linux/io_uring/io_uring.h

472 lines
13 KiB
C
Raw Normal View History

#ifndef IOU_CORE_H
#define IOU_CORE_H
#include <linux/errno.h>
#include <linux/lockdep.h>
#include <linux/resume_user_mode.h>
#include <linux/kasan.h>
#include <linux/poll.h>
#include <linux/io_uring_types.h>
#include <uapi/linux/eventpoll.h>
#include "io-wq.h"
#include "slist.h"
#include "filetable.h"
#ifndef CREATE_TRACE_POINTS
#include <trace/events/io_uring.h>
#endif
enum {
IOU_OK = 0,
IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED,
/*
* Requeue the task_work to restart operations on this request. The
* actual value isn't important, should just be not an otherwise
* valid error code, yet less than -MAX_ERRNO and valid internally.
*/
IOU_REQUEUE = -3072,
/*
* Intended only when both IO_URING_F_MULTISHOT is passed
* to indicate to the poll runner that multishot should be
* removed and the result is set on req->cqe.res.
*/
IOU_STOP_MULTISHOT = -ECANCELED,
};
struct io_wait_queue {
struct wait_queue_entry wq;
struct io_ring_ctx *ctx;
unsigned cq_tail;
unsigned cq_min_tail;
unsigned nr_timeouts;
int hit_timeout;
ktime_t min_timeout;
ktime_t timeout;
struct hrtimer t;
io-uring: add napi busy poll support This adds the napi busy polling support in io_uring.c. It adds a new napi_list to the io_ring_ctx structure. This list contains the list of napi_id's that are currently enabled for busy polling. The list is synchronized by the new napi_lock spin lock. The current default napi busy polling time is stored in napi_busy_poll_to. If napi busy polling is not enabled, the value is 0. In addition there is also a hash table. The hash table store the napi id and the pointer to the above list nodes. The hash table is used to speed up the lookup to the list elements. The hash table is synchronized with rcu. The NAPI_TIMEOUT is stored as a timeout to make sure that the time a napi entry is stored in the napi list is limited. The busy poll timeout is also stored as part of the io_wait_queue. This is necessary as for sq polling the poll interval needs to be adjusted and the napi callback allows only to pass in one value. This has been tested with two simple programs from the liburing library repository: the napi client and the napi server program. The client sends a request, which has a timestamp in its payload and the server replies with the same payload. The client calculates the roundtrip time and stores it to calculate the results. The client is running on host1 and the server is running on host 2 (in the same rack). The measured times below are roundtrip times. They are average times over 5 runs each. Each run measures 1 million roundtrips. no rx coal rx coal: frames=88,usecs=33 Default 57us 56us client_poll=100us 47us 46us server_poll=100us 51us 46us client_poll=100us+ 40us 40us server_poll=100us client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on client client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on server client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on client + server Signed-off-by: Stefan Roesch <shr@devkernel.io> Suggested-by: Olivier Langlois <olivier@trillion01.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230608163839.2891748-5-shr@devkernel.io Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-06-08 16:38:36 +00:00
#ifdef CONFIG_NET_RX_BUSY_POLL
ktime_t napi_busy_poll_dt;
io-uring: add napi busy poll support This adds the napi busy polling support in io_uring.c. It adds a new napi_list to the io_ring_ctx structure. This list contains the list of napi_id's that are currently enabled for busy polling. The list is synchronized by the new napi_lock spin lock. The current default napi busy polling time is stored in napi_busy_poll_to. If napi busy polling is not enabled, the value is 0. In addition there is also a hash table. The hash table store the napi id and the pointer to the above list nodes. The hash table is used to speed up the lookup to the list elements. The hash table is synchronized with rcu. The NAPI_TIMEOUT is stored as a timeout to make sure that the time a napi entry is stored in the napi list is limited. The busy poll timeout is also stored as part of the io_wait_queue. This is necessary as for sq polling the poll interval needs to be adjusted and the napi callback allows only to pass in one value. This has been tested with two simple programs from the liburing library repository: the napi client and the napi server program. The client sends a request, which has a timestamp in its payload and the server replies with the same payload. The client calculates the roundtrip time and stores it to calculate the results. The client is running on host1 and the server is running on host 2 (in the same rack). The measured times below are roundtrip times. They are average times over 5 runs each. Each run measures 1 million roundtrips. no rx coal rx coal: frames=88,usecs=33 Default 57us 56us client_poll=100us 47us 46us server_poll=100us 51us 46us client_poll=100us+ 40us 40us server_poll=100us client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on client client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on server client_poll=100us+ 41us 39us server_poll=100us+ prefer napi busy poll on client + server Signed-off-by: Stefan Roesch <shr@devkernel.io> Suggested-by: Olivier Langlois <olivier@trillion01.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230608163839.2891748-5-shr@devkernel.io Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-06-08 16:38:36 +00:00
bool napi_prefer_busy_poll;
#endif
};
static inline bool io_should_wake(struct io_wait_queue *iowq)
{
struct io_ring_ctx *ctx = iowq->ctx;
int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
/*
* Wake up if we have enough events, or if a timeout occurred since we
* started waiting. For timeouts, we always want to return to userspace,
* regardless of event count.
*/
return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
}
bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
io_uring: add IORING_SETUP_DEFER_TASKRUN Allow deferring async tasks until the user calls io_uring_enter(2) with the IORING_ENTER_GETEVENTS flag. Enable this mode with a flag at io_uring_setup time. This functionality requires that the later io_uring_enter will be called from the same submission task, and therefore restrict this flag to work only when IORING_SETUP_SINGLE_ISSUER is also set. Being able to hand pick when tasks are run prevents the problem where there is current work to be done, however task work runs anyway. For example, a common workload would obtain a batch of CQEs, and process each one. Interrupting this to additional taskwork would add latency but not gain anything. If instead task work is deferred to just before more CQEs are obtained then no additional latency is added. The way this is implemented is by trying to keep task work local to a io_ring_ctx, rather than to the submission task. This is required, as the application will want to wake up only a single io_ring_ctx at a time to process work, and so the lists of work have to be kept separate. This has some other benefits like not having to check the task continually in handle_tw_list (and potentially unlocking/locking those), and reducing locks in the submit & process completions path. There are networking cases where using this option can reduce request latency by 50%. For example a contrived example using [1] where the client sends 2k data and receives the same data back while doing some system calls (to trigger task work) shows this reduction. The reason ends up being that if sending responses is delayed by processing task work, then the client side sits idle. Whereas reordering the sends first means that the client runs it's workload in parallel with the local task work. [1]: Using https://github.com/DylanZA/netbench/tree/defer_run Client: ./netbench --client_only 1 --control_port 10000 --host <host> --tx "epoll --threads 16 --per_thread 1 --size 2048 --resp 2048 --workload 1000" Server: ./netbench --server_only 1 --control_port 10000 --rx "io_uring --defer_taskrun 0 --workload 100" --rx "io_uring --defer_taskrun 1 --workload 100" Signed-off-by: Dylan Yudaken <dylany@fb.com> Link: https://lore.kernel.org/r/20220830125013.570060-5-dylany@fb.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-08-30 12:50:10 +00:00
int io_run_task_work_sig(struct io_ring_ctx *ctx);
void io_req_defer_failed(struct io_kiocb *req, s32 res);
bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
struct file *io_file_get_normal(struct io_kiocb *req, int fd);
struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
unsigned issue_flags);
void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
unsigned flags);
bool io_alloc_async_data(struct io_kiocb *req);
void io_req_task_queue(struct io_kiocb *req);
void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
void io_req_task_queue_fail(struct io_kiocb *req, int ret);
void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
void tctx_task_work(struct callback_head *cb);
__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
int io_uring_alloc_task_context(struct task_struct *task,
struct io_ring_ctx *ctx);
int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
int start, int end);
void io_req_queue_iowq(struct io_kiocb *req);
int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
void __io_submit_flush_completions(struct io_ring_ctx *ctx);
struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
void io_wq_submit_work(struct io_wq_work *work);
void io_free_req(struct io_kiocb *req);
void io_queue_next(struct io_kiocb *req);
void io_task_refs_refill(struct io_uring_task *tctx);
bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
bool cancel_all);
void io_activate_pollwq(struct io_ring_ctx *ctx);
static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
{
#if defined(CONFIG_PROVE_LOCKING)
lockdep_assert(in_task());
if (ctx->flags & IORING_SETUP_IOPOLL) {
lockdep_assert_held(&ctx->uring_lock);
} else if (!ctx->task_complete) {
lockdep_assert_held(&ctx->completion_lock);
} else if (ctx->submitter_task) {
/*
* ->submitter_task may be NULL and we can still post a CQE,
* if the ring has been setup with IORING_SETUP_R_DISABLED.
* Not from an SQE, as those cannot be submitted, but via
* updating tagged resources.
*/
if (ctx->submitter_task->flags & PF_EXITING)
lockdep_assert(current_work());
else
lockdep_assert(current == ctx->submitter_task);
}
#endif
}
static inline void io_req_task_work_add(struct io_kiocb *req)
{
__io_req_task_work_add(req, 0);
}
static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
{
if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
ctx->submit_state.cq_flush)
__io_submit_flush_completions(ctx);
}
#define io_for_each_link(pos, head) \
for (pos = (head); pos; pos = pos->link)
static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
struct io_uring_cqe **ret,
bool overflow)
{
io_lockdep_assert_cq_locked(ctx);
if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
return false;
}
*ret = ctx->cqe_cached;
ctx->cached_cq_tail++;
ctx->cqe_cached++;
if (ctx->flags & IORING_SETUP_CQE32)
ctx->cqe_cached++;
return true;
}
static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
{
return io_get_cqe_overflow(ctx, ret, false);
}
static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
struct io_kiocb *req)
{
struct io_uring_cqe *cqe;
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
if (unlikely(!io_get_cqe(ctx, &cqe)))
return false;
if (trace_io_uring_complete_enabled())
trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
req->cqe.res, req->cqe.flags,
req->big_cqe.extra1, req->big_cqe.extra2);
memcpy(cqe, &req->cqe, sizeof(*cqe));
if (ctx->flags & IORING_SETUP_CQE32) {
memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
memset(&req->big_cqe, 0, sizeof(req->big_cqe));
}
return true;
}
static inline void req_set_fail(struct io_kiocb *req)
{
req->flags |= REQ_F_FAIL;
if (req->flags & REQ_F_CQE_SKIP) {
req->flags &= ~REQ_F_CQE_SKIP;
req->flags |= REQ_F_SKIP_LINK_CQES;
}
}
static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
{
req->cqe.res = res;
req->cqe.flags = cflags;
}
static inline bool req_has_async_data(struct io_kiocb *req)
{
return req->flags & REQ_F_ASYNC_DATA;
}
static inline void io_put_file(struct io_kiocb *req)
{
if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
fput(req->file);
}
static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
unsigned issue_flags)
{
lockdep_assert_held(&ctx->uring_lock);
if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
mutex_unlock(&ctx->uring_lock);
}
static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
unsigned issue_flags)
{
/*
* "Normal" inline submissions always hold the uring_lock, since we
* grab it from the system call. Same is true for the SQPOLL offload.
* The only exception is when we've detached the request and issue it
* from an async worker thread, grab the lock for that case.
*/
if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
mutex_lock(&ctx->uring_lock);
lockdep_assert_held(&ctx->uring_lock);
}
static inline void io_commit_cqring(struct io_ring_ctx *ctx)
{
/* order cqe stores with ring update */
smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
}
static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
{
if (wq_has_sleeper(&ctx->poll_wq))
__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
}
static inline void io_cqring_wake(struct io_ring_ctx *ctx)
{
/*
* Trigger waitqueue handler on all waiters on our waitqueue. This
* won't necessarily wake up all the tasks, io_should_wake() will make
* that decision.
*
* Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
* set in the mask so that if we recurse back into our own poll
* waitqueue handlers, we know we have a dependency between eventfd or
* epoll and should terminate multishot poll at that point.
*/
if (wq_has_sleeper(&ctx->cq_wait))
__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
}
static inline bool io_sqring_full(struct io_ring_ctx *ctx)
{
struct io_rings *r = ctx->rings;
/*
* SQPOLL must use the actual sqring head, as using the cached_sq_head
* is race prone if the SQPOLL thread has grabbed entries but not yet
* committed them to the ring. For !SQPOLL, this doesn't matter, but
* since this helper is just used for SQPOLL sqring waits (or POLLOUT),
* just read the actual sqring head unconditionally.
*/
return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
}
static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
unsigned int entries;
/* make sure SQ entry isn't read before tail */
entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
return min(entries, ctx->sq_entries);
}
io_uring: add IORING_SETUP_DEFER_TASKRUN Allow deferring async tasks until the user calls io_uring_enter(2) with the IORING_ENTER_GETEVENTS flag. Enable this mode with a flag at io_uring_setup time. This functionality requires that the later io_uring_enter will be called from the same submission task, and therefore restrict this flag to work only when IORING_SETUP_SINGLE_ISSUER is also set. Being able to hand pick when tasks are run prevents the problem where there is current work to be done, however task work runs anyway. For example, a common workload would obtain a batch of CQEs, and process each one. Interrupting this to additional taskwork would add latency but not gain anything. If instead task work is deferred to just before more CQEs are obtained then no additional latency is added. The way this is implemented is by trying to keep task work local to a io_ring_ctx, rather than to the submission task. This is required, as the application will want to wake up only a single io_ring_ctx at a time to process work, and so the lists of work have to be kept separate. This has some other benefits like not having to check the task continually in handle_tw_list (and potentially unlocking/locking those), and reducing locks in the submit & process completions path. There are networking cases where using this option can reduce request latency by 50%. For example a contrived example using [1] where the client sends 2k data and receives the same data back while doing some system calls (to trigger task work) shows this reduction. The reason ends up being that if sending responses is delayed by processing task work, then the client side sits idle. Whereas reordering the sends first means that the client runs it's workload in parallel with the local task work. [1]: Using https://github.com/DylanZA/netbench/tree/defer_run Client: ./netbench --client_only 1 --control_port 10000 --host <host> --tx "epoll --threads 16 --per_thread 1 --size 2048 --resp 2048 --workload 1000" Server: ./netbench --server_only 1 --control_port 10000 --rx "io_uring --defer_taskrun 0 --workload 100" --rx "io_uring --defer_taskrun 1 --workload 100" Signed-off-by: Dylan Yudaken <dylany@fb.com> Link: https://lore.kernel.org/r/20220830125013.570060-5-dylany@fb.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-08-30 12:50:10 +00:00
static inline int io_run_task_work(void)
{
bool ret = false;
/*
* Always check-and-clear the task_work notification signal. With how
* signaling works for task_work, we can find it set with nothing to
* run. We need to clear it for that case, like get_signal() does.
*/
if (test_thread_flag(TIF_NOTIFY_SIGNAL))
clear_notify_signal();
/*
* PF_IO_WORKER never returns to userspace, so check here if we have
* notify work that needs processing.
*/
if (current->flags & PF_IO_WORKER) {
if (test_thread_flag(TIF_NOTIFY_RESUME)) {
__set_current_state(TASK_RUNNING);
resume_user_mode_work(NULL);
}
if (current->io_uring) {
unsigned int count = 0;
io_uring/sqpoll: ensure task state is TASK_RUNNING when running task_work When the sqpoll is exiting and cancels pending work items, it may need to run task_work. If this happens from within io_uring_cancel_generic(), then it may be under waiting for the io_uring_task waitqueue. This results in the below splat from the scheduler, as the ring mutex may be attempted grabbed while in a TASK_INTERRUPTIBLE state. Ensure that the task state is set appropriately for that, just like what is done for the other cases in io_run_task_work(). do not call blocking ops when !TASK_RUNNING; state=1 set at [<0000000029387fd2>] prepare_to_wait+0x88/0x2fc WARNING: CPU: 6 PID: 59939 at kernel/sched/core.c:8561 __might_sleep+0xf4/0x140 Modules linked in: CPU: 6 UID: 0 PID: 59939 Comm: iou-sqp-59938 Not tainted 6.12.0-rc3-00113-g8d020023b155 #7456 Hardware name: linux,dummy-virt (DT) pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : __might_sleep+0xf4/0x140 lr : __might_sleep+0xf4/0x140 sp : ffff80008c5e7830 x29: ffff80008c5e7830 x28: ffff0000d93088c0 x27: ffff60001c2d7230 x26: dfff800000000000 x25: ffff0000e16b9180 x24: ffff80008c5e7a50 x23: 1ffff000118bcf4a x22: ffff0000e16b9180 x21: ffff0000e16b9180 x20: 000000000000011b x19: ffff80008310fac0 x18: 1ffff000118bcd90 x17: 30303c5b20746120 x16: 74657320313d6574 x15: 0720072007200720 x14: 0720072007200720 x13: 0720072007200720 x12: ffff600036c64f0b x11: 1fffe00036c64f0a x10: ffff600036c64f0a x9 : dfff800000000000 x8 : 00009fffc939b0f6 x7 : ffff0001b6327853 x6 : 0000000000000001 x5 : ffff0001b6327850 x4 : ffff600036c64f0b x3 : ffff8000803c35bc x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000e16b9180 Call trace: __might_sleep+0xf4/0x140 mutex_lock+0x84/0x124 io_handle_tw_list+0xf4/0x260 tctx_task_work_run+0x94/0x340 io_run_task_work+0x1ec/0x3c0 io_uring_cancel_generic+0x364/0x524 io_sq_thread+0x820/0x124c ret_from_fork+0x10/0x20 Cc: stable@vger.kernel.org Fixes: af5d68f8892f ("io_uring/sqpoll: manage task_work privately") Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-17 14:31:56 +00:00
__set_current_state(TASK_RUNNING);
tctx_task_work_run(current->io_uring, UINT_MAX, &count);
if (count)
ret = true;
}
}
if (task_work_pending(current)) {
__set_current_state(TASK_RUNNING);
task_work_run();
ret = true;
}
return ret;
io_uring: add IORING_SETUP_DEFER_TASKRUN Allow deferring async tasks until the user calls io_uring_enter(2) with the IORING_ENTER_GETEVENTS flag. Enable this mode with a flag at io_uring_setup time. This functionality requires that the later io_uring_enter will be called from the same submission task, and therefore restrict this flag to work only when IORING_SETUP_SINGLE_ISSUER is also set. Being able to hand pick when tasks are run prevents the problem where there is current work to be done, however task work runs anyway. For example, a common workload would obtain a batch of CQEs, and process each one. Interrupting this to additional taskwork would add latency but not gain anything. If instead task work is deferred to just before more CQEs are obtained then no additional latency is added. The way this is implemented is by trying to keep task work local to a io_ring_ctx, rather than to the submission task. This is required, as the application will want to wake up only a single io_ring_ctx at a time to process work, and so the lists of work have to be kept separate. This has some other benefits like not having to check the task continually in handle_tw_list (and potentially unlocking/locking those), and reducing locks in the submit & process completions path. There are networking cases where using this option can reduce request latency by 50%. For example a contrived example using [1] where the client sends 2k data and receives the same data back while doing some system calls (to trigger task work) shows this reduction. The reason ends up being that if sending responses is delayed by processing task work, then the client side sits idle. Whereas reordering the sends first means that the client runs it's workload in parallel with the local task work. [1]: Using https://github.com/DylanZA/netbench/tree/defer_run Client: ./netbench --client_only 1 --control_port 10000 --host <host> --tx "epoll --threads 16 --per_thread 1 --size 2048 --resp 2048 --workload 1000" Server: ./netbench --server_only 1 --control_port 10000 --rx "io_uring --defer_taskrun 0 --workload 100" --rx "io_uring --defer_taskrun 1 --workload 100" Signed-off-by: Dylan Yudaken <dylany@fb.com> Link: https://lore.kernel.org/r/20220830125013.570060-5-dylany@fb.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-08-30 12:50:10 +00:00
}
static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
{
return task_work_pending(current) || !llist_empty(&ctx->work_llist);
}
static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
{
lockdep_assert_held(&ctx->uring_lock);
}
/*
* Don't complete immediately but use deferred completion infrastructure.
* Protected by ->uring_lock and can only be used either with
* IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
*/
static inline void io_req_complete_defer(struct io_kiocb *req)
__must_hold(&req->ctx->uring_lock)
{
struct io_submit_state *state = &req->ctx->submit_state;
lockdep_assert_held(&req->ctx->uring_lock);
wq_list_add_tail(&req->comp_list, &state->compl_reqs);
}
static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
{
if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
ctx->has_evfd || ctx->poll_activated))
__io_commit_cqring_flush(ctx);
}
static inline void io_get_task_refs(int nr)
{
struct io_uring_task *tctx = current->io_uring;
tctx->cached_refs -= nr;
if (unlikely(tctx->cached_refs < 0))
io_task_refs_refill(tctx);
}
static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
{
return !ctx->submit_state.free_list.next;
}
extern struct kmem_cache *req_cachep;
extern struct kmem_cache *io_buf_cachep;
static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
{
struct io_kiocb *req;
req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
wq_stack_extract(&ctx->submit_state.free_list);
return req;
}
static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
{
if (unlikely(io_req_cache_empty(ctx))) {
if (!__io_alloc_req_refill(ctx))
return false;
}
*req = io_extract_req(ctx);
return true;
}
static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
{
return likely(ctx->submitter_task == current);
}
static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
{
return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
ctx->submitter_task == current);
}
static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
{
io_req_set_res(req, res, 0);
req->io_task_work.func = io_req_task_complete;
io_req_task_work_add(req);
}
/*
* IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
* slot.
*/
static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
{
if (ctx->flags & IORING_SETUP_SQE128)
return 2 * sizeof(struct io_uring_sqe);
return sizeof(struct io_uring_sqe);
}
static inline bool io_file_can_poll(struct io_kiocb *req)
{
if (req->flags & REQ_F_CAN_POLL)
return true;
io_uring: check for non-NULL file pointer in io_file_can_poll() In earlier kernels, it was possible to trigger a NULL pointer dereference off the forced async preparation path, if no file had been assigned. The trace leading to that looks as follows: BUG: kernel NULL pointer dereference, address: 00000000000000b0 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP CPU: 67 PID: 1633 Comm: buf-ring-invali Not tainted 6.8.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 2/2/2022 RIP: 0010:io_buffer_select+0xc3/0x210 Code: 00 00 48 39 d1 0f 82 ae 00 00 00 48 81 4b 48 00 00 01 00 48 89 73 70 0f b7 50 0c 66 89 53 42 85 ed 0f 85 d2 00 00 00 48 8b 13 <48> 8b 92 b0 00 00 00 48 83 7a 40 00 0f 84 21 01 00 00 4c 8b 20 5b RSP: 0018:ffffb7bec38c7d88 EFLAGS: 00010246 RAX: ffff97af2be61000 RBX: ffff97af234f1700 RCX: 0000000000000040 RDX: 0000000000000000 RSI: ffff97aecfb04820 RDI: ffff97af234f1700 RBP: 0000000000000000 R08: 0000000000200030 R09: 0000000000000020 R10: ffffb7bec38c7dc8 R11: 000000000000c000 R12: ffffb7bec38c7db8 R13: ffff97aecfb05800 R14: ffff97aecfb05800 R15: ffff97af2be5e000 FS: 00007f852f74b740(0000) GS:ffff97b1eeec0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000b0 CR3: 000000016deab005 CR4: 0000000000370ef0 Call Trace: <TASK> ? __die+0x1f/0x60 ? page_fault_oops+0x14d/0x420 ? do_user_addr_fault+0x61/0x6a0 ? exc_page_fault+0x6c/0x150 ? asm_exc_page_fault+0x22/0x30 ? io_buffer_select+0xc3/0x210 __io_import_iovec+0xb5/0x120 io_readv_prep_async+0x36/0x70 io_queue_sqe_fallback+0x20/0x260 io_submit_sqes+0x314/0x630 __do_sys_io_uring_enter+0x339/0xbc0 ? __do_sys_io_uring_register+0x11b/0xc50 ? vm_mmap_pgoff+0xce/0x160 do_syscall_64+0x5f/0x180 entry_SYSCALL_64_after_hwframe+0x46/0x4e RIP: 0033:0x55e0a110a67e Code: ba cc 00 00 00 45 31 c0 44 0f b6 92 d0 00 00 00 31 d2 41 b9 08 00 00 00 41 83 e2 01 41 c1 e2 04 41 09 c2 b8 aa 01 00 00 0f 05 <c3> 90 89 30 eb a9 0f 1f 40 00 48 8b 42 20 8b 00 a8 06 75 af 85 f6 because the request is marked forced ASYNC and has a bad file fd, and hence takes the forced async prep path. Current kernels with the request async prep cleaned up can no longer hit this issue, but for ease of backporting, let's add this safety check in here too as it really doesn't hurt. For both cases, this will inevitably end with a CQE posted with -EBADF. Cc: stable@vger.kernel.org Fixes: a76c0b31eef5 ("io_uring: commit non-pollable provided mapped buffers upfront") Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-06-01 18:25:35 +00:00
if (req->file && file_can_poll(req->file)) {
req->flags |= REQ_F_CAN_POLL;
return true;
}
return false;
}
static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
{
if (ctx->clockid == CLOCK_MONOTONIC)
return ktime_get();
return ktime_get_with_offset(ctx->clock_offset);
}
enum {
IO_CHECK_CQ_OVERFLOW_BIT,
IO_CHECK_CQ_DROPPED_BIT,
};
static inline bool io_has_work(struct io_ring_ctx *ctx)
{
return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
!llist_empty(&ctx->work_llist);
}
#endif