_I_TYPE_GC)
cno = ii->i_cno;
else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
cno = 0;
else
cno = sci->sc_cno;
finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
sizeof(*finfo));
finfo->fi_ino = cpu_to_le64(inode->i_ino);
finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
finfo->fi_cno = cpu_to_le64(cno);
segbuf = sci->sc_curseg;
segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
sci->sc_finfo_ptr = sci->sc_binfo_ptr;
sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
}
static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
struct buffer_head *bh,
struct inode *inode,
unsigned int binfo_size)
{
struct nilfs_segment_buffer *segbuf;
int required, err = 0;
retry:
segbuf = sci->sc_curseg;
required = nilfs_segctor_segsum_block_required(
sci, &sci->sc_binfo_ptr, binfo_size);
if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
nilfs_segctor_end_finfo(sci, inode);
err = nilfs_segctor_feed_segment(sci);
if (err)
return err;
goto retry;
}
if (unlikely(required)) {
nilfs_segctor_zeropad_segsum(sci);
err = nilfs_segbuf_extend_segsum(segbuf);
if (unlikely(err))
goto failed;
}
if (sci->sc_blk_cnt == 0)
nilfs_segctor_begin_finfo(sci, inode);
nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
/* Substitution to vblocknr is delayed until update_blocknr() */
nilfs_segbuf_add_file_buffer(segbuf, bh);
sci->sc_blk_cnt++;
failed:
return err;
}
/*
* Callback functions that enumerate, mark, and collect dirty blocks
*/
static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
struct buffer_head *bh, struct inode *inode)
{
int err;
err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
if (err < 0)
return err;
err = nilfs_segctor_add_file_block(sci, bh, inode,
sizeof(struct nilfs_binfo_v));
if (!err)
sci->sc_datablk_cnt++;
return err;
}
static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
struct buffer_head *bh,
struct inode *inode)
{
return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
}
static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
struct buffer_head *bh,
struct inode *inode)
{
WARN_ON(!buffer_dirty(bh));
return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
}
static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
struct nilfs_segsum_pointer *ssp,
union nilfs_binfo *binfo)
{
struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
sci, ssp, sizeof(*binfo_v));
*binfo_v = binfo->bi_v;
}
static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
struct nilfs_segsum_pointer *ssp,
union nilfs_binfo *binfo)
{
__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
sci, ssp, sizeof(*vblocknr));
*vblocknr = binfo->bi_v.bi_vblocknr;
}
static const struct nilfs_sc_operations nilfs_sc_file_ops = {
.collect_data = nilfs_collect_file_data,
.collect_node = nilfs_collect_file_node,
.collect_bmap = nilfs_collect_file_bmap,
.write_data_binfo = nilfs_write_file_data_binfo,
.write_node_binfo = nilfs_write_file_node_binfo,
};
static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
struct buffer_head *bh, struct inode *inode)
{
int err;
err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
if (err < 0)
return err;
err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
if (!err)
sci->sc_datablk_cnt++;
return err;
}
static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
struct buffer_head *bh, struct inode *inode)
{
WARN_ON(!buffer_dirty(bh));
return nilfs_segctor_add_file_block(sci, bh, inode,
sizeof(struct nilfs_binfo_dat));
}
static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
struct nilfs_segsum_pointer *ssp,
union nilfs_binfo *binfo)
{
__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
sizeof(*blkoff));
*blkoff = binfo->bi_dat.bi_blkoff;
}
static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
struct nilfs_segsum_pointer *ssp,
union nilfs_binfo *binfo)
{
struct nilfs_binfo_dat *binfo_dat =
nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
*binfo_dat = binfo->bi_dat;
}
static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
.collect_data = nilfs_collect_dat_data,
.collect_node = nilfs_collect_file_node,
.collect_bmap = nilfs_collect_dat_bmap,
.write_data_binfo = nilfs_write_dat_data_binfo,
.write_node_binfo = nilfs_write_dat_node_binfo,
};
static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
.collect_data = nilfs_collect_file_data,
.collect_node = NULL,
.collect_bmap = NULL,
.write_data_binfo = nilfs_write_file_data_binfo,
.write_node_binfo = NULL,
};
static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
struct list_head *listp,
size_t nlimit,
loff_t start, loff_t end)
{
struct address_space *mapping = inode->i_mapping;
struct folio_batch fbatch;
pgoff_t index = 0, last = ULONG_MAX;
size_t ndirties = 0;
int i;
if (unlikely(start != 0 || end != LLONG_MAX)) {
/*
* A valid range is given for sync-ing data pages. The
* range is rounded to per-page; extra dirty buffers
* may be included if blocksize < pagesize.
*/
index = start >> PAGE_SHIFT;
last = end >> PAGE_SHIFT;
}
folio_batch_init(&fbatch);
repeat:
if (unlikely(index > last) ||
!filemap_get_folios_tag(mapping, &index, last,
PAGECACHE_TAG_DIRTY, &fbatch))
return ndirties;
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct buffer_head *bh, *head;
struct folio *folio = fbatch.folios[i];
folio_lock(folio);
if (unlikely(folio->mapping != mapping)) {
/* Exclude folios removed from the address space */
folio_unlock(folio);
continue;
}
head = folio_buffers(folio);
if (!head)
head = create_empty_buffers(folio,
i_blocksize(inode), 0);
folio_unlock(folio);
bh = head;
do {
nilfs2: fix issue with race condition of competition between segments for dirty blocks Many NILFS2 users were reported about strange file system corruption (for example): NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768 NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540) But such error messages are consequence of file system's issue that takes place more earlier. Fortunately, Jerome Poulin <jeromepoulin@gmail.com> and Anton Eliasson <devel@antoneliasson.se> were reported about another issue not so recently. These reports describe the issue with segctor thread's crash: BUG: unable to handle kernel paging request at 0000000000004c83 IP: nilfs_end_page_io+0x12/0xd0 [nilfs2] Call Trace: nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2] nilfs_segctor_construct+0x17b/0x290 [nilfs2] nilfs_segctor_thread+0x122/0x3b0 [nilfs2] kthread+0xc0/0xd0 ret_from_fork+0x7c/0xb0 These two issues have one reason. This reason can raise third issue too. Third issue results in hanging of segctor thread with eating of 100% CPU. REPRODUCING PATH: One of the possible way or the issue reproducing was described by Jermoe me Poulin <jeromepoulin@gmail.com>: 1. init S to get to single user mode. 2. sysrq+E to make sure only my shell is running 3. start network-manager to get my wifi connection up 4. login as root and launch "screen" 5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies. 6. lscp | xz -9e > lscp.txt.xz 7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs 8. start a screen to dump /proc/kmsg to text file since rsyslog is killed 9. start a screen and launch strace -f -o find-cat.log -t find /mnt/nilfs -type f -exec cat {} > /dev/null \; 10. start a screen and launch strace -f -o apt-get.log -t apt-get update 11. launch the last command again as it did not crash the first time 12. apt-get crashes 13. ps aux > ps-aux-crashed.log 13. sysrq+W 14. sysrq+E wait for everything to terminate 15. sysrq+SUSB Simplified way of the issue reproducing is starting kernel compilation task and "apt-get update" in parallel. REPRODUCIBILITY: The issue is reproduced not stable [60% - 80%]. It is very important to have proper environment for the issue reproducing. The critical conditions for successful reproducing: (1) It should have big modified file by mmap() way. (2) This file should have the count of dirty blocks are greater that several segments in size (for example, two or three) from time to time during processing. (3) It should be intensive background activity of files modification in another thread. INVESTIGATION: First of all, it is possible to see that the reason of crash is not valid page address: NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783 Moreover, value of b_page (0x1a82) is 6786. This value looks like segment number. And b_blocknr with b_size values look like block numbers. So, buffer_head's pointer points on not proper address value. Detailed investigation of the issue is discovered such picture: [-----------------------------SEGMENT 6783-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783 [-----------------------------SEGMENT 6784-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8 NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15 [-----------------------------SEGMENT 6785-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88 NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12 NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785 NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 BUG: unable to handle kernel paging request at 0000000000001a82 IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2] Usually, for every segment we collect dirty files in list. Then, dirty blocks are gathered for every dirty file, prepared for write and submitted by means of nilfs_segbuf_submit_bh() call. Finally, it takes place complete write phase after calling nilfs_end_bio_write() on the block layer. Buffers/pages are marked as not dirty on final phase and processed files removed from the list of dirty files. It is possible to see that we had three prepare_write and submit_bio phases before segbuf_wait and complete_write phase. Moreover, segments compete between each other for dirty blocks because on every iteration of segments processing dirty buffer_heads are added in several lists of payload_buffers: [SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 [SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 The next pointer is the same but prev pointer has changed. It means that buffer_head has next pointer from one list but prev pointer from another. Such modification can be made several times. And, finally, it can be resulted in various issues: (1) segctor hanging, (2) segctor crashing, (3) file system metadata corruption. FIX: This patch adds: (1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write() for every proccessed dirty block; (2) checking of BH_Async_Write flag in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_dirty_node_buffers(); (3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(), nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page(). Reported-by: Jerome Poulin <jeromepoulin@gmail.com> Reported-by: Anton Eliasson <devel@antoneliasson.se> Cc: Paul Fertser <fercerpav@gmail.com> Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp> Cc: Piotr Szymaniak <szarpaj@grubelek.pl> Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net> Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com> Cc: Elmer Zhang <freeboy6716@gmail.com> Cc: Kenneth Langga <klangga@gmail.com> Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 13:45:12 -07:00
if (!buffer_dirty(bh) || buffer_async_write(bh))
continue;
get_bh(bh);
list_add_tail(&bh->b_assoc_buffers, listp);
ndirties++;
if (unlikely(ndirties >= nlimit)) {
folio_batch_release(&fbatch);
cond_resched();
return ndirties;
}
} while (bh = bh->b_this_page, bh != head);
}
folio_batch_release(&fbatch);
cond_resched();
goto repeat;
}
static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
struct list_head *listp)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
nilfs2: fix lockdep warnings in page operations for btree nodes Patch series "nilfs2 lockdep warning fixes". The first two are to resolve the lockdep warning issue, and the last one is the accompanying cleanup and low priority. Based on your comment, this series solves the issue by separating inode object as needed. Since I was worried about the impact of the object composition changes, I tested the series carefully not to cause regressions especially for delicate functions such like disk space reclamation and snapshots. This patch (of 3): If CONFIG_LOCKDEP is enabled, nilfs2 hits lockdep warnings at inode_to_wb() during page/folio operations for btree nodes: WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 inode_to_wb include/linux/backing-dev.h:269 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 folio_account_dirtied mm/page-writeback.c:2460 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 __folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 Modules linked in: ... RIP: 0010:inode_to_wb include/linux/backing-dev.h:269 [inline] RIP: 0010:folio_account_dirtied mm/page-writeback.c:2460 [inline] RIP: 0010:__folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 ... Call Trace: __set_page_dirty include/linux/pagemap.h:834 [inline] mark_buffer_dirty+0x4e6/0x650 fs/buffer.c:1145 nilfs_btree_propagate_p fs/nilfs2/btree.c:1889 [inline] nilfs_btree_propagate+0x4ae/0xea0 fs/nilfs2/btree.c:2085 nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337 nilfs_collect_dat_data+0x45/0xd0 fs/nilfs2/segment.c:625 nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1009 nilfs_segctor_scan_file+0x47a/0x700 fs/nilfs2/segment.c:1048 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1224 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1494 [inline] nilfs_segctor_do_construct+0x14f3/0x6c60 fs/nilfs2/segment.c:2036 nilfs_segctor_construct+0x7a7/0xb30 fs/nilfs2/segment.c:2372 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2480 [inline] nilfs_segctor_thread+0x3c3/0xf90 fs/nilfs2/segment.c:2563 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 This is because nilfs2 uses two page caches for each inode and inode->i_mapping never points to one of them, the btree node cache. This causes inode_to_wb(inode) to refer to a different page cache than the caller page/folio operations such like __folio_start_writeback(), __folio_end_writeback(), or __folio_mark_dirty() acquired the lock. This patch resolves the issue by allocating and using an additional inode to hold the page cache of btree nodes. The inode is attached one-to-one to the traditional nilfs2 inode if it requires a block mapping with b-tree. This setup change is in memory only and does not affect the disk format. Link: https://lkml.kernel.org/r/1647867427-30498-1-git-send-email-konishi.ryusuke@gmail.com Link: https://lkml.kernel.org/r/1647867427-30498-2-git-send-email-konishi.ryusuke@gmail.com Link: https://lore.kernel.org/r/YXrYvIo8YRnAOJCj@casper.infradead.org Link: https://lore.kernel.org/r/9a20b33d-b38f-b4a2-4742-c1eb5b8e4d6c@redhat.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+0d5b462a6f07447991b3@syzkaller.appspotmail.com Reported-by: syzbot+34ef28bb2aeb28724aa0@syzkaller.appspotmail.com Reported-by: Hao Sun <sunhao.th@gmail.com> Reported-by: David Hildenbrand <david@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-01 11:28:18 -07:00
struct inode *btnc_inode = ii->i_assoc_inode;
struct folio_batch fbatch;
struct buffer_head *bh, *head;
unsigned int i;
pgoff_t index = 0;
nilfs2: fix lockdep warnings in page operations for btree nodes Patch series "nilfs2 lockdep warning fixes". The first two are to resolve the lockdep warning issue, and the last one is the accompanying cleanup and low priority. Based on your comment, this series solves the issue by separating inode object as needed. Since I was worried about the impact of the object composition changes, I tested the series carefully not to cause regressions especially for delicate functions such like disk space reclamation and snapshots. This patch (of 3): If CONFIG_LOCKDEP is enabled, nilfs2 hits lockdep warnings at inode_to_wb() during page/folio operations for btree nodes: WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 inode_to_wb include/linux/backing-dev.h:269 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 folio_account_dirtied mm/page-writeback.c:2460 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 __folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 Modules linked in: ... RIP: 0010:inode_to_wb include/linux/backing-dev.h:269 [inline] RIP: 0010:folio_account_dirtied mm/page-writeback.c:2460 [inline] RIP: 0010:__folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 ... Call Trace: __set_page_dirty include/linux/pagemap.h:834 [inline] mark_buffer_dirty+0x4e6/0x650 fs/buffer.c:1145 nilfs_btree_propagate_p fs/nilfs2/btree.c:1889 [inline] nilfs_btree_propagate+0x4ae/0xea0 fs/nilfs2/btree.c:2085 nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337 nilfs_collect_dat_data+0x45/0xd0 fs/nilfs2/segment.c:625 nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1009 nilfs_segctor_scan_file+0x47a/0x700 fs/nilfs2/segment.c:1048 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1224 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1494 [inline] nilfs_segctor_do_construct+0x14f3/0x6c60 fs/nilfs2/segment.c:2036 nilfs_segctor_construct+0x7a7/0xb30 fs/nilfs2/segment.c:2372 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2480 [inline] nilfs_segctor_thread+0x3c3/0xf90 fs/nilfs2/segment.c:2563 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 This is because nilfs2 uses two page caches for each inode and inode->i_mapping never points to one of them, the btree node cache. This causes inode_to_wb(inode) to refer to a different page cache than the caller page/folio operations such like __folio_start_writeback(), __folio_end_writeback(), or __folio_mark_dirty() acquired the lock. This patch resolves the issue by allocating and using an additional inode to hold the page cache of btree nodes. The inode is attached one-to-one to the traditional nilfs2 inode if it requires a block mapping with b-tree. This setup change is in memory only and does not affect the disk format. Link: https://lkml.kernel.org/r/1647867427-30498-1-git-send-email-konishi.ryusuke@gmail.com Link: https://lkml.kernel.org/r/1647867427-30498-2-git-send-email-konishi.ryusuke@gmail.com Link: https://lore.kernel.org/r/YXrYvIo8YRnAOJCj@casper.infradead.org Link: https://lore.kernel.org/r/9a20b33d-b38f-b4a2-4742-c1eb5b8e4d6c@redhat.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+0d5b462a6f07447991b3@syzkaller.appspotmail.com Reported-by: syzbot+34ef28bb2aeb28724aa0@syzkaller.appspotmail.com Reported-by: Hao Sun <sunhao.th@gmail.com> Reported-by: David Hildenbrand <david@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-01 11:28:18 -07:00
if (!btnc_inode)
return;
folio_batch_init(&fbatch);
nilfs2: fix lockdep warnings in page operations for btree nodes Patch series "nilfs2 lockdep warning fixes". The first two are to resolve the lockdep warning issue, and the last one is the accompanying cleanup and low priority. Based on your comment, this series solves the issue by separating inode object as needed. Since I was worried about the impact of the object composition changes, I tested the series carefully not to cause regressions especially for delicate functions such like disk space reclamation and snapshots. This patch (of 3): If CONFIG_LOCKDEP is enabled, nilfs2 hits lockdep warnings at inode_to_wb() during page/folio operations for btree nodes: WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 inode_to_wb include/linux/backing-dev.h:269 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 folio_account_dirtied mm/page-writeback.c:2460 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 __folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 Modules linked in: ... RIP: 0010:inode_to_wb include/linux/backing-dev.h:269 [inline] RIP: 0010:folio_account_dirtied mm/page-writeback.c:2460 [inline] RIP: 0010:__folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 ... Call Trace: __set_page_dirty include/linux/pagemap.h:834 [inline] mark_buffer_dirty+0x4e6/0x650 fs/buffer.c:1145 nilfs_btree_propagate_p fs/nilfs2/btree.c:1889 [inline] nilfs_btree_propagate+0x4ae/0xea0 fs/nilfs2/btree.c:2085 nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337 nilfs_collect_dat_data+0x45/0xd0 fs/nilfs2/segment.c:625 nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1009 nilfs_segctor_scan_file+0x47a/0x700 fs/nilfs2/segment.c:1048 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1224 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1494 [inline] nilfs_segctor_do_construct+0x14f3/0x6c60 fs/nilfs2/segment.c:2036 nilfs_segctor_construct+0x7a7/0xb30 fs/nilfs2/segment.c:2372 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2480 [inline] nilfs_segctor_thread+0x3c3/0xf90 fs/nilfs2/segment.c:2563 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 This is because nilfs2 uses two page caches for each inode and inode->i_mapping never points to one of them, the btree node cache. This causes inode_to_wb(inode) to refer to a different page cache than the caller page/folio operations such like __folio_start_writeback(), __folio_end_writeback(), or __folio_mark_dirty() acquired the lock. This patch resolves the issue by allocating and using an additional inode to hold the page cache of btree nodes. The inode is attached one-to-one to the traditional nilfs2 inode if it requires a block mapping with b-tree. This setup change is in memory only and does not affect the disk format. Link: https://lkml.kernel.org/r/1647867427-30498-1-git-send-email-konishi.ryusuke@gmail.com Link: https://lkml.kernel.org/r/1647867427-30498-2-git-send-email-konishi.ryusuke@gmail.com Link: https://lore.kernel.org/r/YXrYvIo8YRnAOJCj@casper.infradead.org Link: https://lore.kernel.org/r/9a20b33d-b38f-b4a2-4742-c1eb5b8e4d6c@redhat.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+0d5b462a6f07447991b3@syzkaller.appspotmail.com Reported-by: syzbot+34ef28bb2aeb28724aa0@syzkaller.appspotmail.com Reported-by: Hao Sun <sunhao.th@gmail.com> Reported-by: David Hildenbrand <david@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-01 11:28:18 -07:00
while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
(pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
bh = head = folio_buffers(fbatch.folios[i]);
do {
nilfs2: fix issue with race condition of competition between segments for dirty blocks Many NILFS2 users were reported about strange file system corruption (for example): NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768 NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540) But such error messages are consequence of file system's issue that takes place more earlier. Fortunately, Jerome Poulin <jeromepoulin@gmail.com> and Anton Eliasson <devel@antoneliasson.se> were reported about another issue not so recently. These reports describe the issue with segctor thread's crash: BUG: unable to handle kernel paging request at 0000000000004c83 IP: nilfs_end_page_io+0x12/0xd0 [nilfs2] Call Trace: nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2] nilfs_segctor_construct+0x17b/0x290 [nilfs2] nilfs_segctor_thread+0x122/0x3b0 [nilfs2] kthread+0xc0/0xd0 ret_from_fork+0x7c/0xb0 These two issues have one reason. This reason can raise third issue too. Third issue results in hanging of segctor thread with eating of 100% CPU. REPRODUCING PATH: One of the possible way or the issue reproducing was described by Jermoe me Poulin <jeromepoulin@gmail.com>: 1. init S to get to single user mode. 2. sysrq+E to make sure only my shell is running 3. start network-manager to get my wifi connection up 4. login as root and launch "screen" 5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies. 6. lscp | xz -9e > lscp.txt.xz 7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs 8. start a screen to dump /proc/kmsg to text file since rsyslog is killed 9. start a screen and launch strace -f -o find-cat.log -t find /mnt/nilfs -type f -exec cat {} > /dev/null \; 10. start a screen and launch strace -f -o apt-get.log -t apt-get update 11. launch the last command again as it did not crash the first time 12. apt-get crashes 13. ps aux > ps-aux-crashed.log 13. sysrq+W 14. sysrq+E wait for everything to terminate 15. sysrq+SUSB Simplified way of the issue reproducing is starting kernel compilation task and "apt-get update" in parallel. REPRODUCIBILITY: The issue is reproduced not stable [60% - 80%]. It is very important to have proper environment for the issue reproducing. The critical conditions for successful reproducing: (1) It should have big modified file by mmap() way. (2) This file should have the count of dirty blocks are greater that several segments in size (for example, two or three) from time to time during processing. (3) It should be intensive background activity of files modification in another thread. INVESTIGATION: First of all, it is possible to see that the reason of crash is not valid page address: NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783 Moreover, value of b_page (0x1a82) is 6786. This value looks like segment number. And b_blocknr with b_size values look like block numbers. So, buffer_head's pointer points on not proper address value. Detailed investigation of the issue is discovered such picture: [-----------------------------SEGMENT 6783-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783 [-----------------------------SEGMENT 6784-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8 NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15 [-----------------------------SEGMENT 6785-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88 NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12 NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785 NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 BUG: unable to handle kernel paging request at 0000000000001a82 IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2] Usually, for every segment we collect dirty files in list. Then, dirty blocks are gathered for every dirty file, prepared for write and submitted by means of nilfs_segbuf_submit_bh() call. Finally, it takes place complete write phase after calling nilfs_end_bio_write() on the block layer. Buffers/pages are marked as not dirty on final phase and processed files removed from the list of dirty files. It is possible to see that we had three prepare_write and submit_bio phases before segbuf_wait and complete_write phase. Moreover, segments compete between each other for dirty blocks because on every iteration of segments processing dirty buffer_heads are added in several lists of payload_buffers: [SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 [SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 The next pointer is the same but prev pointer has changed. It means that buffer_head has next pointer from one list but prev pointer from another. Such modification can be made several times. And, finally, it can be resulted in various issues: (1) segctor hanging, (2) segctor crashing, (3) file system metadata corruption. FIX: This patch adds: (1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write() for every proccessed dirty block; (2) checking of BH_Async_Write flag in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_dirty_node_buffers(); (3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(), nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page(). Reported-by: Jerome Poulin <jeromepoulin@gmail.com> Reported-by: Anton Eliasson <devel@antoneliasson.se> Cc: Paul Fertser <fercerpav@gmail.com> Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp> Cc: Piotr Szymaniak <szarpaj@grubelek.pl> Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net> Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com> Cc: Elmer Zhang <freeboy6716@gmail.com> Cc: Kenneth Langga <klangga@gmail.com> Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 13:45:12 -07:00
if (buffer_dirty(bh) &&
!buffer_async_write(bh)) {
get_bh(bh);
list_add_tail(&bh->b_assoc_buffers,
listp);
}
bh = bh->b_this_page;
} while (bh != head);
}
folio_batch_release(&fbatch);
cond_resched();
}
}
static void nilfs_dispose_list(struct the_nilfs *nilfs,
struct list_head *head, int force)
{
struct nilfs_inode_info *ii, *n;
struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
unsigned int nv = 0;
while (!list_empty(head)) {
spin_lock(&nilfs->ns_inode_lock);
list_for_each_entry_safe(ii, n, head, i_dirty) {
list_del_init(&ii->i_dirty);
if (force) {
if (unlikely(ii->i_bh)) {
brelse(ii->i_bh);
ii->i_bh = NULL;
}
} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
set_bit(NILFS_I_QUEUED, &ii->i_state);
list_add_tail(&ii->i_dirty,
&nilfs->ns_dirty_files);
continue;
}
ivec[nv++] = ii;
if (nv == SC_N_INODEVEC)
break;
}
spin_unlock(&nilfs->ns_inode_lock);
for (pii = ivec; nv > 0; pii++, nv--)
iput(&(*pii)->vfs_inode);
}
}
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
static void nilfs_iput_work_func(struct work_struct *work)
{
struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
sc_iput_work);
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
}
static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
struct nilfs_root *root)
{
int ret = 0;
if (nilfs_mdt_fetch_dirty(root->ifile))
ret++;
if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
ret++;
if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
ret++;
if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
ret++;
return ret;
}
static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
{
return list_empty(&sci->sc_dirty_files) &&
!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
sci->sc_nfreesegs == 0 &&
(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
}
static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
int ret = 0;
if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
spin_lock(&nilfs->ns_inode_lock);
if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
ret++;
spin_unlock(&nilfs->ns_inode_lock);
return ret;
}
static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
nilfs_mdt_clear_dirty(sci->sc_root->ifile);
nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
nilfs_mdt_clear_dirty(nilfs->ns_sufile);
nilfs_mdt_clear_dirty(nilfs->ns_dat);
}
static void nilfs_fill_in_file_bmap(struct inode *ifile,
struct nilfs_inode_info *ii)
{
struct buffer_head *ibh;
struct nilfs_inode *raw_inode;
if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
ibh = ii->i_bh;
BUG_ON(!ibh);
raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
ibh);
nilfs_bmap_write(ii->i_bmap, raw_inode);
nilfs_ifile_unmap_inode(raw_inode);
}
}
static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
{
struct nilfs_inode_info *ii;
list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
set_bit(NILFS_I_COLLECTED, &ii->i_state);
}
}
/**
* nilfs_write_root_mdt_inode - export root metadata inode information to
* the on-disk inode
* @inode: inode object of the root metadata file
* @raw_inode: on-disk inode
*
* nilfs_write_root_mdt_inode() writes inode information and bmap data of
* @inode to the inode area of the metadata file allocated on the super root
* block created to finalize the log. Since super root blocks are configured
* each time, this function zero-fills the unused area of @raw_inode.
*/
static void nilfs_write_root_mdt_inode(struct inode *inode,
struct nilfs_inode *raw_inode)
{
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
nilfs_write_inode_common(inode, raw_inode);
/* zero-fill unused portion of raw_inode */
raw_inode->i_xattr = 0;
raw_inode->i_pad = 0;
memset((void *)raw_inode + sizeof(*raw_inode), 0,
nilfs->ns_inode_size - sizeof(*raw_inode));
nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode);
}
static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs)
{
struct buffer_head *bh_sr;
struct nilfs_super_root *raw_sr;
unsigned int isz, srsz;
bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
nilfs2: fix buffer corruption due to concurrent device reads As a result of analysis of a syzbot report, it turned out that in three cases where nilfs2 allocates block device buffers directly via sb_getblk, concurrent reads to the device can corrupt the allocated buffers. Nilfs2 uses sb_getblk for segment summary blocks, that make up a log header, and the super root block, that is the trailer, and when moving and writing the second super block after fs resize. In any of these, since the uptodate flag is not set when storing metadata to be written in the allocated buffers, the stored metadata will be overwritten if a device read of the same block occurs concurrently before the write. This causes metadata corruption and misbehavior in the log write itself, causing warnings in nilfs_btree_assign() as reported. Fix these issues by setting an uptodate flag on the buffer head on the first or before modifying each buffer obtained with sb_getblk, and clearing the flag on failure. When setting the uptodate flag, the lock_buffer/unlock_buffer pair is used to perform necessary exclusive control, and the buffer is filled to ensure that uninitialized bytes are not mixed into the data read from others. As for buffers for segment summary blocks, they are filled incrementally, so if the uptodate flag was unset on their allocation, set the flag and zero fill the buffer once at that point. Also, regarding the superblock move routine, the starting point of the memset call to zerofill the block is incorrectly specified, which can cause a buffer overflow on file systems with block sizes greater than 4KiB. In addition, if the superblock is moved within a large block, it is necessary to assume the possibility that the data in the superblock will be destroyed by zero-filling before copying. So fix these potential issues as well. Link: https://lkml.kernel.org/r/20230609035732.20426-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+31837fe952932efc8fb9@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000030000a05e981f475@google.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 12:57:32 +09:00
lock_buffer(bh_sr);
raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
isz = nilfs->ns_inode_size;
srsz = NILFS_SR_BYTES(isz);
nilfs2: fix buffer corruption due to concurrent device reads As a result of analysis of a syzbot report, it turned out that in three cases where nilfs2 allocates block device buffers directly via sb_getblk, concurrent reads to the device can corrupt the allocated buffers. Nilfs2 uses sb_getblk for segment summary blocks, that make up a log header, and the super root block, that is the trailer, and when moving and writing the second super block after fs resize. In any of these, since the uptodate flag is not set when storing metadata to be written in the allocated buffers, the stored metadata will be overwritten if a device read of the same block occurs concurrently before the write. This causes metadata corruption and misbehavior in the log write itself, causing warnings in nilfs_btree_assign() as reported. Fix these issues by setting an uptodate flag on the buffer head on the first or before modifying each buffer obtained with sb_getblk, and clearing the flag on failure. When setting the uptodate flag, the lock_buffer/unlock_buffer pair is used to perform necessary exclusive control, and the buffer is filled to ensure that uninitialized bytes are not mixed into the data read from others. As for buffers for segment summary blocks, they are filled incrementally, so if the uptodate flag was unset on their allocation, set the flag and zero fill the buffer once at that point. Also, regarding the superblock move routine, the starting point of the memset call to zerofill the block is incorrectly specified, which can cause a buffer overflow on file systems with block sizes greater than 4KiB. In addition, if the superblock is moved within a large block, it is necessary to assume the possibility that the data in the superblock will be destroyed by zero-filling before copying. So fix these potential issues as well. Link: https://lkml.kernel.org/r/20230609035732.20426-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+31837fe952932efc8fb9@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000030000a05e981f475@google.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 12:57:32 +09:00
raw_sr->sr_sum = 0; /* Ensure initialization within this update */
raw_sr->sr_bytes = cpu_to_le16(srsz);
raw_sr->sr_nongc_ctime
= cpu_to_le64(nilfs_doing_gc() ?
nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
raw_sr->sr_flags = 0;
nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr +
NILFS_SR_DAT_OFFSET(isz));
nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr +
NILFS_SR_CPFILE_OFFSET(isz));
nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr +
NILFS_SR_SUFILE_OFFSET(isz));
memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
nilfs2: fix buffer corruption due to concurrent device reads As a result of analysis of a syzbot report, it turned out that in three cases where nilfs2 allocates block device buffers directly via sb_getblk, concurrent reads to the device can corrupt the allocated buffers. Nilfs2 uses sb_getblk for segment summary blocks, that make up a log header, and the super root block, that is the trailer, and when moving and writing the second super block after fs resize. In any of these, since the uptodate flag is not set when storing metadata to be written in the allocated buffers, the stored metadata will be overwritten if a device read of the same block occurs concurrently before the write. This causes metadata corruption and misbehavior in the log write itself, causing warnings in nilfs_btree_assign() as reported. Fix these issues by setting an uptodate flag on the buffer head on the first or before modifying each buffer obtained with sb_getblk, and clearing the flag on failure. When setting the uptodate flag, the lock_buffer/unlock_buffer pair is used to perform necessary exclusive control, and the buffer is filled to ensure that uninitialized bytes are not mixed into the data read from others. As for buffers for segment summary blocks, they are filled incrementally, so if the uptodate flag was unset on their allocation, set the flag and zero fill the buffer once at that point. Also, regarding the superblock move routine, the starting point of the memset call to zerofill the block is incorrectly specified, which can cause a buffer overflow on file systems with block sizes greater than 4KiB. In addition, if the superblock is moved within a large block, it is necessary to assume the possibility that the data in the superblock will be destroyed by zero-filling before copying. So fix these potential issues as well. Link: https://lkml.kernel.org/r/20230609035732.20426-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+31837fe952932efc8fb9@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000030000a05e981f475@google.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 12:57:32 +09:00
set_buffer_uptodate(bh_sr);
unlock_buffer(bh_sr);
}
static void nilfs_redirty_inodes(struct list_head *head)
{
struct nilfs_inode_info *ii;
list_for_each_entry(ii, head, i_dirty) {
if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
clear_bit(NILFS_I_COLLECTED, &ii->i_state);
}
}
static void nilfs_drop_collected_inodes(struct list_head *head)
{
struct nilfs_inode_info *ii;
list_for_each_entry(ii, head, i_dirty) {
if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
continue;
clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
set_bit(NILFS_I_UPDATED, &ii->i_state);
}
}
static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
struct inode *inode,
struct list_head *listp,
int (*collect)(struct nilfs_sc_info *,
struct buffer_head *,
struct inode *))
{
struct buffer_head *bh, *n;
int err = 0;
if (collect) {
list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
list_del_init(&bh->b_assoc_buffers);
err = collect(sci, bh, inode);
brelse(bh);
if (unlikely(err))
goto dispose_buffers;
}
return 0;
}
dispose_buffers:
while (!list_empty(listp)) {
bh = list_first_entry(listp, struct buffer_head,
b_assoc_buffers);
list_del_init(&bh->b_assoc_buffers);
brelse(bh);
}
return err;
}
static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
{
/* Remaining number of blocks within segment buffer */
return sci->sc_segbuf_nblocks -
(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
}
static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
struct inode *inode,
const struct nilfs_sc_operations *sc_ops)
{
LIST_HEAD(data_buffers);
LIST_HEAD(node_buffers);
int err;
if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
size_t n, rest = nilfs_segctor_buffer_rest(sci);
n = nilfs_lookup_dirty_data_buffers(
inode, &data_buffers, rest + 1, 0, LLONG_MAX);
if (n > rest) {
err = nilfs_segctor_apply_buffers(
sci, inode, &data_buffers,
sc_ops->collect_data);
BUG_ON(!err); /* always receive -E2BIG or true error */
goto break_or_fail;
}
}
nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
err = nilfs_segctor_apply_buffers(
sci, inode, &data_buffers, sc_ops->collect_data);
if (unlikely(err)) {
/* dispose node list */
nilfs_segctor_apply_buffers(
sci, inode, &node_buffers, NULL);
goto break_or_fail;
}
sci->sc_stage.flags |= NILFS_CF_NODE;
}
/* Collect node */
err = nilfs_segctor_apply_buffers(
sci, inode, &node_buffers, sc_ops->collect_node);
if (unlikely(err))
goto break_or_fail;
nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
err = nilfs_segctor_apply_buffers(
sci, inode, &node_buffers, sc_ops->collect_bmap);
if (unlikely(err))
goto break_or_fail;
nilfs_segctor_end_finfo(sci, inode);
sci->sc_stage.flags &= ~NILFS_CF_NODE;
break_or_fail:
return err;
}
static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
struct inode *inode)
{
LIST_HEAD(data_buffers);
size_t n, rest = nilfs_segctor_buffer_rest(sci);
int err;
n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
sci->sc_dsync_start,
sci->sc_dsync_end);
err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
nilfs_collect_file_data);
if (!err) {
nilfs_segctor_end_finfo(sci, inode);
BUG_ON(n > rest);
/* always receive -E2BIG or true error if n > rest */
}
return err;
}
/**
* nilfs_free_segments - free the segments given by an array of segment numbers
* @nilfs: nilfs object
* @segnumv: array of segment numbers to be freed
* @nsegs: number of segments to be freed in @segnumv
*
* nilfs_free_segments() wraps nilfs_sufile_freev() and
* nilfs_sufile_cancel_freev(), and edits the segment usage metadata file
* (sufile) to free all segments given by @segnumv and @nsegs at once. If
* it fails midway, it cancels the changes so that none of the segments are
* freed. If @nsegs is 0, this function does nothing.
*
* The freeing of segments is not finalized until the writing of a log with
* a super root block containing this sufile change is complete, and it can
* be canceled with nilfs_sufile_cancel_freev() until then.
*
* Return: 0 on success, or the following negative error code on failure.
* * %-EINVAL - Invalid segment number.
* * %-EIO - I/O error (including metadata corruption).
* * %-ENOMEM - Insufficient memory available.
*/
static int nilfs_free_segments(struct the_nilfs *nilfs, __u64 *segnumv,
size_t nsegs)
{
size_t ndone;
int ret;
if (!nsegs)
return 0;
ret = nilfs_sufile_freev(nilfs->ns_sufile, segnumv, nsegs, &ndone);
if (unlikely(ret)) {
nilfs_sufile_cancel_freev(nilfs->ns_sufile, segnumv, ndone,
NULL);
/*
* If a segment usage of the segments to be freed is in a
* hole block, nilfs_sufile_freev() will return -ENOENT.
* In this case, -EINVAL should be returned to the caller
* since there is something wrong with the given segment
* number array. This error can only occur during GC, so
* there is no need to worry about it propagating to other
* callers (such as fsync).
*/
if (ret == -ENOENT) {
nilfs_err(nilfs->ns_sb,
"The segment usage entry %llu to be freed is invalid (in a hole)",
(unsigned long long)segnumv[ndone]);
ret = -EINVAL;
}
}
return ret;
}
static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
struct list_head *head;
struct nilfs_inode_info *ii;
int err = 0;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
switch (nilfs_sc_cstage_get(sci)) {
case NILFS_ST_INIT:
/* Pre-processes */
sci->sc_stage.flags = 0;
if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
sci->sc_nblk_inc = 0;
sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
if (mode == SC_LSEG_DSYNC) {
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
goto dsync_mode;
}
}
sci->sc_stage.dirty_file_ptr = NULL;
sci->sc_stage.gc_inode_ptr = NULL;
if (mode == SC_FLUSH_DAT) {
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
goto dat_stage;
}
nilfs_sc_cstage_inc(sci);
fallthrough;
case NILFS_ST_GC:
if (nilfs_doing_gc()) {
head = &sci->sc_gc_inodes;
ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
head, i_dirty);
list_for_each_entry_continue(ii, head, i_dirty) {
err = nilfs_segctor_scan_file(
sci, &ii->vfs_inode,
&nilfs_sc_file_ops);
if (unlikely(err)) {
sci->sc_stage.gc_inode_ptr = list_entry(
ii->i_dirty.prev,
struct nilfs_inode_info,
i_dirty);
goto break_or_fail;
}
set_bit(NILFS_I_COLLECTED, &ii->i_state);
}
sci->sc_stage.gc_inode_ptr = NULL;
}
nilfs_sc_cstage_inc(sci);
fallthrough;
case NILFS_ST_FILE:
head = &sci->sc_dirty_files;
ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
i_dirty);
list_for_each_entry_continue(ii, head, i_dirty) {
clear_bit(NILFS_I_DIRTY, &ii->i_state);
err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
&nilfs_sc_file_ops);
if (unlikely(err)) {
sci->sc_stage.dirty_file_ptr =
list_entry(ii->i_dirty.prev,
struct nilfs_inode_info,
i_dirty);
goto break_or_fail;
}
/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
/* XXX: required ? */
}
sci->sc_stage.dirty_file_ptr = NULL;
if (mode == SC_FLUSH_FILE) {
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
return 0;
}
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_inc(sci);
sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
fallthrough;
case NILFS_ST_IFILE:
err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
&nilfs_sc_file_ops);
if (unlikely(err))
break;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_inc(sci);
/* Creating a checkpoint */
err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile,
nilfs->ns_cno);
if (unlikely(err))
break;
fallthrough;
case NILFS_ST_CPFILE:
err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
&nilfs_sc_file_ops);
if (unlikely(err))
break;
nilfs_sc_cstage_inc(sci);
fallthrough;
case NILFS_ST_SUFILE:
err = nilfs_free_segments(nilfs, sci->sc_freesegs,
sci->sc_nfreesegs);
if (unlikely(err))
break;
sci->sc_stage.flags |= NILFS_CF_SUFREED;
err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
&nilfs_sc_file_ops);
if (unlikely(err))
break;
nilfs_sc_cstage_inc(sci);
fallthrough;
case NILFS_ST_DAT:
dat_stage:
err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
&nilfs_sc_dat_ops);
if (unlikely(err))
break;
if (mode == SC_FLUSH_DAT) {
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
return 0;
}
nilfs_sc_cstage_inc(sci);
fallthrough;
case NILFS_ST_SR:
if (mode == SC_LSEG_SR) {
/* Appending a super root */
err = nilfs_segctor_add_super_root(sci);
if (unlikely(err))
break;
}
/* End of a logical segment */
sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
return 0;
case NILFS_ST_DSYNC:
dsync_mode:
sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
ii = sci->sc_dsync_inode;
if (!test_bit(NILFS_I_BUSY, &ii->i_state))
break;
err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
if (unlikely(err))
break;
sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
return 0;
case NILFS_ST_DONE:
return 0;
default:
BUG();
}
break_or_fail:
return err;
}
/**
* nilfs_segctor_begin_construction - setup segment buffer to make a new log
* @sci: nilfs_sc_info
* @nilfs: nilfs object
*/
static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs)
{
struct nilfs_segment_buffer *segbuf, *prev;
__u64 nextnum;
int err, alloc = 0;
segbuf = nilfs_segbuf_new(sci->sc_super);
if (unlikely(!segbuf))
return -ENOMEM;
if (list_empty(&sci->sc_write_logs)) {
nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
nilfs->ns_pseg_offset, nilfs);
if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
nilfs_shift_to_next_segment(nilfs);
nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
}
segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
nextnum = nilfs->ns_nextnum;
if (nilfs->ns_segnum == nilfs->ns_nextnum)
/* Start from the head of a new full segment */
alloc++;
} else {
/* Continue logs */
prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
nilfs_segbuf_map_cont(segbuf, prev);
segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
nextnum = prev->sb_nextnum;
if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
segbuf->sb_sum.seg_seq++;
alloc++;
}
}
err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
if (err)
goto failed;
if (alloc) {
err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
if (err)
goto failed;
}
nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
BUG_ON(!list_empty(&sci->sc_segbufs));
list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
return 0;
failed:
nilfs_segbuf_free(segbuf);
return err;
}
static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs, int nadd)
{
struct nilfs_segment_buffer *segbuf, *prev;
struct inode *sufile = nilfs->ns_sufile;
__u64 nextnextnum;
LIST_HEAD(list);
int err, ret, i;
prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
/*
* Since the segment specified with nextnum might be allocated during
* the previous construction, the buffer including its segusage may
* not be dirty. The following call ensures that the buffer is dirty
* and will pin the buffer on memory until the sufile is written.
*/
err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
if (unlikely(err))
return err;
for (i = 0; i < nadd; i++) {
/* extend segment info */
err = -ENOMEM;
segbuf = nilfs_segbuf_new(sci->sc_super);
if (unlikely(!segbuf))
goto failed;
/* map this buffer to region of segment on-disk */
nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
/* allocate the next next full segment */
err = nilfs_sufile_alloc(sufile, &nextnextnum);
if (unlikely(err))
goto failed_segbuf;
segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
list_add_tail(&segbuf->sb_list, &list);
prev = segbuf;
}
list_splice_tail(&list, &sci->sc_segbufs);
return 0;
failed_segbuf:
nilfs_segbuf_free(segbuf);
failed:
list_for_each_entry(segbuf, &list, sb_list) {
ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
WARN_ON(ret); /* never fails */
}
nilfs_destroy_logs(&list);
return err;
}
static void nilfs_free_incomplete_logs(struct list_head *logs,
struct the_nilfs *nilfs)
{
struct nilfs_segment_buffer *segbuf, *prev;
struct inode *sufile = nilfs->ns_sufile;
int ret;
segbuf = NILFS_FIRST_SEGBUF(logs);
if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
WARN_ON(ret); /* never fails */
}
if (atomic_read(&segbuf->sb_err)) {
/* Case 1: The first segment failed */
if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
/*
* Case 1a: Partial segment appended into an existing
* segment
*/
nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
segbuf->sb_fseg_end);
else /* Case 1b: New full segment */
set_nilfs_discontinued(nilfs);
}
prev = segbuf;
list_for_each_entry_continue(segbuf, logs, sb_list) {
if (prev->sb_nextnum != segbuf->sb_nextnum) {
ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
WARN_ON(ret); /* never fails */
}
if (atomic_read(&segbuf->sb_err) &&
segbuf->sb_segnum != nilfs->ns_nextnum)
/* Case 2: extended segment (!= next) failed */
nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
prev = segbuf;
}
}
static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
struct inode *sufile)
{
struct nilfs_segment_buffer *segbuf;
unsigned long live_blocks;
int ret;
list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
live_blocks = segbuf->sb_sum.nblocks +
(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
live_blocks,
sci->sc_seg_ctime);
WARN_ON(ret); /* always succeed because the segusage is dirty */
}
}
static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
{
struct nilfs_segment_buffer *segbuf;
int ret;
segbuf = NILFS_FIRST_SEGBUF(logs);
ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
segbuf->sb_pseg_start -
segbuf->sb_fseg_start, 0);
WARN_ON(ret); /* always succeed because the segusage is dirty */
list_for_each_entry_continue(segbuf, logs, sb_list) {
ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
0, 0);
WARN_ON(ret); /* always succeed */
}
}
static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
struct nilfs_segment_buffer *last,
struct inode *sufile)
{
struct nilfs_segment_buffer *segbuf = last;
int ret;
list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
WARN_ON(ret);
}
nilfs_truncate_logs(&sci->sc_segbufs, last);
}
static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs, int mode)
{
struct nilfs_cstage prev_stage = sci->sc_stage;
int err, nadd = 1;
/* Collection retry loop */
for (;;) {
sci->sc_nblk_this_inc = 0;
sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
err = nilfs_segctor_reset_segment_buffer(sci);
if (unlikely(err))
goto failed;
err = nilfs_segctor_collect_blocks(sci, mode);
sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
if (!err)
break;
if (unlikely(err != -E2BIG))
goto failed;
/* The current segment is filled up */
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
if (mode != SC_LSEG_SR ||
nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
break;
nilfs_clear_logs(&sci->sc_segbufs);
if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
sci->sc_freesegs,
sci->sc_nfreesegs,
NULL);
WARN_ON(err); /* do not happen */
nilfs2: fix segctor bug that causes file system corruption There is a bug in the function nilfs_segctor_collect, which results in active data being written to a segment, that is marked as clean. It is possible, that this segment is selected for a later segment construction, whereby the old data is overwritten. The problem shows itself with the following kernel log message: nilfs_sufile_do_cancel_free: segment 6533 must be clean Usually a few hours later the file system gets corrupted: NILFS: bad btree node (blocknr=8748107): level = 0, flags = 0x0, nchildren = 0 NILFS error (device sdc1): nilfs_bmap_last_key: broken bmap (inode number=114660) The issue can be reproduced with a file system that is nearly full and with the cleaner running, while some IO intensive task is running. Although it is quite hard to reproduce. This is what happens: 1. The cleaner starts the segment construction 2. nilfs_segctor_collect is called 3. sc_stage is on NILFS_ST_SUFILE and segments are freed 4. sc_stage is on NILFS_ST_DAT current segment is full 5. nilfs_segctor_extend_segments is called, which allocates a new segment 6. The new segment is one of the segments freed in step 3 7. nilfs_sufile_cancel_freev is called and produces an error message 8. Loop around and the collection starts again 9. sc_stage is on NILFS_ST_SUFILE and segments are freed including the newly allocated segment, which will contain active data and can be allocated at a later time 10. A few hours later another segment construction allocates the segment and causes file system corruption This can be prevented by simply reordering the statements. If nilfs_sufile_cancel_freev is called before nilfs_segctor_extend_segments the freed segments are marked as dirty and cannot be allocated any more. Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net> Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Andreas Rohner <andreas.rohner@gmx.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-14 17:56:36 -08:00
sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
}
nilfs2: fix segctor bug that causes file system corruption There is a bug in the function nilfs_segctor_collect, which results in active data being written to a segment, that is marked as clean. It is possible, that this segment is selected for a later segment construction, whereby the old data is overwritten. The problem shows itself with the following kernel log message: nilfs_sufile_do_cancel_free: segment 6533 must be clean Usually a few hours later the file system gets corrupted: NILFS: bad btree node (blocknr=8748107): level = 0, flags = 0x0, nchildren = 0 NILFS error (device sdc1): nilfs_bmap_last_key: broken bmap (inode number=114660) The issue can be reproduced with a file system that is nearly full and with the cleaner running, while some IO intensive task is running. Although it is quite hard to reproduce. This is what happens: 1. The cleaner starts the segment construction 2. nilfs_segctor_collect is called 3. sc_stage is on NILFS_ST_SUFILE and segments are freed 4. sc_stage is on NILFS_ST_DAT current segment is full 5. nilfs_segctor_extend_segments is called, which allocates a new segment 6. The new segment is one of the segments freed in step 3 7. nilfs_sufile_cancel_freev is called and produces an error message 8. Loop around and the collection starts again 9. sc_stage is on NILFS_ST_SUFILE and segments are freed including the newly allocated segment, which will contain active data and can be allocated at a later time 10. A few hours later another segment construction allocates the segment and causes file system corruption This can be prevented by simply reordering the statements. If nilfs_sufile_cancel_freev is called before nilfs_segctor_extend_segments the freed segments are marked as dirty and cannot be allocated any more. Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net> Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Andreas Rohner <andreas.rohner@gmx.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-14 17:56:36 -08:00
err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
if (unlikely(err))
return err;
nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
sci->sc_stage = prev_stage;
}
nilfs_segctor_zeropad_segsum(sci);
nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
return 0;
failed:
return err;
}
static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
struct buffer_head *new_bh)
{
BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
/* The caller must release old_bh */
}
static int
nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
struct nilfs_segment_buffer *segbuf,
int mode)
{
struct inode *inode = NULL;
sector_t blocknr;
unsigned long nfinfo = segbuf->sb_sum.nfinfo;
unsigned long nblocks = 0, ndatablk = 0;
const struct nilfs_sc_operations *sc_op = NULL;
struct nilfs_segsum_pointer ssp;
struct nilfs_finfo *finfo = NULL;
union nilfs_binfo binfo;
struct buffer_head *bh, *bh_org;
ino_t ino = 0;
int err = 0;
if (!nfinfo)
goto out;
blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
ssp.offset = sizeof(struct nilfs_segment_summary);
list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
if (bh == segbuf->sb_super_root)
break;
if (!finfo) {
finfo = nilfs_segctor_map_segsum_entry(
sci, &ssp, sizeof(*finfo));
ino = le64_to_cpu(finfo->fi_ino);
nblocks = le32_to_cpu(finfo->fi_nblocks);
ndatablk = le32_to_cpu(finfo->fi_ndatablk);
inode = bh->b_folio->mapping->host;
if (mode == SC_LSEG_DSYNC)
sc_op = &nilfs_sc_dsync_ops;
else if (ino == NILFS_DAT_INO)
sc_op = &nilfs_sc_dat_ops;
else /* file blocks */
sc_op = &nilfs_sc_file_ops;
}
bh_org = bh;
get_bh(bh_org);
err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
&binfo);
if (bh != bh_org)
nilfs_list_replace_buffer(bh_org, bh);
brelse(bh_org);
if (unlikely(err))
goto failed_bmap;
if (ndatablk > 0)
sc_op->write_data_binfo(sci, &ssp, &binfo);
else
sc_op->write_node_binfo(sci, &ssp, &binfo);
blocknr++;
if (--nblocks == 0) {
finfo = NULL;
if (--nfinfo == 0)
break;
} else if (ndatablk > 0)
ndatablk--;
}
out:
return 0;
failed_bmap:
return err;
}
static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
{
struct nilfs_segment_buffer *segbuf;
int err;
list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
if (unlikely(err))
return err;
nilfs_segbuf_fill_in_segsum(segbuf);
}
return 0;
}
static void nilfs_begin_folio_io(struct folio *folio)
{
if (!folio || folio_test_writeback(folio))
/*
* For split b-tree node pages, this function may be called
* twice. We ignore the 2nd or later calls by this check.
*/
return;
folio_lock(folio);
folio_clear_dirty_for_io(folio);
folio_start_writeback(folio);
folio_unlock(folio);
}
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
/**
* nilfs_prepare_write_logs - prepare to write logs
* @logs: logs to prepare for writing
* @seed: checksum seed value
*
* nilfs_prepare_write_logs() adds checksums and prepares the block
* buffers/folios for writing logs. In order to stabilize folios of
* memory-mapped file blocks by putting them in writeback state before
* calculating the checksums, first prepare to write payload blocks other
* than segment summary and super root blocks in which the checksums will
* be embedded.
*/
static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
{
struct nilfs_segment_buffer *segbuf;
struct folio *bd_folio = NULL, *fs_folio = NULL;
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
struct buffer_head *bh;
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
/* Prepare to write payload blocks */
list_for_each_entry(segbuf, logs, sb_list) {
list_for_each_entry(bh, &segbuf->sb_payload_buffers,
b_assoc_buffers) {
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
if (bh == segbuf->sb_super_root)
break;
nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer. Link: https://lkml.kernel.org/r/20240203161645.4992-1-konishi.ryusuke@gmail.com Fixes: 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+5c04210f7c7f897c1e7f@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000019a97c05fd42f8c8@google.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-04 01:16:45 +09:00
set_buffer_async_write(bh);
if (bh->b_folio != fs_folio) {
nilfs_begin_folio_io(fs_folio);
fs_folio = bh->b_folio;
}
}
}
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
nilfs_begin_folio_io(fs_folio);
nilfs_add_checksums_on_logs(logs, seed);
/* Prepare to write segment summary blocks */
list_for_each_entry(segbuf, logs, sb_list) {
list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
b_assoc_buffers) {
mark_buffer_dirty(bh);
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
if (bh->b_folio == bd_folio)
continue;
if (bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
}
bd_folio = bh->b_folio;
}
}
/* Prepare to write super root block */
bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
if (bh) {
mark_buffer_dirty(bh);
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
if (bh->b_folio != bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
bd_folio = bh->b_folio;
}
}
if (bd_folio) {
folio_lock(bd_folio);
nilfs2: fix potential kernel bug due to lack of writeback flag waiting Destructive writes to a block device on which nilfs2 is mounted can cause a kernel bug in the folio/page writeback start routine or writeback end routine (__folio_start_writeback in the log below): kernel BUG at mm/page-writeback.c:3070! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI ... RIP: 0010:__folio_start_writeback+0xbaa/0x10e0 Code: 25 ff 0f 00 00 0f 84 18 01 00 00 e8 40 ca c6 ff e9 17 f6 ff ff e8 36 ca c6 ff 4c 89 f7 48 c7 c6 80 c0 12 84 e8 e7 b3 0f 00 90 <0f> 0b e8 1f ca c6 ff 4c 89 f7 48 c7 c6 a0 c6 12 84 e8 d0 b3 0f 00 ... Call Trace: <TASK> nilfs_segctor_do_construct+0x4654/0x69d0 [nilfs2] nilfs_segctor_construct+0x181/0x6b0 [nilfs2] nilfs_segctor_thread+0x548/0x11c0 [nilfs2] kthread+0x2f0/0x390 ret_from_fork+0x4b/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> This is because when the log writer starts a writeback for segment summary blocks or a super root block that use the backing device's page cache, it does not wait for the ongoing folio/page writeback, resulting in an inconsistent writeback state. Fix this issue by waiting for ongoing writebacks when putting folios/pages on the backing device into writeback state. Link: https://lkml.kernel.org/r/20240530141556.4411-1-konishi.ryusuke@gmail.com Fixes: 9ff05123e3bf ("nilfs2: segment constructor") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-30 23:15:56 +09:00
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
}
}
static int nilfs_segctor_write(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs)
{
int ret;
ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
return ret;
}
static void nilfs_end_folio_io(struct folio *folio, int err)
{
if (!folio)
return;
if (buffer_nilfs_node(folio_buffers(folio)) &&
!folio_test_writeback(folio)) {
/*
* For b-tree node pages, this function may be called twice
* or more because they might be split in a segment.
*/
if (folio_test_dirty(folio)) {
/*
* For pages holding split b-tree node buffers, dirty
* flag on the buffers may be cleared discretely.
* In that case, the page is once redirtied for
* remaining buffers, and it must be cancelled if
* all the buffers get cleaned later.
*/
folio_lock(folio);
if (nilfs_folio_buffers_clean(folio))
__nilfs_clear_folio_dirty(folio);
folio_unlock(folio);
}
return;
}
if (err || !nilfs_folio_buffers_clean(folio))
filemap_dirty_folio(folio->mapping, folio);
folio_end_writeback(folio);
}
static void nilfs_abort_logs(struct list_head *logs, int err)
{
struct nilfs_segment_buffer *segbuf;
struct folio *bd_folio = NULL, *fs_folio = NULL;
struct buffer_head *bh;
if (list_empty(logs))
return;
list_for_each_entry(segbuf, logs, sb_list) {
list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
b_assoc_buffers) {
nilfs2: fix buffer corruption due to concurrent device reads As a result of analysis of a syzbot report, it turned out that in three cases where nilfs2 allocates block device buffers directly via sb_getblk, concurrent reads to the device can corrupt the allocated buffers. Nilfs2 uses sb_getblk for segment summary blocks, that make up a log header, and the super root block, that is the trailer, and when moving and writing the second super block after fs resize. In any of these, since the uptodate flag is not set when storing metadata to be written in the allocated buffers, the stored metadata will be overwritten if a device read of the same block occurs concurrently before the write. This causes metadata corruption and misbehavior in the log write itself, causing warnings in nilfs_btree_assign() as reported. Fix these issues by setting an uptodate flag on the buffer head on the first or before modifying each buffer obtained with sb_getblk, and clearing the flag on failure. When setting the uptodate flag, the lock_buffer/unlock_buffer pair is used to perform necessary exclusive control, and the buffer is filled to ensure that uninitialized bytes are not mixed into the data read from others. As for buffers for segment summary blocks, they are filled incrementally, so if the uptodate flag was unset on their allocation, set the flag and zero fill the buffer once at that point. Also, regarding the superblock move routine, the starting point of the memset call to zerofill the block is incorrectly specified, which can cause a buffer overflow on file systems with block sizes greater than 4KiB. In addition, if the superblock is moved within a large block, it is necessary to assume the possibility that the data in the superblock will be destroyed by zero-filling before copying. So fix these potential issues as well. Link: https://lkml.kernel.org/r/20230609035732.20426-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+31837fe952932efc8fb9@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000030000a05e981f475@google.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 12:57:32 +09:00
clear_buffer_uptodate(bh);
if (bh->b_folio != bd_folio) {
if (bd_folio)
folio_end_writeback(bd_folio);
bd_folio = bh->b_folio;
}
}
list_for_each_entry(bh, &segbuf->sb_payload_buffers,
b_assoc_buffers) {
if (bh == segbuf->sb_super_root) {
nilfs2: fix buffer corruption due to concurrent device reads As a result of analysis of a syzbot report, it turned out that in three cases where nilfs2 allocates block device buffers directly via sb_getblk, concurrent reads to the device can corrupt the allocated buffers. Nilfs2 uses sb_getblk for segment summary blocks, that make up a log header, and the super root block, that is the trailer, and when moving and writing the second super block after fs resize. In any of these, since the uptodate flag is not set when storing metadata to be written in the allocated buffers, the stored metadata will be overwritten if a device read of the same block occurs concurrently before the write. This causes metadata corruption and misbehavior in the log write itself, causing warnings in nilfs_btree_assign() as reported. Fix these issues by setting an uptodate flag on the buffer head on the first or before modifying each buffer obtained with sb_getblk, and clearing the flag on failure. When setting the uptodate flag, the lock_buffer/unlock_buffer pair is used to perform necessary exclusive control, and the buffer is filled to ensure that uninitialized bytes are not mixed into the data read from others. As for buffers for segment summary blocks, they are filled incrementally, so if the uptodate flag was unset on their allocation, set the flag and zero fill the buffer once at that point. Also, regarding the superblock move routine, the starting point of the memset call to zerofill the block is incorrectly specified, which can cause a buffer overflow on file systems with block sizes greater than 4KiB. In addition, if the superblock is moved within a large block, it is necessary to assume the possibility that the data in the superblock will be destroyed by zero-filling before copying. So fix these potential issues as well. Link: https://lkml.kernel.org/r/20230609035732.20426-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+31837fe952932efc8fb9@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000030000a05e981f475@google.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 12:57:32 +09:00
clear_buffer_uptodate(bh);
if (bh->b_folio != bd_folio) {
folio_end_writeback(bd_folio);
bd_folio = bh->b_folio;
}
break;
}
nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer. Link: https://lkml.kernel.org/r/20240203161645.4992-1-konishi.ryusuke@gmail.com Fixes: 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+5c04210f7c7f897c1e7f@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000019a97c05fd42f8c8@google.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-04 01:16:45 +09:00
clear_buffer_async_write(bh);
if (bh->b_folio != fs_folio) {
nilfs_end_folio_io(fs_folio, err);
fs_folio = bh->b_folio;
}
}
}
if (bd_folio)
folio_end_writeback(bd_folio);
nilfs_end_folio_io(fs_folio, err);
}
static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs, int err)
{
LIST_HEAD(logs);
int ret;
list_splice_tail_init(&sci->sc_write_logs, &logs);
ret = nilfs_wait_on_logs(&logs);
nilfs_abort_logs(&logs, ret ? : err);
list_splice_tail_init(&sci->sc_segbufs, &logs);
nilfs2: fix state management in error path of log writing function After commit a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") was applied, the log writing function nilfs_segctor_do_construct() was able to issue I/O requests continuously even if user data blocks were split into multiple logs across segments, but two potential flaws were introduced in its error handling. First, if nilfs_segctor_begin_construction() fails while creating the second or subsequent logs, the log writing function returns without calling nilfs_segctor_abort_construction(), so the writeback flag set on pages/folios will remain uncleared. This causes page cache operations to hang waiting for the writeback flag. For example, truncate_inode_pages_final(), which is called via nilfs_evict_inode() when an inode is evicted from memory, will hang. Second, the NILFS_I_COLLECTED flag set on normal inodes remain uncleared. As a result, if the next log write involves checkpoint creation, that's fine, but if a partial log write is performed that does not, inodes with NILFS_I_COLLECTED set are erroneously removed from the "sc_dirty_files" list, and their data and b-tree blocks may not be written to the device, corrupting the block mapping. Fix these issues by uniformly calling nilfs_segctor_abort_construction() on failure of each step in the loop in nilfs_segctor_do_construct(), having it clean up logs and segment usages according to progress, and correcting the conditions for calling nilfs_redirty_inodes() to ensure that the NILFS_I_COLLECTED flag is cleared. Link: https://lkml.kernel.org/r/20240814101119.4070-1-konishi.ryusuke@gmail.com Fixes: a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-14 19:11:19 +09:00
if (list_empty(&logs))
return; /* if the first segment buffer preparation failed */
nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
nilfs_free_incomplete_logs(&logs, nilfs);
if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
sci->sc_freesegs,
sci->sc_nfreesegs,
NULL);
WARN_ON(ret); /* do not happen */
}
nilfs_destroy_logs(&logs);
}
static void nilfs_set_next_segment(struct the_nilfs *nilfs,
struct nilfs_segment_buffer *segbuf)
{
nilfs->ns_segnum = segbuf->sb_segnum;
nilfs->ns_nextnum = segbuf->sb_nextnum;
nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
+ segbuf->sb_sum.nblocks;
nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
nilfs->ns_ctime = segbuf->sb_sum.ctime;
}
static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
{
struct nilfs_segment_buffer *segbuf;
struct folio *bd_folio = NULL, *fs_folio = NULL;
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
int update_sr = false;
list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
struct buffer_head *bh;
list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
b_assoc_buffers) {
set_buffer_uptodate(bh);
clear_buffer_dirty(bh);
if (bh->b_folio != bd_folio) {
if (bd_folio)
folio_end_writeback(bd_folio);
bd_folio = bh->b_folio;
}
}
/*
* We assume that the buffers which belong to the same folio
* continue over the buffer list.
* Under this assumption, the last BHs of folios is
* identifiable by the discontinuity of bh->b_folio
* (folio != fs_folio).
*
* For B-tree node blocks, however, this assumption is not
* guaranteed. The cleanup code of B-tree node folios needs
* special care.
*/
list_for_each_entry(bh, &segbuf->sb_payload_buffers,
b_assoc_buffers) {
const unsigned long set_bits = BIT(BH_Uptodate);
const unsigned long clear_bits =
(BIT(BH_Dirty) | BIT(BH_Async_Write) |
BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
BIT(BH_NILFS_Redirected));
if (bh == segbuf->sb_super_root) {
nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer. Link: https://lkml.kernel.org/r/20240203161645.4992-1-konishi.ryusuke@gmail.com Fixes: 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+5c04210f7c7f897c1e7f@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000019a97c05fd42f8c8@google.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-04 01:16:45 +09:00
set_buffer_uptodate(bh);
clear_buffer_dirty(bh);
if (bh->b_folio != bd_folio) {
folio_end_writeback(bd_folio);
bd_folio = bh->b_folio;
}
update_sr = true;
break;
}
nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer. Link: https://lkml.kernel.org/r/20240203161645.4992-1-konishi.ryusuke@gmail.com Fixes: 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+5c04210f7c7f897c1e7f@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/00000000000019a97c05fd42f8c8@google.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-04 01:16:45 +09:00
set_mask_bits(&bh->b_state, clear_bits, set_bits);
if (bh->b_folio != fs_folio) {
nilfs_end_folio_io(fs_folio, 0);
fs_folio = bh->b_folio;
}
}
if (!nilfs_segbuf_simplex(segbuf)) {
if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
sci->sc_lseg_stime = jiffies;
}
if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
}
}
/*
* Since folios may continue over multiple segment buffers,
* end of the last folio must be checked outside of the loop.
*/
if (bd_folio)
folio_end_writeback(bd_folio);
nilfs_end_folio_io(fs_folio, 0);
nilfs_drop_collected_inodes(&sci->sc_dirty_files);
if (nilfs_doing_gc())
nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
else
nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
sci->sc_nblk_inc += sci->sc_nblk_this_inc;
segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
nilfs_set_next_segment(nilfs, segbuf);
if (update_sr) {
nilfs->ns_flushed_device = 0;
nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
nilfs_segctor_clear_metadata_dirty(sci);
} else
clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
}
static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
{
int ret;
ret = nilfs_wait_on_logs(&sci->sc_write_logs);
if (!ret) {
nilfs_segctor_complete_write(sci);
nilfs_destroy_logs(&sci->sc_write_logs);
}
return ret;
}
static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs)
{
struct nilfs_inode_info *ii, *n;
struct inode *ifile = sci->sc_root->ifile;
spin_lock(&nilfs->ns_inode_lock);
retry:
list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
if (!ii->i_bh) {
struct buffer_head *ibh;
int err;
spin_unlock(&nilfs->ns_inode_lock);
err = nilfs_ifile_get_inode_block(
ifile, ii->vfs_inode.i_ino, &ibh);
if (unlikely(err)) {
nilfs_warn(sci->sc_super,
"log writer: error %d getting inode block (ino=%lu)",
err, ii->vfs_inode.i_ino);
return err;
}
spin_lock(&nilfs->ns_inode_lock);
if (likely(!ii->i_bh))
ii->i_bh = ibh;
else
brelse(ibh);
goto retry;
}
nilfs2: fix race condition that causes file system corruption There is a race condition between nilfs_dirty_inode() and nilfs_set_file_dirty(). When a file is opened, nilfs_dirty_inode() is called to update the access timestamp in the inode. It calls __nilfs_mark_inode_dirty() in a separate transaction. __nilfs_mark_inode_dirty() caches the ifile buffer_head in the i_bh field of the inode info structure and marks it as dirty. After some data was written to the file in another transaction, the function nilfs_set_file_dirty() is called, which adds the inode to the ns_dirty_files list. Then the segment construction calls nilfs_segctor_collect_dirty_files(), which goes through the ns_dirty_files list and checks the i_bh field. If there is a cached buffer_head in i_bh it is not marked as dirty again. Since nilfs_dirty_inode() and nilfs_set_file_dirty() use separate transactions, it is possible that a segment construction that writes out the ifile occurs in-between the two. If this happens the inode is not on the ns_dirty_files list, but its ifile block is still marked as dirty and written out. In the next segment construction, the data for the file is written out and nilfs_bmap_propagate() updates the b-tree. Eventually the bmap root is written into the i_bh block, which is not dirty, because it was written out in another segment construction. As a result the bmap update can be lost, which leads to file system corruption. Either the virtual block address points to an unallocated DAT block, or the DAT entry will be reused for something different. The error can remain undetected for a long time. A typical error message would be one of the "bad btree" errors or a warning that a DAT entry could not be found. This bug can be reproduced reliably by a simple benchmark that creates and overwrites millions of 4k files. Link: http://lkml.kernel.org/r/1509367935-3086-2-git-send-email-konishi.ryusuke@lab.ntt.co.jp Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Andreas Rohner <andreas.rohner@gmx.net> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 15:29:35 -08:00
// Always redirty the buffer to avoid race condition
mark_buffer_dirty(ii->i_bh);
nilfs_mdt_mark_dirty(ifile);
clear_bit(NILFS_I_QUEUED, &ii->i_state);
set_bit(NILFS_I_BUSY, &ii->i_state);
list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
}
spin_unlock(&nilfs->ns_inode_lock);
return 0;
}
static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
struct the_nilfs *nilfs)
{
struct nilfs_inode_info *ii, *n;
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 13:05:09 -08:00
int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
int defer_iput = false;
spin_lock(&nilfs->ns_inode_lock);
list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
test_bit(NILFS_I_DIRTY, &ii->i_state))
continue;
clear_bit(NILFS_I_BUSY, &ii->i_state);
brelse(ii->i_bh);
ii->i_bh = NULL;
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
list_del_init(&ii->i_dirty);
nilfs2: fix deadlock of segment constructor during recovery According to a report from Yuxuan Shui, nilfs2 in kernel 3.19 got stuck during recovery at mount time. The code path that caused the deadlock was as follows: nilfs_fill_super() load_nilfs() nilfs_salvage_orphan_logs() * Do roll-forwarding, attach segment constructor for recovery, and kick it. nilfs_segctor_thread() nilfs_segctor_thread_construct() * A lock is held with nilfs_transaction_lock() nilfs_segctor_do_construct() nilfs_segctor_drop_written_files() iput() iput_final() write_inode_now() writeback_single_inode() __writeback_single_inode() do_writepages() nilfs_writepage() nilfs_construct_dsync_segment() nilfs_transaction_lock() --> deadlock This can happen if commit 7ef3ff2fea8b ("nilfs2: fix deadlock of segment constructor over I_SYNC flag") is applied and roll-forward recovery was performed at mount time. The roll-forward recovery can happen if datasync write is done and the file system crashes immediately after that. For instance, we can reproduce the issue with the following steps: < nilfs2 is mounted on /nilfs (device: /dev/sdb1) > # dd if=/dev/zero of=/nilfs/test bs=4k count=1 && sync # dd if=/dev/zero of=/nilfs/test conv=notrunc oflag=dsync bs=4k count=1 && reboot -nfh < the system will immediately reboot > # mount -t nilfs2 /dev/sdb1 /nilfs The deadlock occurs because iput() can run segment constructor through writeback_single_inode() if MS_ACTIVE flag is not set on sb->s_flags. The above commit changed segment constructor so that it calls iput() asynchronously for inodes with i_nlink == 0, but that change was imperfect. This fixes the another deadlock by deferring iput() in segment constructor even for the case that mount is not finished, that is, for the case that MS_ACTIVE flag is not set. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Reported-by: Yuxuan Shui <yshuiv7@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 16:26:00 -07:00
if (!ii->vfs_inode.i_nlink || during_mount) {
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
/*
nilfs2: fix deadlock of segment constructor during recovery According to a report from Yuxuan Shui, nilfs2 in kernel 3.19 got stuck during recovery at mount time. The code path that caused the deadlock was as follows: nilfs_fill_super() load_nilfs() nilfs_salvage_orphan_logs() * Do roll-forwarding, attach segment constructor for recovery, and kick it. nilfs_segctor_thread() nilfs_segctor_thread_construct() * A lock is held with nilfs_transaction_lock() nilfs_segctor_do_construct() nilfs_segctor_drop_written_files() iput() iput_final() write_inode_now() writeback_single_inode() __writeback_single_inode() do_writepages() nilfs_writepage() nilfs_construct_dsync_segment() nilfs_transaction_lock() --> deadlock This can happen if commit 7ef3ff2fea8b ("nilfs2: fix deadlock of segment constructor over I_SYNC flag") is applied and roll-forward recovery was performed at mount time. The roll-forward recovery can happen if datasync write is done and the file system crashes immediately after that. For instance, we can reproduce the issue with the following steps: < nilfs2 is mounted on /nilfs (device: /dev/sdb1) > # dd if=/dev/zero of=/nilfs/test bs=4k count=1 && sync # dd if=/dev/zero of=/nilfs/test conv=notrunc oflag=dsync bs=4k count=1 && reboot -nfh < the system will immediately reboot > # mount -t nilfs2 /dev/sdb1 /nilfs The deadlock occurs because iput() can run segment constructor through writeback_single_inode() if MS_ACTIVE flag is not set on sb->s_flags. The above commit changed segment constructor so that it calls iput() asynchronously for inodes with i_nlink == 0, but that change was imperfect. This fixes the another deadlock by deferring iput() in segment constructor even for the case that mount is not finished, that is, for the case that MS_ACTIVE flag is not set. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Reported-by: Yuxuan Shui <yshuiv7@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 16:26:00 -07:00
* Defer calling iput() to avoid deadlocks if
* i_nlink == 0 or mount is not yet finished.
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
*/
list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
defer_iput = true;
} else {
spin_unlock(&nilfs->ns_inode_lock);
iput(&ii->vfs_inode);
spin_lock(&nilfs->ns_inode_lock);
}
}
spin_unlock(&nilfs->ns_inode_lock);
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
if (defer_iput)
schedule_work(&sci->sc_iput_work);
}
/*
* Main procedure of segment constructor
*/
static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
int err;
if (sb_rdonly(sci->sc_super))
return -EROFS;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
sci->sc_cno = nilfs->ns_cno;
err = nilfs_segctor_collect_dirty_files(sci, nilfs);
if (unlikely(err))
goto out;
if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
if (nilfs_segctor_clean(sci))
goto out;
do {
sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
err = nilfs_segctor_begin_construction(sci, nilfs);
if (unlikely(err))
nilfs2: fix state management in error path of log writing function After commit a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") was applied, the log writing function nilfs_segctor_do_construct() was able to issue I/O requests continuously even if user data blocks were split into multiple logs across segments, but two potential flaws were introduced in its error handling. First, if nilfs_segctor_begin_construction() fails while creating the second or subsequent logs, the log writing function returns without calling nilfs_segctor_abort_construction(), so the writeback flag set on pages/folios will remain uncleared. This causes page cache operations to hang waiting for the writeback flag. For example, truncate_inode_pages_final(), which is called via nilfs_evict_inode() when an inode is evicted from memory, will hang. Second, the NILFS_I_COLLECTED flag set on normal inodes remain uncleared. As a result, if the next log write involves checkpoint creation, that's fine, but if a partial log write is performed that does not, inodes with NILFS_I_COLLECTED set are erroneously removed from the "sc_dirty_files" list, and their data and b-tree blocks may not be written to the device, corrupting the block mapping. Fix these issues by uniformly calling nilfs_segctor_abort_construction() on failure of each step in the loop in nilfs_segctor_do_construct(), having it clean up logs and segment usages according to progress, and correcting the conditions for calling nilfs_redirty_inodes() to ensure that the NILFS_I_COLLECTED flag is cleared. Link: https://lkml.kernel.org/r/20240814101119.4070-1-konishi.ryusuke@gmail.com Fixes: a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-14 19:11:19 +09:00
goto failed;
/* Update time stamp */
sci->sc_seg_ctime = ktime_get_real_seconds();
err = nilfs_segctor_collect(sci, nilfs, mode);
if (unlikely(err))
goto failed;
/* Avoid empty segment */
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
nilfs_segbuf_empty(sci->sc_curseg)) {
nilfs_segctor_abort_construction(sci, nilfs, 1);
goto out;
}
err = nilfs_segctor_assign(sci, mode);
if (unlikely(err))
goto failed;
if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
nilfs_segctor_fill_in_file_bmap(sci);
if (mode == SC_LSEG_SR &&
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
err = nilfs_cpfile_finalize_checkpoint(
nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root,
sci->sc_nblk_inc + sci->sc_nblk_this_inc,
sci->sc_seg_ctime,
!test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags));
if (unlikely(err))
goto failed_to_write;
nilfs_segctor_fill_in_super_root(sci, nilfs);
}
nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
/* Write partial segments */
nilfs2: prepare backing device folios for writing after adding checksums Patch series "nilfs2: eliminate the call to inode_attach_wb()". This series eliminates the inode_attach_wb() call from nilfs2, which was introduced as a workaround for a kernel bug but is suspected of layer violation (in fact, it is undesirable since it exposes a reference to the backing device). Removal of the inode_attach_wb() call is done by simply using mark_buffer_dirty() on the backing device's buffers. To use it safely, this series will prepare it in patch 1/2, and perform the replacement itself in patch 2/2. This patch (of 2): In preparation for inode_attach_wb(), which is currently called when attaching the log writer, to be done via mark_buffer_dirty(), change the order of preparation for log writing. Specifically, the function call that adds checksums to segment summary and super root blocks, which correspond to the log header and trailer, is made before starting writeback of folios containing those blocks. The current steps are as follows: 1. Put the folios of segment summary blocks in writeback state. 2. Put the folios of data blocks, metadata file blocks, and btree node blocks (collectively called payload blocks) into writeback state. 3. Put the super root block folio in writeback state. 4. Add checksums. Change these as follows: 1. Put the folios of payload blocks in writeback state. 2. Add checksums. 3. Put the folios of segment summary blocks in writeback state. 4. Put the super root block folio in writeback state. In this order, the contents of segment summaries and super root block that directly use buffer/folio of the backing device can be determined including the addition of checksums, before preparing to write. Step (1), which puts the payload block folios in writeback state, is performed first because if there are memory-mapped data blocks, a valid checksum can only be calculated after step (1). Link: https://lkml.kernel.org/r/20240610160029.7673-2-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-11 01:00:28 +09:00
nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
err = nilfs_segctor_write(sci, nilfs);
if (unlikely(err))
goto failed_to_write;
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
nilfs->ns_blocksize_bits != PAGE_SHIFT) {
/*
* At this point, we avoid double buffering
* for blocksize < pagesize because page dirty
* flag is turned off during write and dirty
* buffers are not properly collected for
* pages crossing over segments.
*/
err = nilfs_segctor_wait(sci);
if (err)
goto failed_to_write;
}
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
out:
nilfs_segctor_drop_written_files(sci, nilfs);
return err;
failed_to_write:
failed:
nilfs2: fix state management in error path of log writing function After commit a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") was applied, the log writing function nilfs_segctor_do_construct() was able to issue I/O requests continuously even if user data blocks were split into multiple logs across segments, but two potential flaws were introduced in its error handling. First, if nilfs_segctor_begin_construction() fails while creating the second or subsequent logs, the log writing function returns without calling nilfs_segctor_abort_construction(), so the writeback flag set on pages/folios will remain uncleared. This causes page cache operations to hang waiting for the writeback flag. For example, truncate_inode_pages_final(), which is called via nilfs_evict_inode() when an inode is evicted from memory, will hang. Second, the NILFS_I_COLLECTED flag set on normal inodes remain uncleared. As a result, if the next log write involves checkpoint creation, that's fine, but if a partial log write is performed that does not, inodes with NILFS_I_COLLECTED set are erroneously removed from the "sc_dirty_files" list, and their data and b-tree blocks may not be written to the device, corrupting the block mapping. Fix these issues by uniformly calling nilfs_segctor_abort_construction() on failure of each step in the loop in nilfs_segctor_do_construct(), having it clean up logs and segment usages according to progress, and correcting the conditions for calling nilfs_redirty_inodes() to ensure that the NILFS_I_COLLECTED flag is cleared. Link: https://lkml.kernel.org/r/20240814101119.4070-1-konishi.ryusuke@gmail.com Fixes: a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-14 19:11:19 +09:00
if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
nilfs_redirty_inodes(&sci->sc_dirty_files);
if (nilfs_doing_gc())
nilfs_redirty_inodes(&sci->sc_gc_inodes);
nilfs_segctor_abort_construction(sci, nilfs, err);
goto out;
}
/**
* nilfs_segctor_start_timer - set timer of background write
* @sci: nilfs_sc_info
*
* If the timer has already been set, it ignores the new request.
* This function MUST be called within a section locking the segment
* semaphore.
*/
static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
{
spin_lock(&sci->sc_state_lock);
if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
if (sci->sc_task) {
sci->sc_timer.expires = jiffies + sci->sc_interval;
add_timer(&sci->sc_timer);
}
sci->sc_state |= NILFS_SEGCTOR_COMMIT;
}
spin_unlock(&sci->sc_state_lock);
}
static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
{
spin_lock(&sci->sc_state_lock);
if (!(sci->sc_flush_request & BIT(bn))) {
unsigned long prev_req = sci->sc_flush_request;
sci->sc_flush_request |= BIT(bn);
if (!prev_req)
wake_up(&sci->sc_wait_daemon);
}
spin_unlock(&sci->sc_state_lock);
}
/**
* nilfs_flush_segment - trigger a segment construction for resource control
* @sb: super block
* @ino: inode number of the file to be flushed out.
*/
void nilfs_flush_segment(struct super_block *sb, ino_t ino)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
if (!sci || nilfs_doing_construction())
return;
nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
/* assign bit 0 to data files */
}
struct nilfs_segctor_wait_request {
wait_queue_entry_t wq;
__u32 seq;
int err;
atomic_t done;
};
static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
{
struct nilfs_segctor_wait_request wait_req;
int err = 0;
init_wait(&wait_req.wq);
wait_req.err = 0;
atomic_set(&wait_req.done, 0);
nilfs2: fix unexpected freezing of nilfs_segctor_sync() A potential and reproducible race issue has been identified where nilfs_segctor_sync() would block even after the log writer thread writes a checkpoint, unless there is an interrupt or other trigger to resume log writing. This turned out to be because, depending on the execution timing of the log writer thread running in parallel, the log writer thread may skip responding to nilfs_segctor_sync(), which causes a call to schedule() waiting for completion within nilfs_segctor_sync() to lose the opportunity to wake up. The reason why waking up the task waiting in nilfs_segctor_sync() may be skipped is that updating the request generation issued using a shared sequence counter and adding an wait queue entry to the request wait queue to the log writer, are not done atomically. There is a possibility that log writing and request completion notification by nilfs_segctor_wakeup() may occur between the two operations, and in that case, the wait queue entry is not yet visible to nilfs_segctor_wakeup() and the wake-up of nilfs_segctor_sync() will be carried over until the next request occurs. Fix this issue by performing these two operations simultaneously within the lock section of sc_state_lock. Also, following the memory barrier guidelines for event waiting loops, move the call to set_current_state() in the same location into the event waiting loop to ensure that a memory barrier is inserted just before the event condition determination. Link: https://lkml.kernel.org/r/20240520132621.4054-3-konishi.ryusuke@gmail.com Fixes: 9ff05123e3bf ("nilfs2: segment constructor") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:20 +09:00
init_waitqueue_entry(&wait_req.wq, current);
/*
* To prevent a race issue where completion notifications from the
* log writer thread are missed, increment the request sequence count
* "sc_seq_request" and insert a wait queue entry using the current
* sequence number into the "sc_wait_request" queue at the same time
* within the lock section of "sc_state_lock".
*/
spin_lock(&sci->sc_state_lock);
wait_req.seq = ++sci->sc_seq_request;
nilfs2: fix unexpected freezing of nilfs_segctor_sync() A potential and reproducible race issue has been identified where nilfs_segctor_sync() would block even after the log writer thread writes a checkpoint, unless there is an interrupt or other trigger to resume log writing. This turned out to be because, depending on the execution timing of the log writer thread running in parallel, the log writer thread may skip responding to nilfs_segctor_sync(), which causes a call to schedule() waiting for completion within nilfs_segctor_sync() to lose the opportunity to wake up. The reason why waking up the task waiting in nilfs_segctor_sync() may be skipped is that updating the request generation issued using a shared sequence counter and adding an wait queue entry to the request wait queue to the log writer, are not done atomically. There is a possibility that log writing and request completion notification by nilfs_segctor_wakeup() may occur between the two operations, and in that case, the wait queue entry is not yet visible to nilfs_segctor_wakeup() and the wake-up of nilfs_segctor_sync() will be carried over until the next request occurs. Fix this issue by performing these two operations simultaneously within the lock section of sc_state_lock. Also, following the memory barrier guidelines for event waiting loops, move the call to set_current_state() in the same location into the event waiting loop to ensure that a memory barrier is inserted just before the event condition determination. Link: https://lkml.kernel.org/r/20240520132621.4054-3-konishi.ryusuke@gmail.com Fixes: 9ff05123e3bf ("nilfs2: segment constructor") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:20 +09:00
add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
spin_unlock(&sci->sc_state_lock);
wake_up(&sci->sc_wait_daemon);
for (;;) {
nilfs2: fix unexpected freezing of nilfs_segctor_sync() A potential and reproducible race issue has been identified where nilfs_segctor_sync() would block even after the log writer thread writes a checkpoint, unless there is an interrupt or other trigger to resume log writing. This turned out to be because, depending on the execution timing of the log writer thread running in parallel, the log writer thread may skip responding to nilfs_segctor_sync(), which causes a call to schedule() waiting for completion within nilfs_segctor_sync() to lose the opportunity to wake up. The reason why waking up the task waiting in nilfs_segctor_sync() may be skipped is that updating the request generation issued using a shared sequence counter and adding an wait queue entry to the request wait queue to the log writer, are not done atomically. There is a possibility that log writing and request completion notification by nilfs_segctor_wakeup() may occur between the two operations, and in that case, the wait queue entry is not yet visible to nilfs_segctor_wakeup() and the wake-up of nilfs_segctor_sync() will be carried over until the next request occurs. Fix this issue by performing these two operations simultaneously within the lock section of sc_state_lock. Also, following the memory barrier guidelines for event waiting loops, move the call to set_current_state() in the same location into the event waiting loop to ensure that a memory barrier is inserted just before the event condition determination. Link: https://lkml.kernel.org/r/20240520132621.4054-3-konishi.ryusuke@gmail.com Fixes: 9ff05123e3bf ("nilfs2: segment constructor") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:20 +09:00
set_current_state(TASK_INTERRUPTIBLE);
nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy(). Link: https://lkml.kernel.org/r/20240520132621.4054-4-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+e3973c409251e136fdd0@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=e3973c409251e136fdd0 Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:21 +09:00
/*
* Synchronize only while the log writer thread is alive.
* Leave flushing out after the log writer thread exits to
* the cleanup work in nilfs_segctor_destroy().
*/
if (!sci->sc_task)
break;
if (atomic_read(&wait_req.done)) {
err = wait_req.err;
break;
}
if (!signal_pending(current)) {
schedule();
continue;
}
err = -ERESTARTSYS;
break;
}
finish_wait(&sci->sc_wait_request, &wait_req.wq);
return err;
}
nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy(). Link: https://lkml.kernel.org/r/20240520132621.4054-4-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+e3973c409251e136fdd0@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=e3973c409251e136fdd0 Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:21 +09:00
static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
{
struct nilfs_segctor_wait_request *wrq, *n;
unsigned long flags;
spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming So I've noticed a number of instances where it was not obvious from the code whether ->task_list was for a wait-queue head or a wait-queue entry. Furthermore, there's a number of wait-queue users where the lists are not for 'tasks' but other entities (poll tables, etc.), in which case the 'task_list' name is actively confusing. To clear this all up, name the wait-queue head and entry list structure fields unambiguously: struct wait_queue_head::task_list => ::head struct wait_queue_entry::task_list => ::entry For example, this code: rqw->wait.task_list.next != &wait->task_list ... is was pretty unclear (to me) what it's doing, while now it's written this way: rqw->wait.head.next != &wait->entry ... which makes it pretty clear that we are iterating a list until we see the head. Other examples are: list_for_each_entry_safe(pos, next, &x->task_list, task_list) { list_for_each_entry(wq, &fence->wait.task_list, task_list) { ... where it's unclear (to me) what we are iterating, and during review it's hard to tell whether it's trying to walk a wait-queue entry (which would be a bug), while now it's written as: list_for_each_entry_safe(pos, next, &x->head, entry) { list_for_each_entry(wq, &fence->wait.head, entry) { Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:06:46 +02:00
list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
if (!atomic_read(&wrq->done) &&
nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy(). Link: https://lkml.kernel.org/r/20240520132621.4054-4-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+e3973c409251e136fdd0@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=e3973c409251e136fdd0 Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:21 +09:00
(force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
wrq->err = err;
atomic_set(&wrq->done, 1);
}
if (atomic_read(&wrq->done)) {
wrq->wq.func(&wrq->wq,
TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
0, NULL);
}
}
spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
}
/**
* nilfs_construct_segment - construct a logical segment
* @sb: super block
*
* Return Value: On success, 0 is returned. On errors, one of the following
* negative error code is returned.
*
* %-EROFS - Read only filesystem.
*
* %-EIO - I/O error
*
* %-ENOSPC - No space left on device (only in a panic state).
*
* %-ERESTARTSYS - Interrupted.
*
* %-ENOMEM - Insufficient memory available.
*/
int nilfs_construct_segment(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
struct nilfs_transaction_info *ti;
nilfs2: fix use-after-free bug of ns_writer on remount If a nilfs2 filesystem is downgraded to read-only due to metadata corruption on disk and is remounted read/write, or if emergency read-only remount is performed, detaching a log writer and synchronizing the filesystem can be done at the same time. In these cases, use-after-free of the log writer (hereinafter nilfs->ns_writer) can happen as shown in the scenario below: Task1 Task2 -------------------------------- ------------------------------ nilfs_construct_segment nilfs_segctor_sync init_wait init_waitqueue_entry add_wait_queue schedule nilfs_remount (R/W remount case) nilfs_attach_log_writer nilfs_detach_log_writer nilfs_segctor_destroy kfree finish_wait _raw_spin_lock_irqsave __raw_spin_lock_irqsave do_raw_spin_lock debug_spin_lock_before <-- use-after-free While Task1 is sleeping, nilfs->ns_writer is freed by Task2. After Task1 waked up, Task1 accesses nilfs->ns_writer which is already freed. This scenario diagram is based on the Shigeru Yoshida's post [1]. This patch fixes the issue by not detaching nilfs->ns_writer on remount so that this UAF race doesn't happen. Along with this change, this patch also inserts a few necessary read-only checks with superblock instance where only the ns_writer pointer was used to check if the filesystem is read-only. Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1] Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com Reported-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-04 23:29:59 +09:00
if (sb_rdonly(sb) || unlikely(!sci))
return -EROFS;
/* A call inside transactions causes a deadlock. */
BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
return nilfs_segctor_sync(sci);
}
/**
* nilfs_construct_dsync_segment - construct a data-only logical segment
* @sb: super block
* @inode: inode whose data blocks should be written out
* @start: start byte offset
* @end: end byte offset (inclusive)
*
* Return Value: On success, 0 is returned. On errors, one of the following
* negative error code is returned.
*
* %-EROFS - Read only filesystem.
*
* %-EIO - I/O error
*
* %-ENOSPC - No space left on device (only in a panic state).
*
* %-ERESTARTSYS - Interrupted.
*
* %-ENOMEM - Insufficient memory available.
*/
int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
loff_t start, loff_t end)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
struct nilfs_inode_info *ii;
struct nilfs_transaction_info ti;
int err = 0;
nilfs2: fix use-after-free bug of ns_writer on remount If a nilfs2 filesystem is downgraded to read-only due to metadata corruption on disk and is remounted read/write, or if emergency read-only remount is performed, detaching a log writer and synchronizing the filesystem can be done at the same time. In these cases, use-after-free of the log writer (hereinafter nilfs->ns_writer) can happen as shown in the scenario below: Task1 Task2 -------------------------------- ------------------------------ nilfs_construct_segment nilfs_segctor_sync init_wait init_waitqueue_entry add_wait_queue schedule nilfs_remount (R/W remount case) nilfs_attach_log_writer nilfs_detach_log_writer nilfs_segctor_destroy kfree finish_wait _raw_spin_lock_irqsave __raw_spin_lock_irqsave do_raw_spin_lock debug_spin_lock_before <-- use-after-free While Task1 is sleeping, nilfs->ns_writer is freed by Task2. After Task1 waked up, Task1 accesses nilfs->ns_writer which is already freed. This scenario diagram is based on the Shigeru Yoshida's post [1]. This patch fixes the issue by not detaching nilfs->ns_writer on remount so that this UAF race doesn't happen. Along with this change, this patch also inserts a few necessary read-only checks with superblock instance where only the ns_writer pointer was used to check if the filesystem is read-only. Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1] Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com Reported-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-04 23:29:59 +09:00
if (sb_rdonly(sb) || unlikely(!sci))
return -EROFS;
nilfs_transaction_lock(sb, &ti, 0);
ii = NILFS_I(inode);
if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
nilfs_test_opt(nilfs, STRICT_ORDER) ||
test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
nilfs_discontinued(nilfs)) {
nilfs_transaction_unlock(sb);
err = nilfs_segctor_sync(sci);
return err;
}
spin_lock(&nilfs->ns_inode_lock);
if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
!test_bit(NILFS_I_BUSY, &ii->i_state)) {
spin_unlock(&nilfs->ns_inode_lock);
nilfs_transaction_unlock(sb);
return 0;
}
spin_unlock(&nilfs->ns_inode_lock);
sci->sc_dsync_inode = ii;
sci->sc_dsync_start = start;
sci->sc_dsync_end = end;
err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
if (!err)
nilfs->ns_flushed_device = 0;
nilfs_transaction_unlock(sb);
return err;
}
#define FLUSH_FILE_BIT (0x1) /* data file only */
#define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
/**
* nilfs_segctor_accept - record accepted sequence count of log-write requests
* @sci: segment constructor object
*/
static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
{
bool thread_is_alive;
spin_lock(&sci->sc_state_lock);
sci->sc_seq_accepted = sci->sc_seq_request;
thread_is_alive = (bool)sci->sc_task;
spin_unlock(&sci->sc_state_lock);
/*
* This function does not race with the log writer thread's
* termination. Therefore, deleting sc_timer, which should not be
* done after the log writer thread exits, can be done safely outside
* the area protected by sc_state_lock.
*/
if (thread_is_alive)
del_timer_sync(&sci->sc_timer);
}
/**
* nilfs_segctor_notify - notify the result of request to caller threads
* @sci: segment constructor object
* @mode: mode of log forming
* @err: error code to be notified
*/
static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
{
/* Clear requests (even when the construction failed) */
spin_lock(&sci->sc_state_lock);
if (mode == SC_LSEG_SR) {
sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
sci->sc_seq_done = sci->sc_seq_accepted;
nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy(). Link: https://lkml.kernel.org/r/20240520132621.4054-4-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+e3973c409251e136fdd0@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=e3973c409251e136fdd0 Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:21 +09:00
nilfs_segctor_wakeup(sci, err, false);
sci->sc_flush_request = 0;
} else {
if (mode == SC_FLUSH_FILE)
sci->sc_flush_request &= ~FLUSH_FILE_BIT;
else if (mode == SC_FLUSH_DAT)
sci->sc_flush_request &= ~FLUSH_DAT_BIT;
/* re-enable timer if checkpoint creation was not done */
if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
time_before(jiffies, sci->sc_timer.expires))
add_timer(&sci->sc_timer);
}
spin_unlock(&sci->sc_state_lock);
}
/**
* nilfs_segctor_construct - form logs and write them to disk
* @sci: segment constructor object
* @mode: mode of log forming
*/
static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
struct nilfs_super_block **sbp;
int err = 0;
nilfs_segctor_accept(sci);
if (nilfs_discontinued(nilfs))
mode = SC_LSEG_SR;
if (!nilfs_segctor_confirm(sci))
err = nilfs_segctor_do_construct(sci, mode);
if (likely(!err)) {
if (mode != SC_FLUSH_DAT)
atomic_set(&nilfs->ns_ndirtyblks, 0);
if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
nilfs_discontinued(nilfs)) {
down_write(&nilfs->ns_sem);
err = -EIO;
sbp = nilfs_prepare_super(sci->sc_super,
nilfs_sb_will_flip(nilfs));
if (likely(sbp)) {
nilfs_set_log_cursor(sbp[0], nilfs);
err = nilfs_commit_super(sci->sc_super,
NILFS_SB_COMMIT);
}
up_write(&nilfs->ns_sem);
}
}
nilfs_segctor_notify(sci, mode, err);
return err;
}
static void nilfs_construction_timeout(struct timer_list *t)
{
struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
wake_up_process(sci->sc_task);
}
static void
nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
{
struct nilfs_inode_info *ii, *n;
list_for_each_entry_safe(ii, n, head, i_dirty) {
if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
continue;
list_del_init(&ii->i_dirty);
truncate_inode_pages(&ii->vfs_inode.i_data, 0);
nilfs2: fix lockdep warnings in page operations for btree nodes Patch series "nilfs2 lockdep warning fixes". The first two are to resolve the lockdep warning issue, and the last one is the accompanying cleanup and low priority. Based on your comment, this series solves the issue by separating inode object as needed. Since I was worried about the impact of the object composition changes, I tested the series carefully not to cause regressions especially for delicate functions such like disk space reclamation and snapshots. This patch (of 3): If CONFIG_LOCKDEP is enabled, nilfs2 hits lockdep warnings at inode_to_wb() during page/folio operations for btree nodes: WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 inode_to_wb include/linux/backing-dev.h:269 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 folio_account_dirtied mm/page-writeback.c:2460 [inline] WARNING: CPU: 0 PID: 6575 at include/linux/backing-dev.h:269 __folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 Modules linked in: ... RIP: 0010:inode_to_wb include/linux/backing-dev.h:269 [inline] RIP: 0010:folio_account_dirtied mm/page-writeback.c:2460 [inline] RIP: 0010:__folio_mark_dirty+0xa7c/0xe30 mm/page-writeback.c:2509 ... Call Trace: __set_page_dirty include/linux/pagemap.h:834 [inline] mark_buffer_dirty+0x4e6/0x650 fs/buffer.c:1145 nilfs_btree_propagate_p fs/nilfs2/btree.c:1889 [inline] nilfs_btree_propagate+0x4ae/0xea0 fs/nilfs2/btree.c:2085 nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337 nilfs_collect_dat_data+0x45/0xd0 fs/nilfs2/segment.c:625 nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1009 nilfs_segctor_scan_file+0x47a/0x700 fs/nilfs2/segment.c:1048 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1224 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1494 [inline] nilfs_segctor_do_construct+0x14f3/0x6c60 fs/nilfs2/segment.c:2036 nilfs_segctor_construct+0x7a7/0xb30 fs/nilfs2/segment.c:2372 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2480 [inline] nilfs_segctor_thread+0x3c3/0xf90 fs/nilfs2/segment.c:2563 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 This is because nilfs2 uses two page caches for each inode and inode->i_mapping never points to one of them, the btree node cache. This causes inode_to_wb(inode) to refer to a different page cache than the caller page/folio operations such like __folio_start_writeback(), __folio_end_writeback(), or __folio_mark_dirty() acquired the lock. This patch resolves the issue by allocating and using an additional inode to hold the page cache of btree nodes. The inode is attached one-to-one to the traditional nilfs2 inode if it requires a block mapping with b-tree. This setup change is in memory only and does not affect the disk format. Link: https://lkml.kernel.org/r/1647867427-30498-1-git-send-email-konishi.ryusuke@gmail.com Link: https://lkml.kernel.org/r/1647867427-30498-2-git-send-email-konishi.ryusuke@gmail.com Link: https://lore.kernel.org/r/YXrYvIo8YRnAOJCj@casper.infradead.org Link: https://lore.kernel.org/r/9a20b33d-b38f-b4a2-4742-c1eb5b8e4d6c@redhat.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+0d5b462a6f07447991b3@syzkaller.appspotmail.com Reported-by: syzbot+34ef28bb2aeb28724aa0@syzkaller.appspotmail.com Reported-by: Hao Sun <sunhao.th@gmail.com> Reported-by: David Hildenbrand <david@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-01 11:28:18 -07:00
nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
iput(&ii->vfs_inode);
}
}
nilfs2: fix lock order reversal in nilfs_clean_segments ioctl This is a companion patch to ("nilfs2: fix possible circular locking for get information ioctls"). This corrects lock order reversal between mm->mmap_sem and nilfs->ns_segctor_sem in nilfs_clean_segments() which was detected by lockdep check: ======================================================= [ INFO: possible circular locking dependency detected ] 2.6.30-rc3-nilfs-00003-g360bdc1 #7 ------------------------------------------------------- mmap/5294 is trying to acquire lock: (&nilfs->ns_segctor_sem){++++.+}, at: [<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2] but task is already holding lock: (&mm->mmap_sem){++++++}, at: [<c043700a>] do_page_fault+0x1d8/0x30a which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&mm->mmap_sem){++++++}: [<c01470a5>] __lock_acquire+0x1066/0x13b0 [<c01474a9>] lock_acquire+0xba/0xdd [<c01836bc>] might_fault+0x68/0x88 [<c023c61d>] copy_from_user+0x2a/0x111 [<d0d120d0>] nilfs_ioctl_prepare_clean_segments+0x1d/0xf1 [nilfs2] [<d0d0e2aa>] nilfs_clean_segments+0x6d/0x1b9 [nilfs2] [<d0d11f68>] nilfs_ioctl+0x2ad/0x318 [nilfs2] [<c01a3be7>] vfs_ioctl+0x22/0x69 [<c01a408e>] do_vfs_ioctl+0x460/0x499 [<c01a4107>] sys_ioctl+0x40/0x5a [<c01031a4>] sysenter_do_call+0x12/0x38 [<ffffffff>] 0xffffffff -> #0 (&nilfs->ns_segctor_sem){++++.+}: [<c0146e0b>] __lock_acquire+0xdcc/0x13b0 [<c01474a9>] lock_acquire+0xba/0xdd [<c0433f1d>] down_read+0x2a/0x3e [<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2] [<d0cfe0e5>] nilfs_page_mkwrite+0xe7/0x154 [nilfs2] [<c0183b0b>] __do_fault+0x165/0x376 [<c01855cd>] handle_mm_fault+0x287/0x5d1 [<c043712d>] do_page_fault+0x2fb/0x30a [<c0435462>] error_code+0x72/0x78 [<ffffffff>] 0xffffffff where nilfs_clean_segments() holds: nilfs->ns_segctor_sem -> copy_from_user() --> page fault -> mm->mmap_sem And, page fault path may hold: page fault -> mm->mmap_sem --> nilfs_page_mkwrite() -> nilfs->ns_segctor_sem Even though nilfs_clean_segments() does not perform write access on given user pages, it may cause deadlock because nilfs->ns_segctor_sem is shared per device and mm->mmap_sem can be shared with other tasks. To avoid this problem, this patch moves all calls of copy_from_user() outside the nilfs->ns_segctor_sem lock in the ioctl. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2009-05-10 22:41:43 +09:00
int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
void **kbufs)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci = nilfs->ns_writer;
struct nilfs_transaction_info ti;
int err;
if (unlikely(!sci))
return -EROFS;
nilfs_transaction_lock(sb, &ti, 1);
err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
if (unlikely(err))
goto out_unlock;
nilfs2: fix lock order reversal in nilfs_clean_segments ioctl This is a companion patch to ("nilfs2: fix possible circular locking for get information ioctls"). This corrects lock order reversal between mm->mmap_sem and nilfs->ns_segctor_sem in nilfs_clean_segments() which was detected by lockdep check: ======================================================= [ INFO: possible circular locking dependency detected ] 2.6.30-rc3-nilfs-00003-g360bdc1 #7 ------------------------------------------------------- mmap/5294 is trying to acquire lock: (&nilfs->ns_segctor_sem){++++.+}, at: [<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2] but task is already holding lock: (&mm->mmap_sem){++++++}, at: [<c043700a>] do_page_fault+0x1d8/0x30a which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&mm->mmap_sem){++++++}: [<c01470a5>] __lock_acquire+0x1066/0x13b0 [<c01474a9>] lock_acquire+0xba/0xdd [<c01836bc>] might_fault+0x68/0x88 [<c023c61d>] copy_from_user+0x2a/0x111 [<d0d120d0>] nilfs_ioctl_prepare_clean_segments+0x1d/0xf1 [nilfs2] [<d0d0e2aa>] nilfs_clean_segments+0x6d/0x1b9 [nilfs2] [<d0d11f68>] nilfs_ioctl+0x2ad/0x318 [nilfs2] [<c01a3be7>] vfs_ioctl+0x22/0x69 [<c01a408e>] do_vfs_ioctl+0x460/0x499 [<c01a4107>] sys_ioctl+0x40/0x5a [<c01031a4>] sysenter_do_call+0x12/0x38 [<ffffffff>] 0xffffffff -> #0 (&nilfs->ns_segctor_sem){++++.+}: [<c0146e0b>] __lock_acquire+0xdcc/0x13b0 [<c01474a9>] lock_acquire+0xba/0xdd [<c0433f1d>] down_read+0x2a/0x3e [<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2] [<d0cfe0e5>] nilfs_page_mkwrite+0xe7/0x154 [nilfs2] [<c0183b0b>] __do_fault+0x165/0x376 [<c01855cd>] handle_mm_fault+0x287/0x5d1 [<c043712d>] do_page_fault+0x2fb/0x30a [<c0435462>] error_code+0x72/0x78 [<ffffffff>] 0xffffffff where nilfs_clean_segments() holds: nilfs->ns_segctor_sem -> copy_from_user() --> page fault -> mm->mmap_sem And, page fault path may hold: page fault -> mm->mmap_sem --> nilfs_page_mkwrite() -> nilfs->ns_segctor_sem Even though nilfs_clean_segments() does not perform write access on given user pages, it may cause deadlock because nilfs->ns_segctor_sem is shared per device and mm->mmap_sem can be shared with other tasks. To avoid this problem, this patch moves all calls of copy_from_user() outside the nilfs->ns_segctor_sem lock in the ioctl. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2009-05-10 22:41:43 +09:00
err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
if (unlikely(err)) {
nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
goto out_unlock;
}
sci->sc_freesegs = kbufs[4];
sci->sc_nfreesegs = argv[4].v_nmembs;
list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
for (;;) {
err = nilfs_segctor_construct(sci, SC_LSEG_SR);
nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
if (likely(!err))
break;
nilfs_warn(sb, "error %d cleaning segments", err);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(sci->sc_interval);
}
if (nilfs_test_opt(nilfs, DISCARD)) {
int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
sci->sc_nfreesegs);
if (ret) {
nilfs_warn(sb,
"error %d on discard request, turning discards off for the device",
ret);
nilfs_clear_opt(nilfs, DISCARD);
}
}
out_unlock:
sci->sc_freesegs = NULL;
sci->sc_nfreesegs = 0;
nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
nilfs_transaction_unlock(sb);
return err;
}
static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
{
struct nilfs_transaction_info ti;
nilfs_transaction_lock(sci->sc_super, &ti, 0);
nilfs_segctor_construct(sci, mode);
/*
* Unclosed segment should be retried. We do this using sc_timer.
* Timeout of sc_timer will invoke complete construction which leads
* to close the current logical segment.
*/
if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
nilfs_segctor_start_timer(sci);
nilfs_transaction_unlock(sci->sc_super);
}
static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
{
int mode = 0;
spin_lock(&sci->sc_state_lock);
mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
SC_FLUSH_DAT : SC_FLUSH_FILE;
spin_unlock(&sci->sc_state_lock);
if (mode) {
2015-11-06 16:32:14 -08:00
nilfs_segctor_do_construct(sci, mode);
spin_lock(&sci->sc_state_lock);
sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
spin_unlock(&sci->sc_state_lock);
}
clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
}
static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
{
if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
return SC_FLUSH_FILE;
else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
return SC_FLUSH_DAT;
}
return SC_LSEG_SR;
}
/**
* nilfs_log_write_required - determine whether log writing is required
* @sci: nilfs_sc_info struct
* @modep: location for storing log writing mode
*
* Return: true if log writing is required, false otherwise. If log writing
* is required, the mode is stored in the location pointed to by @modep.
*/
static bool nilfs_log_write_required(struct nilfs_sc_info *sci, int *modep)
{
bool timedout, ret = true;
spin_lock(&sci->sc_state_lock);
timedout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
time_after_eq(jiffies, sci->sc_timer.expires));
if (timedout || sci->sc_seq_request != sci->sc_seq_done)
*modep = SC_LSEG_SR;
else if (sci->sc_flush_request)
*modep = nilfs_segctor_flush_mode(sci);
else
ret = false;
spin_unlock(&sci->sc_state_lock);
return ret;
}
/**
* nilfs_segctor_thread - main loop of the log writer thread
* @arg: pointer to a struct nilfs_sc_info.
*
* nilfs_segctor_thread() is the main loop function of the log writer kernel
* thread, which determines whether log writing is necessary, and if so,
* performs the log write in the background, or waits if not. It is also
* used to decide the background writeback of the superblock.
*
* Return: Always 0.
*/
static int nilfs_segctor_thread(void *arg)
{
struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
nilfs_info(sci->sc_super,
"segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
set_freezable();
while (!kthread_should_stop()) {
DEFINE_WAIT(wait);
bool should_write;
int mode;
if (freezing(current)) {
try_to_freeze();
continue;
}
prepare_to_wait(&sci->sc_wait_daemon, &wait,
TASK_INTERRUPTIBLE);
should_write = nilfs_log_write_required(sci, &mode);
if (!should_write)
schedule();
finish_wait(&sci->sc_wait_daemon, &wait);
if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
set_nilfs_discontinued(nilfs);
if (should_write)
nilfs_segctor_thread_construct(sci, mode);
}
/* end sync. */
spin_lock(&sci->sc_state_lock);
sci->sc_task = NULL;
timer_shutdown_sync(&sci->sc_timer);
spin_unlock(&sci->sc_state_lock);
return 0;
}
/*
* Setup & clean-up functions
*/
static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
struct nilfs_root *root)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci;
sci = kzalloc(sizeof(*sci), GFP_KERNEL);
if (!sci)
return NULL;
sci->sc_super = sb;
nilfs_get_root(root);
sci->sc_root = root;
init_waitqueue_head(&sci->sc_wait_request);
init_waitqueue_head(&sci->sc_wait_daemon);
spin_lock_init(&sci->sc_state_lock);
INIT_LIST_HEAD(&sci->sc_dirty_files);
INIT_LIST_HEAD(&sci->sc_segbufs);
INIT_LIST_HEAD(&sci->sc_write_logs);
INIT_LIST_HEAD(&sci->sc_gc_inodes);
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
INIT_LIST_HEAD(&sci->sc_iput_queue);
INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
if (nilfs->ns_interval)
sci->sc_interval = HZ * nilfs->ns_interval;
if (nilfs->ns_watermark)
sci->sc_watermark = nilfs->ns_watermark;
return sci;
}
static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
{
int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
/*
* The segctord thread was stopped and its timer was removed.
* But some tasks remain.
*/
do {
struct nilfs_transaction_info ti;
nilfs_transaction_lock(sci->sc_super, &ti, 0);
ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
nilfs_transaction_unlock(sci->sc_super);
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
flush_work(&sci->sc_iput_work);
} while (ret && ret != -EROFS && retrycount-- > 0);
}
/**
* nilfs_segctor_destroy - destroy the segment constructor.
* @sci: nilfs_sc_info
*
* nilfs_segctor_destroy() kills the segctord thread and frees
* the nilfs_sc_info struct.
* Caller must hold the segment semaphore.
*/
static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
{
struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
int flag;
up_write(&nilfs->ns_segctor_sem);
if (sci->sc_task) {
wake_up(&sci->sc_wait_daemon);
kthread_stop(sci->sc_task);
}
spin_lock(&sci->sc_state_lock);
flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
|| sci->sc_seq_request != sci->sc_seq_done);
spin_unlock(&sci->sc_state_lock);
nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy(). Link: https://lkml.kernel.org/r/20240520132621.4054-4-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+e3973c409251e136fdd0@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=e3973c409251e136fdd0 Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Cc: "Bai, Shuangpeng" <sjb7183@psu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20 22:26:21 +09:00
/*
* Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
* be called from delayed iput() via nilfs_evict_inode() and can race
* with the above log writer thread termination.
*/
nilfs_segctor_wakeup(sci, 0, true);
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
if (flush_work(&sci->sc_iput_work))
flag = true;
if (flag || !nilfs_segctor_confirm(sci))
nilfs_segctor_write_out(sci);
if (!list_empty(&sci->sc_dirty_files)) {
nilfs_warn(sci->sc_super,
"disposed unprocessed dirty file(s) when stopping log writer");
nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
}
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
if (!list_empty(&sci->sc_iput_queue)) {
nilfs_warn(sci->sc_super,
"disposed unprocessed inode(s) in iput queue when stopping log writer");
nilfs2: fix deadlock of segment constructor over I_SYNC flag Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 12:25:20 -08:00
nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
}
WARN_ON(!list_empty(&sci->sc_segbufs));
WARN_ON(!list_empty(&sci->sc_write_logs));
nilfs_put_root(sci->sc_root);
down_write(&nilfs->ns_segctor_sem);
kfree(sci);
}
/**
* nilfs_attach_log_writer - attach log writer
* @sb: super block instance
* @root: root object of the current filesystem tree
*
* This allocates a log writer object, initializes it, and starts the
* log writer.
*
* Return: 0 on success, or the following negative error code on failure.
* * %-EINTR - Log writer thread creation failed due to interruption.
* * %-ENOMEM - Insufficient memory available.
*/
int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_sc_info *sci;
struct task_struct *t;
int err;
if (nilfs->ns_writer) {
/*
nilfs2: fix use-after-free bug of ns_writer on remount If a nilfs2 filesystem is downgraded to read-only due to metadata corruption on disk and is remounted read/write, or if emergency read-only remount is performed, detaching a log writer and synchronizing the filesystem can be done at the same time. In these cases, use-after-free of the log writer (hereinafter nilfs->ns_writer) can happen as shown in the scenario below: Task1 Task2 -------------------------------- ------------------------------ nilfs_construct_segment nilfs_segctor_sync init_wait init_waitqueue_entry add_wait_queue schedule nilfs_remount (R/W remount case) nilfs_attach_log_writer nilfs_detach_log_writer nilfs_segctor_destroy kfree finish_wait _raw_spin_lock_irqsave __raw_spin_lock_irqsave do_raw_spin_lock debug_spin_lock_before <-- use-after-free While Task1 is sleeping, nilfs->ns_writer is freed by Task2. After Task1 waked up, Task1 accesses nilfs->ns_writer which is already freed. This scenario diagram is based on the Shigeru Yoshida's post [1]. This patch fixes the issue by not detaching nilfs->ns_writer on remount so that this UAF race doesn't happen. Along with this change, this patch also inserts a few necessary read-only checks with superblock instance where only the ns_writer pointer was used to check if the filesystem is read-only. Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1] Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com Reported-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-04 23:29:59 +09:00
* This happens if the filesystem is made read-only by
* __nilfs_error or nilfs_remount and then remounted
* read/write. In these cases, reuse the existing
* writer.
*/
nilfs2: fix use-after-free bug of ns_writer on remount If a nilfs2 filesystem is downgraded to read-only due to metadata corruption on disk and is remounted read/write, or if emergency read-only remount is performed, detaching a log writer and synchronizing the filesystem can be done at the same time. In these cases, use-after-free of the log writer (hereinafter nilfs->ns_writer) can happen as shown in the scenario below: Task1 Task2 -------------------------------- ------------------------------ nilfs_construct_segment nilfs_segctor_sync init_wait init_waitqueue_entry add_wait_queue schedule nilfs_remount (R/W remount case) nilfs_attach_log_writer nilfs_detach_log_writer nilfs_segctor_destroy kfree finish_wait _raw_spin_lock_irqsave __raw_spin_lock_irqsave do_raw_spin_lock debug_spin_lock_before <-- use-after-free While Task1 is sleeping, nilfs->ns_writer is freed by Task2. After Task1 waked up, Task1 accesses nilfs->ns_writer which is already freed. This scenario diagram is based on the Shigeru Yoshida's post [1]. This patch fixes the issue by not detaching nilfs->ns_writer on remount so that this UAF race doesn't happen. Along with this change, this patch also inserts a few necessary read-only checks with superblock instance where only the ns_writer pointer was used to check if the filesystem is read-only. Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1] Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com Reported-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-04 23:29:59 +09:00
return 0;
}
sci = nilfs_segctor_new(sb, root);
if (unlikely(!sci))
return -ENOMEM;
nilfs->ns_writer = sci;
t = kthread_create(nilfs_segctor_thread, sci, "segctord");
if (IS_ERR(t)) {
err = PTR_ERR(t);
nilfs_err(sb, "error %d creating segctord thread", err);
nilfs2: fix leak of nilfs_root in case of writer thread creation failure If nilfs_attach_log_writer() failed to create a log writer thread, it frees a data structure of the log writer without any cleanup. After commit e912a5b66837 ("nilfs2: use root object to get ifile"), this causes a leak of struct nilfs_root, which started to leak an ifile metadata inode and a kobject on that struct. In addition, if the kernel is booted with panic_on_warn, the above ifile metadata inode leak will cause the following panic when the nilfs2 kernel module is removed: kmem_cache_destroy nilfs2_inode_cache: Slab cache still has objects when called from nilfs_destroy_cachep+0x16/0x3a [nilfs2] WARNING: CPU: 8 PID: 1464 at mm/slab_common.c:494 kmem_cache_destroy+0x138/0x140 ... RIP: 0010:kmem_cache_destroy+0x138/0x140 Code: 00 20 00 00 e8 a9 55 d8 ff e9 76 ff ff ff 48 8b 53 60 48 c7 c6 20 70 65 86 48 c7 c7 d8 69 9c 86 48 8b 4c 24 28 e8 ef 71 c7 00 <0f> 0b e9 53 ff ff ff c3 48 81 ff ff 0f 00 00 77 03 31 c0 c3 53 48 ... Call Trace: <TASK> ? nilfs_palloc_freev.cold.24+0x58/0x58 [nilfs2] nilfs_destroy_cachep+0x16/0x3a [nilfs2] exit_nilfs_fs+0xa/0x1b [nilfs2] __x64_sys_delete_module+0x1d9/0x3a0 ? __sanitizer_cov_trace_pc+0x1a/0x50 ? syscall_trace_enter.isra.19+0x119/0x190 do_syscall_64+0x34/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd ... </TASK> Kernel panic - not syncing: panic_on_warn set ... This patch fixes these issues by calling nilfs_detach_log_writer() cleanup function if spawning the log writer thread fails. Link: https://lkml.kernel.org/r/20221007085226.57667-1-konishi.ryusuke@gmail.com Fixes: e912a5b66837 ("nilfs2: use root object to get ifile") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+7381dc4ad60658ca4c05@syzkaller.appspotmail.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-07 17:52:26 +09:00
nilfs_detach_log_writer(sb);
return err;
}
sci->sc_task = t;
timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
nilfs2: fix leak of nilfs_root in case of writer thread creation failure If nilfs_attach_log_writer() failed to create a log writer thread, it frees a data structure of the log writer without any cleanup. After commit e912a5b66837 ("nilfs2: use root object to get ifile"), this causes a leak of struct nilfs_root, which started to leak an ifile metadata inode and a kobject on that struct. In addition, if the kernel is booted with panic_on_warn, the above ifile metadata inode leak will cause the following panic when the nilfs2 kernel module is removed: kmem_cache_destroy nilfs2_inode_cache: Slab cache still has objects when called from nilfs_destroy_cachep+0x16/0x3a [nilfs2] WARNING: CPU: 8 PID: 1464 at mm/slab_common.c:494 kmem_cache_destroy+0x138/0x140 ... RIP: 0010:kmem_cache_destroy+0x138/0x140 Code: 00 20 00 00 e8 a9 55 d8 ff e9 76 ff ff ff 48 8b 53 60 48 c7 c6 20 70 65 86 48 c7 c7 d8 69 9c 86 48 8b 4c 24 28 e8 ef 71 c7 00 <0f> 0b e9 53 ff ff ff c3 48 81 ff ff 0f 00 00 77 03 31 c0 c3 53 48 ... Call Trace: <TASK> ? nilfs_palloc_freev.cold.24+0x58/0x58 [nilfs2] nilfs_destroy_cachep+0x16/0x3a [nilfs2] exit_nilfs_fs+0xa/0x1b [nilfs2] __x64_sys_delete_module+0x1d9/0x3a0 ? __sanitizer_cov_trace_pc+0x1a/0x50 ? syscall_trace_enter.isra.19+0x119/0x190 do_syscall_64+0x34/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd ... </TASK> Kernel panic - not syncing: panic_on_warn set ... This patch fixes these issues by calling nilfs_detach_log_writer() cleanup function if spawning the log writer thread fails. Link: https://lkml.kernel.org/r/20221007085226.57667-1-konishi.ryusuke@gmail.com Fixes: e912a5b66837 ("nilfs2: use root object to get ifile") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+7381dc4ad60658ca4c05@syzkaller.appspotmail.com Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-07 17:52:26 +09:00
wake_up_process(sci->sc_task);
return 0;
}
/**
* nilfs_detach_log_writer - destroy log writer
* @sb: super block instance
*
* This kills log writer daemon, frees the log writer object, and
* destroys list of dirty files.
*/
void nilfs_detach_log_writer(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
LIST_HEAD(garbage_list);
down_write(&nilfs->ns_segctor_sem);
if (nilfs->ns_writer) {
nilfs_segctor_destroy(nilfs->ns_writer);
nilfs->ns_writer = NULL;
}
nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously, nilfs_evict_inode() could cause use-after-free read for nilfs_root if inodes are left in "garbage_list" and released by nilfs_dispose_list at the end of nilfs_detach_log_writer(), and this bug was fixed by commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"). However, it turned out that there is another possibility of UAF in the call path where mark_inode_dirty_sync() is called from iput(): nilfs_detach_log_writer() nilfs_dispose_list() iput() mark_inode_dirty_sync() __mark_inode_dirty() nilfs_dirty_inode() __nilfs_mark_inode_dirty() nilfs_load_inode_block() --> causes UAF of nilfs_root struct This can happen after commit 0ae45f63d4ef ("vfs: add support for a lazytime mount option"), which changed iput() to call mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME flag and i_nlink is non-zero. This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only") when using the syzbot reproducer, but the issue has potentially existed before. Fix this issue by adding a "purging flag" to the nilfs structure, setting that flag while disposing the "garbage_list" and checking it in __nilfs_mark_inode_dirty(). Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"), this patch does not rely on ns_writer to determine whether to skip operations, so as not to break recovery on mount. The nilfs_salvage_orphan_logs routine dirties the buffer of salvaged data before attaching the log writer, so changing __nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL will cause recovery write to fail. The purpose of using the cleanup-only flag is to allow for narrowing of such conditions. Link: https://lkml.kernel.org/r/20230728191318.33047-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+74db8b3087f293d3a13a@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/000000000000b4e906060113fd63@google.com Fixes: 0ae45f63d4ef ("vfs: add support for a lazytime mount option") Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-29 04:13:18 +09:00
set_nilfs_purging(nilfs);
/* Force to free the list of dirty files */
spin_lock(&nilfs->ns_inode_lock);
if (!list_empty(&nilfs->ns_dirty_files)) {
list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
nilfs_warn(sb,
"disposed unprocessed dirty file(s) when detaching log writer");
}
spin_unlock(&nilfs->ns_inode_lock);
up_write(&nilfs->ns_segctor_sem);
nilfs_dispose_list(nilfs, &garbage_list, 1);
nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously, nilfs_evict_inode() could cause use-after-free read for nilfs_root if inodes are left in "garbage_list" and released by nilfs_dispose_list at the end of nilfs_detach_log_writer(), and this bug was fixed by commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"). However, it turned out that there is another possibility of UAF in the call path where mark_inode_dirty_sync() is called from iput(): nilfs_detach_log_writer() nilfs_dispose_list() iput() mark_inode_dirty_sync() __mark_inode_dirty() nilfs_dirty_inode() __nilfs_mark_inode_dirty() nilfs_load_inode_block() --> causes UAF of nilfs_root struct This can happen after commit 0ae45f63d4ef ("vfs: add support for a lazytime mount option"), which changed iput() to call mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME flag and i_nlink is non-zero. This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only") when using the syzbot reproducer, but the issue has potentially existed before. Fix this issue by adding a "purging flag" to the nilfs structure, setting that flag while disposing the "garbage_list" and checking it in __nilfs_mark_inode_dirty(). Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"), this patch does not rely on ns_writer to determine whether to skip operations, so as not to break recovery on mount. The nilfs_salvage_orphan_logs routine dirties the buffer of salvaged data before attaching the log writer, so changing __nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL will cause recovery write to fail. The purpose of using the cleanup-only flag is to allow for narrowing of such conditions. Link: https://lkml.kernel.org/r/20230728191318.33047-1-konishi.ryusuke@gmail.com Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+74db8b3087f293d3a13a@syzkaller.appspotmail.com Closes: https://lkml.kernel.org/r/000000000000b4e906060113fd63@google.com Fixes: 0ae45f63d4ef ("vfs: add support for a lazytime mount option") Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-29 04:13:18 +09:00
clear_nilfs_purging(nilfs);
}