mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-12 16:19:53 +00:00
978 lines
23 KiB
C
978 lines
23 KiB
C
|
/*
|
||
|
* Copyright (C) 2003 Christophe Saout <christophe@saout.de>
|
||
|
* Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
|
||
|
*
|
||
|
* This file is released under the GPL.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/bio.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/mempool.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/crypto.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include <asm/scatterlist.h>
|
||
|
#include <asm/page.h>
|
||
|
|
||
|
#include "dm.h"
|
||
|
|
||
|
#define PFX "crypt: "
|
||
|
|
||
|
/*
|
||
|
* per bio private data
|
||
|
*/
|
||
|
struct crypt_io {
|
||
|
struct dm_target *target;
|
||
|
struct bio *bio;
|
||
|
struct bio *first_clone;
|
||
|
struct work_struct work;
|
||
|
atomic_t pending;
|
||
|
int error;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* context holding the current state of a multi-part conversion
|
||
|
*/
|
||
|
struct convert_context {
|
||
|
struct bio *bio_in;
|
||
|
struct bio *bio_out;
|
||
|
unsigned int offset_in;
|
||
|
unsigned int offset_out;
|
||
|
unsigned int idx_in;
|
||
|
unsigned int idx_out;
|
||
|
sector_t sector;
|
||
|
int write;
|
||
|
};
|
||
|
|
||
|
struct crypt_config;
|
||
|
|
||
|
struct crypt_iv_operations {
|
||
|
int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
|
||
|
const char *opts);
|
||
|
void (*dtr)(struct crypt_config *cc);
|
||
|
const char *(*status)(struct crypt_config *cc);
|
||
|
int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Crypt: maps a linear range of a block device
|
||
|
* and encrypts / decrypts at the same time.
|
||
|
*/
|
||
|
struct crypt_config {
|
||
|
struct dm_dev *dev;
|
||
|
sector_t start;
|
||
|
|
||
|
/*
|
||
|
* pool for per bio private data and
|
||
|
* for encryption buffer pages
|
||
|
*/
|
||
|
mempool_t *io_pool;
|
||
|
mempool_t *page_pool;
|
||
|
|
||
|
/*
|
||
|
* crypto related data
|
||
|
*/
|
||
|
struct crypt_iv_operations *iv_gen_ops;
|
||
|
char *iv_mode;
|
||
|
void *iv_gen_private;
|
||
|
sector_t iv_offset;
|
||
|
unsigned int iv_size;
|
||
|
|
||
|
struct crypto_tfm *tfm;
|
||
|
unsigned int key_size;
|
||
|
u8 key[0];
|
||
|
};
|
||
|
|
||
|
#define MIN_IOS 256
|
||
|
#define MIN_POOL_PAGES 32
|
||
|
#define MIN_BIO_PAGES 8
|
||
|
|
||
|
static kmem_cache_t *_crypt_io_pool;
|
||
|
|
||
|
/*
|
||
|
* Mempool alloc and free functions for the page
|
||
|
*/
|
||
|
static void *mempool_alloc_page(unsigned int __nocast gfp_mask, void *data)
|
||
|
{
|
||
|
return alloc_page(gfp_mask);
|
||
|
}
|
||
|
|
||
|
static void mempool_free_page(void *page, void *data)
|
||
|
{
|
||
|
__free_page(page);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Different IV generation algorithms:
|
||
|
*
|
||
|
* plain: the initial vector is the 32-bit low-endian version of the sector
|
||
|
* number, padded with zeros if neccessary.
|
||
|
*
|
||
|
* ess_iv: "encrypted sector|salt initial vector", the sector number is
|
||
|
* encrypted with the bulk cipher using a salt as key. The salt
|
||
|
* should be derived from the bulk cipher's key via hashing.
|
||
|
*
|
||
|
* plumb: unimplemented, see:
|
||
|
* http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
|
||
|
*/
|
||
|
|
||
|
static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
|
||
|
{
|
||
|
memset(iv, 0, cc->iv_size);
|
||
|
*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
|
||
|
const char *opts)
|
||
|
{
|
||
|
struct crypto_tfm *essiv_tfm;
|
||
|
struct crypto_tfm *hash_tfm;
|
||
|
struct scatterlist sg;
|
||
|
unsigned int saltsize;
|
||
|
u8 *salt;
|
||
|
|
||
|
if (opts == NULL) {
|
||
|
ti->error = PFX "Digest algorithm missing for ESSIV mode";
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Hash the cipher key with the given hash algorithm */
|
||
|
hash_tfm = crypto_alloc_tfm(opts, 0);
|
||
|
if (hash_tfm == NULL) {
|
||
|
ti->error = PFX "Error initializing ESSIV hash";
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
|
||
|
ti->error = PFX "Expected digest algorithm for ESSIV hash";
|
||
|
crypto_free_tfm(hash_tfm);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
saltsize = crypto_tfm_alg_digestsize(hash_tfm);
|
||
|
salt = kmalloc(saltsize, GFP_KERNEL);
|
||
|
if (salt == NULL) {
|
||
|
ti->error = PFX "Error kmallocing salt storage in ESSIV";
|
||
|
crypto_free_tfm(hash_tfm);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
sg.page = virt_to_page(cc->key);
|
||
|
sg.offset = offset_in_page(cc->key);
|
||
|
sg.length = cc->key_size;
|
||
|
crypto_digest_digest(hash_tfm, &sg, 1, salt);
|
||
|
crypto_free_tfm(hash_tfm);
|
||
|
|
||
|
/* Setup the essiv_tfm with the given salt */
|
||
|
essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
|
||
|
CRYPTO_TFM_MODE_ECB);
|
||
|
if (essiv_tfm == NULL) {
|
||
|
ti->error = PFX "Error allocating crypto tfm for ESSIV";
|
||
|
kfree(salt);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (crypto_tfm_alg_blocksize(essiv_tfm)
|
||
|
!= crypto_tfm_alg_ivsize(cc->tfm)) {
|
||
|
ti->error = PFX "Block size of ESSIV cipher does "
|
||
|
"not match IV size of block cipher";
|
||
|
crypto_free_tfm(essiv_tfm);
|
||
|
kfree(salt);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
|
||
|
ti->error = PFX "Failed to set key for ESSIV cipher";
|
||
|
crypto_free_tfm(essiv_tfm);
|
||
|
kfree(salt);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
kfree(salt);
|
||
|
|
||
|
cc->iv_gen_private = (void *)essiv_tfm;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void crypt_iv_essiv_dtr(struct crypt_config *cc)
|
||
|
{
|
||
|
crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
|
||
|
cc->iv_gen_private = NULL;
|
||
|
}
|
||
|
|
||
|
static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
|
||
|
{
|
||
|
struct scatterlist sg = { NULL, };
|
||
|
|
||
|
memset(iv, 0, cc->iv_size);
|
||
|
*(u64 *)iv = cpu_to_le64(sector);
|
||
|
|
||
|
sg.page = virt_to_page(iv);
|
||
|
sg.offset = offset_in_page(iv);
|
||
|
sg.length = cc->iv_size;
|
||
|
crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
|
||
|
&sg, &sg, cc->iv_size);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct crypt_iv_operations crypt_iv_plain_ops = {
|
||
|
.generator = crypt_iv_plain_gen
|
||
|
};
|
||
|
|
||
|
static struct crypt_iv_operations crypt_iv_essiv_ops = {
|
||
|
.ctr = crypt_iv_essiv_ctr,
|
||
|
.dtr = crypt_iv_essiv_dtr,
|
||
|
.generator = crypt_iv_essiv_gen
|
||
|
};
|
||
|
|
||
|
|
||
|
static inline int
|
||
|
crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
|
||
|
struct scatterlist *in, unsigned int length,
|
||
|
int write, sector_t sector)
|
||
|
{
|
||
|
u8 iv[cc->iv_size];
|
||
|
int r;
|
||
|
|
||
|
if (cc->iv_gen_ops) {
|
||
|
r = cc->iv_gen_ops->generator(cc, iv, sector);
|
||
|
if (r < 0)
|
||
|
return r;
|
||
|
|
||
|
if (write)
|
||
|
r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
|
||
|
else
|
||
|
r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
|
||
|
} else {
|
||
|
if (write)
|
||
|
r = crypto_cipher_encrypt(cc->tfm, out, in, length);
|
||
|
else
|
||
|
r = crypto_cipher_decrypt(cc->tfm, out, in, length);
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
|
||
|
struct bio *bio_out, struct bio *bio_in,
|
||
|
sector_t sector, int write)
|
||
|
{
|
||
|
ctx->bio_in = bio_in;
|
||
|
ctx->bio_out = bio_out;
|
||
|
ctx->offset_in = 0;
|
||
|
ctx->offset_out = 0;
|
||
|
ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
|
||
|
ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
|
||
|
ctx->sector = sector + cc->iv_offset;
|
||
|
ctx->write = write;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encrypt / decrypt data from one bio to another one (can be the same one)
|
||
|
*/
|
||
|
static int crypt_convert(struct crypt_config *cc,
|
||
|
struct convert_context *ctx)
|
||
|
{
|
||
|
int r = 0;
|
||
|
|
||
|
while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
|
||
|
ctx->idx_out < ctx->bio_out->bi_vcnt) {
|
||
|
struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
|
||
|
struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
|
||
|
struct scatterlist sg_in = {
|
||
|
.page = bv_in->bv_page,
|
||
|
.offset = bv_in->bv_offset + ctx->offset_in,
|
||
|
.length = 1 << SECTOR_SHIFT
|
||
|
};
|
||
|
struct scatterlist sg_out = {
|
||
|
.page = bv_out->bv_page,
|
||
|
.offset = bv_out->bv_offset + ctx->offset_out,
|
||
|
.length = 1 << SECTOR_SHIFT
|
||
|
};
|
||
|
|
||
|
ctx->offset_in += sg_in.length;
|
||
|
if (ctx->offset_in >= bv_in->bv_len) {
|
||
|
ctx->offset_in = 0;
|
||
|
ctx->idx_in++;
|
||
|
}
|
||
|
|
||
|
ctx->offset_out += sg_out.length;
|
||
|
if (ctx->offset_out >= bv_out->bv_len) {
|
||
|
ctx->offset_out = 0;
|
||
|
ctx->idx_out++;
|
||
|
}
|
||
|
|
||
|
r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
|
||
|
ctx->write, ctx->sector);
|
||
|
if (r < 0)
|
||
|
break;
|
||
|
|
||
|
ctx->sector++;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate a new unfragmented bio with the given size
|
||
|
* This should never violate the device limitations
|
||
|
* May return a smaller bio when running out of pages
|
||
|
*/
|
||
|
static struct bio *
|
||
|
crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
||
|
struct bio *base_bio, unsigned int *bio_vec_idx)
|
||
|
{
|
||
|
struct bio *bio;
|
||
|
unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
||
|
int gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
|
||
|
unsigned long flags = current->flags;
|
||
|
unsigned int i;
|
||
|
|
||
|
/*
|
||
|
* Tell VM to act less aggressively and fail earlier.
|
||
|
* This is not necessary but increases throughput.
|
||
|
* FIXME: Is this really intelligent?
|
||
|
*/
|
||
|
current->flags &= ~PF_MEMALLOC;
|
||
|
|
||
|
if (base_bio)
|
||
|
bio = bio_clone(base_bio, GFP_NOIO);
|
||
|
else
|
||
|
bio = bio_alloc(GFP_NOIO, nr_iovecs);
|
||
|
if (!bio) {
|
||
|
if (flags & PF_MEMALLOC)
|
||
|
current->flags |= PF_MEMALLOC;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* if the last bio was not complete, continue where that one ended */
|
||
|
bio->bi_idx = *bio_vec_idx;
|
||
|
bio->bi_vcnt = *bio_vec_idx;
|
||
|
bio->bi_size = 0;
|
||
|
bio->bi_flags &= ~(1 << BIO_SEG_VALID);
|
||
|
|
||
|
/* bio->bi_idx pages have already been allocated */
|
||
|
size -= bio->bi_idx * PAGE_SIZE;
|
||
|
|
||
|
for(i = bio->bi_idx; i < nr_iovecs; i++) {
|
||
|
struct bio_vec *bv = bio_iovec_idx(bio, i);
|
||
|
|
||
|
bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
|
||
|
if (!bv->bv_page)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* if additional pages cannot be allocated without waiting,
|
||
|
* return a partially allocated bio, the caller will then try
|
||
|
* to allocate additional bios while submitting this partial bio
|
||
|
*/
|
||
|
if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
|
||
|
gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
|
||
|
|
||
|
bv->bv_offset = 0;
|
||
|
if (size > PAGE_SIZE)
|
||
|
bv->bv_len = PAGE_SIZE;
|
||
|
else
|
||
|
bv->bv_len = size;
|
||
|
|
||
|
bio->bi_size += bv->bv_len;
|
||
|
bio->bi_vcnt++;
|
||
|
size -= bv->bv_len;
|
||
|
}
|
||
|
|
||
|
if (flags & PF_MEMALLOC)
|
||
|
current->flags |= PF_MEMALLOC;
|
||
|
|
||
|
if (!bio->bi_size) {
|
||
|
bio_put(bio);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Remember the last bio_vec allocated to be able
|
||
|
* to correctly continue after the splitting.
|
||
|
*/
|
||
|
*bio_vec_idx = bio->bi_vcnt;
|
||
|
|
||
|
return bio;
|
||
|
}
|
||
|
|
||
|
static void crypt_free_buffer_pages(struct crypt_config *cc,
|
||
|
struct bio *bio, unsigned int bytes)
|
||
|
{
|
||
|
unsigned int i, start, end;
|
||
|
struct bio_vec *bv;
|
||
|
|
||
|
/*
|
||
|
* This is ugly, but Jens Axboe thinks that using bi_idx in the
|
||
|
* endio function is too dangerous at the moment, so I calculate the
|
||
|
* correct position using bi_vcnt and bi_size.
|
||
|
* The bv_offset and bv_len fields might already be modified but we
|
||
|
* know that we always allocated whole pages.
|
||
|
* A fix to the bi_idx issue in the kernel is in the works, so
|
||
|
* we will hopefully be able to revert to the cleaner solution soon.
|
||
|
*/
|
||
|
i = bio->bi_vcnt - 1;
|
||
|
bv = bio_iovec_idx(bio, i);
|
||
|
end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
|
||
|
start = end - bytes;
|
||
|
|
||
|
start >>= PAGE_SHIFT;
|
||
|
if (!bio->bi_size)
|
||
|
end = bio->bi_vcnt;
|
||
|
else
|
||
|
end >>= PAGE_SHIFT;
|
||
|
|
||
|
for(i = start; i < end; i++) {
|
||
|
bv = bio_iovec_idx(bio, i);
|
||
|
BUG_ON(!bv->bv_page);
|
||
|
mempool_free(bv->bv_page, cc->page_pool);
|
||
|
bv->bv_page = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* One of the bios was finished. Check for completion of
|
||
|
* the whole request and correctly clean up the buffer.
|
||
|
*/
|
||
|
static void dec_pending(struct crypt_io *io, int error)
|
||
|
{
|
||
|
struct crypt_config *cc = (struct crypt_config *) io->target->private;
|
||
|
|
||
|
if (error < 0)
|
||
|
io->error = error;
|
||
|
|
||
|
if (!atomic_dec_and_test(&io->pending))
|
||
|
return;
|
||
|
|
||
|
if (io->first_clone)
|
||
|
bio_put(io->first_clone);
|
||
|
|
||
|
bio_endio(io->bio, io->bio->bi_size, io->error);
|
||
|
|
||
|
mempool_free(io, cc->io_pool);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* kcryptd:
|
||
|
*
|
||
|
* Needed because it would be very unwise to do decryption in an
|
||
|
* interrupt context, so bios returning from read requests get
|
||
|
* queued here.
|
||
|
*/
|
||
|
static struct workqueue_struct *_kcryptd_workqueue;
|
||
|
|
||
|
static void kcryptd_do_work(void *data)
|
||
|
{
|
||
|
struct crypt_io *io = (struct crypt_io *) data;
|
||
|
struct crypt_config *cc = (struct crypt_config *) io->target->private;
|
||
|
struct convert_context ctx;
|
||
|
int r;
|
||
|
|
||
|
crypt_convert_init(cc, &ctx, io->bio, io->bio,
|
||
|
io->bio->bi_sector - io->target->begin, 0);
|
||
|
r = crypt_convert(cc, &ctx);
|
||
|
|
||
|
dec_pending(io, r);
|
||
|
}
|
||
|
|
||
|
static void kcryptd_queue_io(struct crypt_io *io)
|
||
|
{
|
||
|
INIT_WORK(&io->work, kcryptd_do_work, io);
|
||
|
queue_work(_kcryptd_workqueue, &io->work);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Decode key from its hex representation
|
||
|
*/
|
||
|
static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
|
||
|
{
|
||
|
char buffer[3];
|
||
|
char *endp;
|
||
|
unsigned int i;
|
||
|
|
||
|
buffer[2] = '\0';
|
||
|
|
||
|
for(i = 0; i < size; i++) {
|
||
|
buffer[0] = *hex++;
|
||
|
buffer[1] = *hex++;
|
||
|
|
||
|
key[i] = (u8)simple_strtoul(buffer, &endp, 16);
|
||
|
|
||
|
if (endp != &buffer[2])
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (*hex != '\0')
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encode key into its hex representation
|
||
|
*/
|
||
|
static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
for(i = 0; i < size; i++) {
|
||
|
sprintf(hex, "%02x", *key);
|
||
|
hex += 2;
|
||
|
key++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Construct an encryption mapping:
|
||
|
* <cipher> <key> <iv_offset> <dev_path> <start>
|
||
|
*/
|
||
|
static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
||
|
{
|
||
|
struct crypt_config *cc;
|
||
|
struct crypto_tfm *tfm;
|
||
|
char *tmp;
|
||
|
char *cipher;
|
||
|
char *chainmode;
|
||
|
char *ivmode;
|
||
|
char *ivopts;
|
||
|
unsigned int crypto_flags;
|
||
|
unsigned int key_size;
|
||
|
|
||
|
if (argc != 5) {
|
||
|
ti->error = PFX "Not enough arguments";
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
tmp = argv[0];
|
||
|
cipher = strsep(&tmp, "-");
|
||
|
chainmode = strsep(&tmp, "-");
|
||
|
ivopts = strsep(&tmp, "-");
|
||
|
ivmode = strsep(&ivopts, ":");
|
||
|
|
||
|
if (tmp)
|
||
|
DMWARN(PFX "Unexpected additional cipher options");
|
||
|
|
||
|
key_size = strlen(argv[1]) >> 1;
|
||
|
|
||
|
cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
|
||
|
if (cc == NULL) {
|
||
|
ti->error =
|
||
|
PFX "Cannot allocate transparent encryption context";
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
cc->key_size = key_size;
|
||
|
if ((!key_size && strcmp(argv[1], "-") != 0) ||
|
||
|
(key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
|
||
|
ti->error = PFX "Error decoding key";
|
||
|
goto bad1;
|
||
|
}
|
||
|
|
||
|
/* Compatiblity mode for old dm-crypt cipher strings */
|
||
|
if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
|
||
|
chainmode = "cbc";
|
||
|
ivmode = "plain";
|
||
|
}
|
||
|
|
||
|
/* Choose crypto_flags according to chainmode */
|
||
|
if (strcmp(chainmode, "cbc") == 0)
|
||
|
crypto_flags = CRYPTO_TFM_MODE_CBC;
|
||
|
else if (strcmp(chainmode, "ecb") == 0)
|
||
|
crypto_flags = CRYPTO_TFM_MODE_ECB;
|
||
|
else {
|
||
|
ti->error = PFX "Unknown chaining mode";
|
||
|
goto bad1;
|
||
|
}
|
||
|
|
||
|
if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
|
||
|
ti->error = PFX "This chaining mode requires an IV mechanism";
|
||
|
goto bad1;
|
||
|
}
|
||
|
|
||
|
tfm = crypto_alloc_tfm(cipher, crypto_flags);
|
||
|
if (!tfm) {
|
||
|
ti->error = PFX "Error allocating crypto tfm";
|
||
|
goto bad1;
|
||
|
}
|
||
|
if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
|
||
|
ti->error = PFX "Expected cipher algorithm";
|
||
|
goto bad2;
|
||
|
}
|
||
|
|
||
|
cc->tfm = tfm;
|
||
|
|
||
|
/*
|
||
|
* Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
|
||
|
* See comments at iv code
|
||
|
*/
|
||
|
|
||
|
if (ivmode == NULL)
|
||
|
cc->iv_gen_ops = NULL;
|
||
|
else if (strcmp(ivmode, "plain") == 0)
|
||
|
cc->iv_gen_ops = &crypt_iv_plain_ops;
|
||
|
else if (strcmp(ivmode, "essiv") == 0)
|
||
|
cc->iv_gen_ops = &crypt_iv_essiv_ops;
|
||
|
else {
|
||
|
ti->error = PFX "Invalid IV mode";
|
||
|
goto bad2;
|
||
|
}
|
||
|
|
||
|
if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
|
||
|
cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
|
||
|
goto bad2;
|
||
|
|
||
|
if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
|
||
|
/* at least a 64 bit sector number should fit in our buffer */
|
||
|
cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
|
||
|
(unsigned int)(sizeof(u64) / sizeof(u8)));
|
||
|
else {
|
||
|
cc->iv_size = 0;
|
||
|
if (cc->iv_gen_ops) {
|
||
|
DMWARN(PFX "Selected cipher does not support IVs");
|
||
|
if (cc->iv_gen_ops->dtr)
|
||
|
cc->iv_gen_ops->dtr(cc);
|
||
|
cc->iv_gen_ops = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
|
||
|
mempool_free_slab, _crypt_io_pool);
|
||
|
if (!cc->io_pool) {
|
||
|
ti->error = PFX "Cannot allocate crypt io mempool";
|
||
|
goto bad3;
|
||
|
}
|
||
|
|
||
|
cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page,
|
||
|
mempool_free_page, NULL);
|
||
|
if (!cc->page_pool) {
|
||
|
ti->error = PFX "Cannot allocate page mempool";
|
||
|
goto bad4;
|
||
|
}
|
||
|
|
||
|
if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
|
||
|
ti->error = PFX "Error setting key";
|
||
|
goto bad5;
|
||
|
}
|
||
|
|
||
|
if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) {
|
||
|
ti->error = PFX "Invalid iv_offset sector";
|
||
|
goto bad5;
|
||
|
}
|
||
|
|
||
|
if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) {
|
||
|
ti->error = PFX "Invalid device sector";
|
||
|
goto bad5;
|
||
|
}
|
||
|
|
||
|
if (dm_get_device(ti, argv[3], cc->start, ti->len,
|
||
|
dm_table_get_mode(ti->table), &cc->dev)) {
|
||
|
ti->error = PFX "Device lookup failed";
|
||
|
goto bad5;
|
||
|
}
|
||
|
|
||
|
if (ivmode && cc->iv_gen_ops) {
|
||
|
if (ivopts)
|
||
|
*(ivopts - 1) = ':';
|
||
|
cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
|
||
|
if (!cc->iv_mode) {
|
||
|
ti->error = PFX "Error kmallocing iv_mode string";
|
||
|
goto bad5;
|
||
|
}
|
||
|
strcpy(cc->iv_mode, ivmode);
|
||
|
} else
|
||
|
cc->iv_mode = NULL;
|
||
|
|
||
|
ti->private = cc;
|
||
|
return 0;
|
||
|
|
||
|
bad5:
|
||
|
mempool_destroy(cc->page_pool);
|
||
|
bad4:
|
||
|
mempool_destroy(cc->io_pool);
|
||
|
bad3:
|
||
|
if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
|
||
|
cc->iv_gen_ops->dtr(cc);
|
||
|
bad2:
|
||
|
crypto_free_tfm(tfm);
|
||
|
bad1:
|
||
|
kfree(cc);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static void crypt_dtr(struct dm_target *ti)
|
||
|
{
|
||
|
struct crypt_config *cc = (struct crypt_config *) ti->private;
|
||
|
|
||
|
mempool_destroy(cc->page_pool);
|
||
|
mempool_destroy(cc->io_pool);
|
||
|
|
||
|
if (cc->iv_mode)
|
||
|
kfree(cc->iv_mode);
|
||
|
if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
|
||
|
cc->iv_gen_ops->dtr(cc);
|
||
|
crypto_free_tfm(cc->tfm);
|
||
|
dm_put_device(ti, cc->dev);
|
||
|
kfree(cc);
|
||
|
}
|
||
|
|
||
|
static int crypt_endio(struct bio *bio, unsigned int done, int error)
|
||
|
{
|
||
|
struct crypt_io *io = (struct crypt_io *) bio->bi_private;
|
||
|
struct crypt_config *cc = (struct crypt_config *) io->target->private;
|
||
|
|
||
|
if (bio_data_dir(bio) == WRITE) {
|
||
|
/*
|
||
|
* free the processed pages, even if
|
||
|
* it's only a partially completed write
|
||
|
*/
|
||
|
crypt_free_buffer_pages(cc, bio, done);
|
||
|
}
|
||
|
|
||
|
if (bio->bi_size)
|
||
|
return 1;
|
||
|
|
||
|
bio_put(bio);
|
||
|
|
||
|
/*
|
||
|
* successful reads are decrypted by the worker thread
|
||
|
*/
|
||
|
if ((bio_data_dir(bio) == READ)
|
||
|
&& bio_flagged(bio, BIO_UPTODATE)) {
|
||
|
kcryptd_queue_io(io);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
dec_pending(io, error);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static inline struct bio *
|
||
|
crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
|
||
|
sector_t sector, unsigned int *bvec_idx,
|
||
|
struct convert_context *ctx)
|
||
|
{
|
||
|
struct bio *clone;
|
||
|
|
||
|
if (bio_data_dir(bio) == WRITE) {
|
||
|
clone = crypt_alloc_buffer(cc, bio->bi_size,
|
||
|
io->first_clone, bvec_idx);
|
||
|
if (clone) {
|
||
|
ctx->bio_out = clone;
|
||
|
if (crypt_convert(cc, ctx) < 0) {
|
||
|
crypt_free_buffer_pages(cc, clone,
|
||
|
clone->bi_size);
|
||
|
bio_put(clone);
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* The block layer might modify the bvec array, so always
|
||
|
* copy the required bvecs because we need the original
|
||
|
* one in order to decrypt the whole bio data *afterwards*.
|
||
|
*/
|
||
|
clone = bio_alloc(GFP_NOIO, bio_segments(bio));
|
||
|
if (clone) {
|
||
|
clone->bi_idx = 0;
|
||
|
clone->bi_vcnt = bio_segments(bio);
|
||
|
clone->bi_size = bio->bi_size;
|
||
|
memcpy(clone->bi_io_vec, bio_iovec(bio),
|
||
|
sizeof(struct bio_vec) * clone->bi_vcnt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!clone)
|
||
|
return NULL;
|
||
|
|
||
|
clone->bi_private = io;
|
||
|
clone->bi_end_io = crypt_endio;
|
||
|
clone->bi_bdev = cc->dev->bdev;
|
||
|
clone->bi_sector = cc->start + sector;
|
||
|
clone->bi_rw = bio->bi_rw;
|
||
|
|
||
|
return clone;
|
||
|
}
|
||
|
|
||
|
static int crypt_map(struct dm_target *ti, struct bio *bio,
|
||
|
union map_info *map_context)
|
||
|
{
|
||
|
struct crypt_config *cc = (struct crypt_config *) ti->private;
|
||
|
struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
|
||
|
struct convert_context ctx;
|
||
|
struct bio *clone;
|
||
|
unsigned int remaining = bio->bi_size;
|
||
|
sector_t sector = bio->bi_sector - ti->begin;
|
||
|
unsigned int bvec_idx = 0;
|
||
|
|
||
|
io->target = ti;
|
||
|
io->bio = bio;
|
||
|
io->first_clone = NULL;
|
||
|
io->error = 0;
|
||
|
atomic_set(&io->pending, 1); /* hold a reference */
|
||
|
|
||
|
if (bio_data_dir(bio) == WRITE)
|
||
|
crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
|
||
|
|
||
|
/*
|
||
|
* The allocated buffers can be smaller than the whole bio,
|
||
|
* so repeat the whole process until all the data can be handled.
|
||
|
*/
|
||
|
while (remaining) {
|
||
|
clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
|
||
|
if (!clone)
|
||
|
goto cleanup;
|
||
|
|
||
|
if (!io->first_clone) {
|
||
|
/*
|
||
|
* hold a reference to the first clone, because it
|
||
|
* holds the bio_vec array and that can't be freed
|
||
|
* before all other clones are released
|
||
|
*/
|
||
|
bio_get(clone);
|
||
|
io->first_clone = clone;
|
||
|
}
|
||
|
atomic_inc(&io->pending);
|
||
|
|
||
|
remaining -= clone->bi_size;
|
||
|
sector += bio_sectors(clone);
|
||
|
|
||
|
generic_make_request(clone);
|
||
|
|
||
|
/* out of memory -> run queues */
|
||
|
if (remaining)
|
||
|
blk_congestion_wait(bio_data_dir(clone), HZ/100);
|
||
|
}
|
||
|
|
||
|
/* drop reference, clones could have returned before we reach this */
|
||
|
dec_pending(io, 0);
|
||
|
return 0;
|
||
|
|
||
|
cleanup:
|
||
|
if (io->first_clone) {
|
||
|
dec_pending(io, -ENOMEM);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* if no bio has been dispatched yet, we can directly return the error */
|
||
|
mempool_free(io, cc->io_pool);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static int crypt_status(struct dm_target *ti, status_type_t type,
|
||
|
char *result, unsigned int maxlen)
|
||
|
{
|
||
|
struct crypt_config *cc = (struct crypt_config *) ti->private;
|
||
|
const char *cipher;
|
||
|
const char *chainmode = NULL;
|
||
|
unsigned int sz = 0;
|
||
|
|
||
|
switch (type) {
|
||
|
case STATUSTYPE_INFO:
|
||
|
result[0] = '\0';
|
||
|
break;
|
||
|
|
||
|
case STATUSTYPE_TABLE:
|
||
|
cipher = crypto_tfm_alg_name(cc->tfm);
|
||
|
|
||
|
switch(cc->tfm->crt_cipher.cit_mode) {
|
||
|
case CRYPTO_TFM_MODE_CBC:
|
||
|
chainmode = "cbc";
|
||
|
break;
|
||
|
case CRYPTO_TFM_MODE_ECB:
|
||
|
chainmode = "ecb";
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
if (cc->iv_mode)
|
||
|
DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
|
||
|
else
|
||
|
DMEMIT("%s-%s ", cipher, chainmode);
|
||
|
|
||
|
if (cc->key_size > 0) {
|
||
|
if ((maxlen - sz) < ((cc->key_size << 1) + 1))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
crypt_encode_key(result + sz, cc->key, cc->key_size);
|
||
|
sz += cc->key_size << 1;
|
||
|
} else {
|
||
|
if (sz >= maxlen)
|
||
|
return -ENOMEM;
|
||
|
result[sz++] = '-';
|
||
|
}
|
||
|
|
||
|
DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT,
|
||
|
cc->iv_offset, cc->dev->name, cc->start);
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct target_type crypt_target = {
|
||
|
.name = "crypt",
|
||
|
.version= {1, 1, 0},
|
||
|
.module = THIS_MODULE,
|
||
|
.ctr = crypt_ctr,
|
||
|
.dtr = crypt_dtr,
|
||
|
.map = crypt_map,
|
||
|
.status = crypt_status,
|
||
|
};
|
||
|
|
||
|
static int __init dm_crypt_init(void)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
_crypt_io_pool = kmem_cache_create("dm-crypt_io",
|
||
|
sizeof(struct crypt_io),
|
||
|
0, 0, NULL, NULL);
|
||
|
if (!_crypt_io_pool)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
_kcryptd_workqueue = create_workqueue("kcryptd");
|
||
|
if (!_kcryptd_workqueue) {
|
||
|
r = -ENOMEM;
|
||
|
DMERR(PFX "couldn't create kcryptd");
|
||
|
goto bad1;
|
||
|
}
|
||
|
|
||
|
r = dm_register_target(&crypt_target);
|
||
|
if (r < 0) {
|
||
|
DMERR(PFX "register failed %d", r);
|
||
|
goto bad2;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
bad2:
|
||
|
destroy_workqueue(_kcryptd_workqueue);
|
||
|
bad1:
|
||
|
kmem_cache_destroy(_crypt_io_pool);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void __exit dm_crypt_exit(void)
|
||
|
{
|
||
|
int r = dm_unregister_target(&crypt_target);
|
||
|
|
||
|
if (r < 0)
|
||
|
DMERR(PFX "unregister failed %d", r);
|
||
|
|
||
|
destroy_workqueue(_kcryptd_workqueue);
|
||
|
kmem_cache_destroy(_crypt_io_pool);
|
||
|
}
|
||
|
|
||
|
module_init(dm_crypt_init);
|
||
|
module_exit(dm_crypt_exit);
|
||
|
|
||
|
MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
|
||
|
MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
|
||
|
MODULE_LICENSE("GPL");
|