mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 02:15:57 +00:00
[PATCH] EDAC: probe1 cleanup 1-of-2
- Add lower-level functions that handle various parts of the initialization done by the xxx_probe1() functions. Some of the xxx_probe1() functions are much too long and complicated (see "Chapter 5: Functions" in Documentation/CodingStyle). - Cleanup of probe1() functions in EDAC Signed-off-by: Doug Thompson <norsk5@xmission.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
2d7bbb91c8
commit
1318952514
@ -182,62 +182,20 @@ static void amd76x_check(struct mem_ctl_info *mci)
|
||||
amd76x_process_error_info(mci, &info, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* amd76x_probe1 - Perform set up for detected device
|
||||
* @pdev; PCI device detected
|
||||
* @dev_idx: Device type index
|
||||
*
|
||||
* We have found an AMD76x and now need to set up the memory
|
||||
* controller status reporting. We configure and set up the
|
||||
* memory controller reporting and claim the device.
|
||||
*/
|
||||
static int amd76x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
static void amd76x_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
|
||||
enum edac_type edac_mode)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
struct csrow_info *csrow;
|
||||
u32 mba, mba_base, mba_mask, dms;
|
||||
int index;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
enum edac_type ems_modes[] = {
|
||||
EDAC_NONE,
|
||||
EDAC_EC,
|
||||
EDAC_SECDED,
|
||||
EDAC_SECDED
|
||||
};
|
||||
u32 ems;
|
||||
u32 ems_mode;
|
||||
struct amd76x_error_info discard;
|
||||
|
||||
debugf0("%s()\n", __func__);
|
||||
pci_read_config_dword(pdev, AMD76X_ECC_MODE_STATUS, &ems);
|
||||
ems_mode = (ems >> 10) & 0x3;
|
||||
mci = edac_mc_alloc(0, AMD76X_NR_CSROWS, AMD76X_NR_CHANS);
|
||||
|
||||
if (mci == NULL) {
|
||||
rc = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
debugf0("%s(): mci = %p\n", __func__, mci);
|
||||
mci->dev = &pdev->dev;
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_EC | EDAC_FLAG_SECDED;
|
||||
mci->edac_cap = ems_mode ?
|
||||
(EDAC_FLAG_EC | EDAC_FLAG_SECDED) : EDAC_FLAG_NONE;
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = AMD76X_REVISION;
|
||||
mci->ctl_name = amd76x_devs[dev_idx].ctl_name;
|
||||
mci->edac_check = amd76x_check;
|
||||
mci->ctl_page_to_phys = NULL;
|
||||
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
u32 mba;
|
||||
u32 mba_base;
|
||||
u32 mba_mask;
|
||||
u32 dms;
|
||||
csrow = &mci->csrows[index];
|
||||
|
||||
/* find the DRAM Chip Select Base address and mask */
|
||||
pci_read_config_dword(pdev,
|
||||
AMD76X_MEM_BASE_ADDR + (index * 4), &mba);
|
||||
AMD76X_MEM_BASE_ADDR + (index * 4),
|
||||
&mba);
|
||||
|
||||
if (!(mba & BIT(0)))
|
||||
continue;
|
||||
@ -252,9 +210,54 @@ static int amd76x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
csrow->grain = csrow->nr_pages << PAGE_SHIFT;
|
||||
csrow->mtype = MEM_RDDR;
|
||||
csrow->dtype = ((dms >> index) & 0x1) ? DEV_X4 : DEV_UNKNOWN;
|
||||
csrow->edac_mode = ems_modes[ems_mode];
|
||||
csrow->edac_mode = edac_mode;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* amd76x_probe1 - Perform set up for detected device
|
||||
* @pdev; PCI device detected
|
||||
* @dev_idx: Device type index
|
||||
*
|
||||
* We have found an AMD76x and now need to set up the memory
|
||||
* controller status reporting. We configure and set up the
|
||||
* memory controller reporting and claim the device.
|
||||
*/
|
||||
static int amd76x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
static const enum edac_type ems_modes[] = {
|
||||
EDAC_NONE,
|
||||
EDAC_EC,
|
||||
EDAC_SECDED,
|
||||
EDAC_SECDED
|
||||
};
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
u32 ems;
|
||||
u32 ems_mode;
|
||||
struct amd76x_error_info discard;
|
||||
|
||||
debugf0("%s()\n", __func__);
|
||||
pci_read_config_dword(pdev, AMD76X_ECC_MODE_STATUS, &ems);
|
||||
ems_mode = (ems >> 10) & 0x3;
|
||||
mci = edac_mc_alloc(0, AMD76X_NR_CSROWS, AMD76X_NR_CHANS);
|
||||
|
||||
if (mci == NULL) {
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
debugf0("%s(): mci = %p\n", __func__, mci);
|
||||
mci->dev = &pdev->dev;
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_EC | EDAC_FLAG_SECDED;
|
||||
mci->edac_cap = ems_mode ?
|
||||
(EDAC_FLAG_EC | EDAC_FLAG_SECDED) : EDAC_FLAG_NONE;
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = AMD76X_REVISION;
|
||||
mci->ctl_name = amd76x_devs[dev_idx].ctl_name;
|
||||
mci->edac_check = amd76x_check;
|
||||
mci->ctl_page_to_phys = NULL;
|
||||
|
||||
amd76x_init_csrows(mci, pdev, ems_modes[ems_mode]);
|
||||
amd76x_get_error_info(mci, &discard); /* clear counters */
|
||||
|
||||
/* Here we assume that we will never see multiple instances of this
|
||||
@ -270,9 +273,8 @@ static int amd76x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
if (mci != NULL)
|
||||
edac_mc_free(mci);
|
||||
return rc;
|
||||
edac_mc_free(mci);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* returns count (>= 0), or negative on error */
|
||||
|
@ -765,105 +765,38 @@ static void e752x_check(struct mem_ctl_info *mci)
|
||||
e752x_process_error_info(mci, &info, 1);
|
||||
}
|
||||
|
||||
static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
/* Return 1 if dual channel mode is active. Else return 0. */
|
||||
static inline int dual_channel_active(u16 ddrcsr)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
int index;
|
||||
u16 pci_data;
|
||||
u8 stat8;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
struct e752x_pvt *pvt = NULL;
|
||||
u16 ddrcsr;
|
||||
u32 drc;
|
||||
int drc_chan; /* Number of channels 0=1chan,1=2chan */
|
||||
int drc_drbg; /* DRB granularity 0=64mb, 1=128mb */
|
||||
int drc_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */
|
||||
u32 dra;
|
||||
return (((ddrcsr >> 12) & 3) == 3);
|
||||
}
|
||||
|
||||
static void e752x_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
|
||||
u16 ddrcsr)
|
||||
{
|
||||
struct csrow_info *csrow;
|
||||
unsigned long last_cumul_size;
|
||||
struct pci_dev *dev = NULL;
|
||||
struct e752x_error_info discard;
|
||||
int index, mem_dev, drc_chan;
|
||||
int drc_drbg; /* DRB granularity 0=64mb, 1=128mb */
|
||||
int drc_ddim; /* DRAM Data Integrity Mode 0=none, 2=edac */
|
||||
u8 value;
|
||||
u32 dra, drc, cumul_size;
|
||||
|
||||
debugf0("%s(): mci\n", __func__);
|
||||
debugf0("Starting Probe1\n");
|
||||
|
||||
/* check to see if device 0 function 1 is enabled; if it isn't, we
|
||||
* assume the BIOS has reserved it for a reason and is expecting
|
||||
* exclusive access, we take care not to violate that assumption and
|
||||
* fail the probe. */
|
||||
pci_read_config_byte(pdev, E752X_DEVPRES1, &stat8);
|
||||
if (!force_function_unhide && !(stat8 & (1 << 5))) {
|
||||
printk(KERN_INFO "Contact your BIOS vendor to see if the "
|
||||
"E752x error registers can be safely un-hidden\n");
|
||||
goto fail;
|
||||
}
|
||||
stat8 |= (1 << 5);
|
||||
pci_write_config_byte(pdev, E752X_DEVPRES1, stat8);
|
||||
|
||||
/* need to find out the number of channels */
|
||||
pci_read_config_dword(pdev, E752X_DRA, &dra);
|
||||
pci_read_config_dword(pdev, E752X_DRC, &drc);
|
||||
pci_read_config_word(pdev, E752X_DDRCSR, &ddrcsr);
|
||||
/* FIXME: should check >>12 or 0xf, true for all? */
|
||||
/* Dual channel = 1, Single channel = 0 */
|
||||
drc_chan = (((ddrcsr >> 12) & 3) == 3);
|
||||
drc_drbg = drc_chan + 1; /* 128 in dual mode, 64 in single */
|
||||
drc_chan = dual_channel_active(ddrcsr);
|
||||
drc_drbg = drc_chan + 1; /* 128 in dual mode, 64 in single */
|
||||
drc_ddim = (drc >> 20) & 0x3;
|
||||
|
||||
mci = edac_mc_alloc(sizeof(*pvt), E752X_NR_CSROWS, drc_chan + 1);
|
||||
|
||||
if (mci == NULL) {
|
||||
rc = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
|
||||
EDAC_FLAG_S4ECD4ED;
|
||||
/* FIXME - what if different memory types are in different csrows? */
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = E752X_REVISION;
|
||||
mci->dev = &pdev->dev;
|
||||
|
||||
debugf3("%s(): init pvt\n", __func__);
|
||||
pvt = (struct e752x_pvt *) mci->pvt_info;
|
||||
pvt->dev_info = &e752x_devs[dev_idx];
|
||||
pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||||
pvt->dev_info->err_dev,
|
||||
pvt->bridge_ck);
|
||||
|
||||
if (pvt->bridge_ck == NULL)
|
||||
pvt->bridge_ck = pci_scan_single_device(pdev->bus,
|
||||
PCI_DEVFN(0, 1));
|
||||
|
||||
if (pvt->bridge_ck == NULL) {
|
||||
e752x_printk(KERN_ERR, "error reporting device not found:"
|
||||
"vendor %x device 0x%x (broken BIOS?)\n",
|
||||
PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].err_dev);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
pvt->mc_symmetric = ((ddrcsr & 0x10) != 0);
|
||||
debugf3("%s(): more mci init\n", __func__);
|
||||
mci->ctl_name = pvt->dev_info->ctl_name;
|
||||
mci->edac_check = e752x_check;
|
||||
mci->ctl_page_to_phys = ctl_page_to_phys;
|
||||
|
||||
/* find out the device types */
|
||||
pci_read_config_dword(pdev, E752X_DRA, &dra);
|
||||
|
||||
/*
|
||||
* The dram row boundary (DRB) reg values are boundary address for
|
||||
/* The dram row boundary (DRB) reg values are boundary address for
|
||||
* each DRAM row with a granularity of 64 or 128MB (single/dual
|
||||
* channel operation). DRB regs are cumulative; therefore DRB7 will
|
||||
* contain the total memory contained in all eight rows.
|
||||
*/
|
||||
for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) {
|
||||
u8 value;
|
||||
u32 cumul_size;
|
||||
|
||||
/* mem_dev 0=x8, 1=x4 */
|
||||
int mem_dev = (dra >> (index * 4 + 2)) & 0x3;
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
mem_dev = (dra >> (index * 4 + 2)) & 0x3;
|
||||
csrow = &mci->csrows[index];
|
||||
|
||||
mem_dev = (mem_dev == 2);
|
||||
pci_read_config_byte(pdev, E752X_DRB + index, &value);
|
||||
@ -871,16 +804,15 @@ static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
cumul_size = value << (25 + drc_drbg - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
|
||||
csrow->mtype = MEM_RDDR; /* only one type supported */
|
||||
csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
|
||||
csrow->mtype = MEM_RDDR; /* only one type supported */
|
||||
csrow->dtype = mem_dev ? DEV_X4 : DEV_X8;
|
||||
|
||||
/*
|
||||
@ -898,46 +830,168 @@ static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
} else
|
||||
csrow->edac_mode = EDAC_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Fill in the memory map table */
|
||||
{
|
||||
u8 value;
|
||||
u8 last = 0;
|
||||
u8 row = 0;
|
||||
static void e752x_init_mem_map_table(struct pci_dev *pdev,
|
||||
struct e752x_pvt *pvt)
|
||||
{
|
||||
int index;
|
||||
u8 value, last, row, stat8;
|
||||
|
||||
for (index = 0; index < 8; index += 2) {
|
||||
pci_read_config_byte(pdev, E752X_DRB + index, &value);
|
||||
last = 0;
|
||||
row = 0;
|
||||
|
||||
/* test if there is a dimm in this slot */
|
||||
if (value == last) {
|
||||
/* no dimm in the slot, so flag it as empty */
|
||||
pvt->map[index] = 0xff;
|
||||
pvt->map[index + 1] = 0xff;
|
||||
} else { /* there is a dimm in the slot */
|
||||
pvt->map[index] = row;
|
||||
row++;
|
||||
last = value;
|
||||
/* test the next value to see if the dimm is
|
||||
double sided */
|
||||
pci_read_config_byte(pdev,
|
||||
E752X_DRB + index + 1,
|
||||
&value);
|
||||
pvt->map[index + 1] = (value == last) ?
|
||||
0xff : /* the dimm is single sided,
|
||||
* so flag as empty
|
||||
*/
|
||||
row; /* this is a double sided dimm
|
||||
* to save the next row #
|
||||
*/
|
||||
row++;
|
||||
last = value;
|
||||
}
|
||||
for (index = 0; index < 8; index += 2) {
|
||||
pci_read_config_byte(pdev, E752X_DRB + index, &value);
|
||||
/* test if there is a dimm in this slot */
|
||||
if (value == last) {
|
||||
/* no dimm in the slot, so flag it as empty */
|
||||
pvt->map[index] = 0xff;
|
||||
pvt->map[index + 1] = 0xff;
|
||||
} else { /* there is a dimm in the slot */
|
||||
pvt->map[index] = row;
|
||||
row++;
|
||||
last = value;
|
||||
/* test the next value to see if the dimm is double
|
||||
* sided
|
||||
*/
|
||||
pci_read_config_byte(pdev, E752X_DRB + index + 1,
|
||||
&value);
|
||||
pvt->map[index + 1] = (value == last) ?
|
||||
0xff : /* the dimm is single sided,
|
||||
so flag as empty */
|
||||
row; /* this is a double sided dimm
|
||||
to save the next row # */
|
||||
row++;
|
||||
last = value;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the map type. 1 = normal, 0 = reversed */
|
||||
pci_read_config_byte(pdev, E752X_DRM, &stat8);
|
||||
pvt->map_type = ((stat8 & 0x0f) > ((stat8 >> 4) & 0x0f));
|
||||
}
|
||||
|
||||
/* Return 0 on success or 1 on failure. */
|
||||
static int e752x_get_devs(struct pci_dev *pdev, int dev_idx,
|
||||
struct e752x_pvt *pvt)
|
||||
{
|
||||
struct pci_dev *dev;
|
||||
|
||||
pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||||
pvt->dev_info->err_dev,
|
||||
pvt->bridge_ck);
|
||||
|
||||
if (pvt->bridge_ck == NULL)
|
||||
pvt->bridge_ck = pci_scan_single_device(pdev->bus,
|
||||
PCI_DEVFN(0, 1));
|
||||
|
||||
if (pvt->bridge_ck == NULL) {
|
||||
e752x_printk(KERN_ERR, "error reporting device not found:"
|
||||
"vendor %x device 0x%x (broken BIOS?)\n",
|
||||
PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].err_dev);
|
||||
return 1;
|
||||
}
|
||||
|
||||
dev = pci_get_device(PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].ctl_dev,
|
||||
NULL);
|
||||
|
||||
if (dev == NULL)
|
||||
goto fail;
|
||||
|
||||
pvt->dev_d0f0 = dev;
|
||||
pvt->dev_d0f1 = pci_dev_get(pvt->bridge_ck);
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
pci_dev_put(pvt->bridge_ck);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void e752x_init_error_reporting_regs(struct e752x_pvt *pvt)
|
||||
{
|
||||
struct pci_dev *dev;
|
||||
|
||||
dev = pvt->dev_d0f1;
|
||||
/* Turn off error disable & SMI in case the BIOS turned it on */
|
||||
pci_write_config_byte(dev, E752X_HI_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_HI_SMICMD, 0x00);
|
||||
pci_write_config_word(dev, E752X_SYSBUS_ERRMASK, 0x00);
|
||||
pci_write_config_word(dev, E752X_SYSBUS_SMICMD, 0x00);
|
||||
pci_write_config_byte(dev, E752X_BUF_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_BUF_SMICMD, 0x00);
|
||||
pci_write_config_byte(dev, E752X_DRAM_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_DRAM_SMICMD, 0x00);
|
||||
}
|
||||
|
||||
static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
u16 pci_data;
|
||||
u8 stat8;
|
||||
struct mem_ctl_info *mci;
|
||||
struct e752x_pvt *pvt;
|
||||
u16 ddrcsr;
|
||||
int drc_chan; /* Number of channels 0=1chan,1=2chan */
|
||||
struct e752x_error_info discard;
|
||||
|
||||
debugf0("%s(): mci\n", __func__);
|
||||
debugf0("Starting Probe1\n");
|
||||
|
||||
/* check to see if device 0 function 1 is enabled; if it isn't, we
|
||||
* assume the BIOS has reserved it for a reason and is expecting
|
||||
* exclusive access, we take care not to violate that assumption and
|
||||
* fail the probe. */
|
||||
pci_read_config_byte(pdev, E752X_DEVPRES1, &stat8);
|
||||
if (!force_function_unhide && !(stat8 & (1 << 5))) {
|
||||
printk(KERN_INFO "Contact your BIOS vendor to see if the "
|
||||
"E752x error registers can be safely un-hidden\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
stat8 |= (1 << 5);
|
||||
pci_write_config_byte(pdev, E752X_DEVPRES1, stat8);
|
||||
|
||||
pci_read_config_word(pdev, E752X_DDRCSR, &ddrcsr);
|
||||
/* FIXME: should check >>12 or 0xf, true for all? */
|
||||
/* Dual channel = 1, Single channel = 0 */
|
||||
drc_chan = dual_channel_active(ddrcsr);
|
||||
|
||||
mci = edac_mc_alloc(sizeof(*pvt), E752X_NR_CSROWS, drc_chan + 1);
|
||||
|
||||
if (mci == NULL) {
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
|
||||
EDAC_FLAG_S4ECD4ED;
|
||||
/* FIXME - what if different memory types are in different csrows? */
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = E752X_REVISION;
|
||||
mci->dev = &pdev->dev;
|
||||
|
||||
debugf3("%s(): init pvt\n", __func__);
|
||||
pvt = (struct e752x_pvt *) mci->pvt_info;
|
||||
pvt->dev_info = &e752x_devs[dev_idx];
|
||||
pvt->mc_symmetric = ((ddrcsr & 0x10) != 0);
|
||||
|
||||
if (e752x_get_devs(pdev, dev_idx, pvt)) {
|
||||
edac_mc_free(mci);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
debugf3("%s(): more mci init\n", __func__);
|
||||
mci->ctl_name = pvt->dev_info->ctl_name;
|
||||
mci->edac_check = e752x_check;
|
||||
mci->ctl_page_to_phys = ctl_page_to_phys;
|
||||
|
||||
e752x_init_csrows(mci, pdev, ddrcsr);
|
||||
e752x_init_mem_map_table(pdev, pvt);
|
||||
|
||||
/* set the map type. 1 = normal, 0 = reversed */
|
||||
pci_read_config_byte(pdev, E752X_DRM, &stat8);
|
||||
pvt->map_type = ((stat8 & 0x0f) > ((stat8 >> 4) & 0x0f));
|
||||
|
||||
mci->edac_cap |= EDAC_FLAG_NONE;
|
||||
debugf3("%s(): tolm, remapbase, remaplimit\n", __func__);
|
||||
@ -961,21 +1015,7 @@ static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
goto fail;
|
||||
}
|
||||
|
||||
dev = pci_get_device(PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].ctl_dev,
|
||||
NULL);
|
||||
pvt->dev_d0f0 = dev;
|
||||
/* find the error reporting device and clear errors */
|
||||
dev = pvt->dev_d0f1 = pci_dev_get(pvt->bridge_ck);
|
||||
/* Turn off error disable & SMI in case the BIOS turned it on */
|
||||
pci_write_config_byte(dev, E752X_HI_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_HI_SMICMD, 0x00);
|
||||
pci_write_config_word(dev, E752X_SYSBUS_ERRMASK, 0x00);
|
||||
pci_write_config_word(dev, E752X_SYSBUS_SMICMD, 0x00);
|
||||
pci_write_config_byte(dev, E752X_BUF_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_BUF_SMICMD, 0x00);
|
||||
pci_write_config_byte(dev, E752X_DRAM_ERRMASK, 0x00);
|
||||
pci_write_config_byte(dev, E752X_DRAM_SMICMD, 0x00);
|
||||
|
||||
e752x_init_error_reporting_regs(pvt);
|
||||
e752x_get_error_info(mci, &discard); /* clear other MCH errors */
|
||||
|
||||
/* get this far and it's successful */
|
||||
@ -983,20 +1023,12 @@ static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
if (mci) {
|
||||
if (pvt->dev_d0f0)
|
||||
pci_dev_put(pvt->dev_d0f0);
|
||||
pci_dev_put(pvt->dev_d0f0);
|
||||
pci_dev_put(pvt->dev_d0f1);
|
||||
pci_dev_put(pvt->bridge_ck);
|
||||
edac_mc_free(mci);
|
||||
|
||||
if (pvt->dev_d0f1)
|
||||
pci_dev_put(pvt->dev_d0f1);
|
||||
|
||||
if (pvt->bridge_ck)
|
||||
pci_dev_put(pvt->bridge_ck);
|
||||
|
||||
edac_mc_free(mci);
|
||||
}
|
||||
|
||||
return rc;
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* returns count (>= 0), or negative on error */
|
||||
|
@ -335,99 +335,61 @@ static void e7xxx_check(struct mem_ctl_info *mci)
|
||||
e7xxx_process_error_info(mci, &info, 1);
|
||||
}
|
||||
|
||||
static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
/* Return 1 if dual channel mode is active. Else return 0. */
|
||||
static inline int dual_channel_active(u32 drc, int dev_idx)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
int index;
|
||||
u16 pci_data;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
struct e7xxx_pvt *pvt = NULL;
|
||||
u32 drc;
|
||||
int drc_chan = 1; /* Number of channels 0=1chan,1=2chan */
|
||||
int drc_drbg = 1; /* DRB granularity 0=32mb,1=64mb */
|
||||
int drc_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */
|
||||
u32 dra;
|
||||
unsigned long last_cumul_size;
|
||||
struct e7xxx_error_info discard;
|
||||
return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1;
|
||||
}
|
||||
|
||||
debugf0("%s(): mci\n", __func__);
|
||||
|
||||
/* need to find out the number of channels */
|
||||
pci_read_config_dword(pdev, E7XXX_DRC, &drc);
|
||||
|
||||
/* Return DRB granularity (0=32mb, 1=64mb). */
|
||||
static inline int drb_granularity(u32 drc, int dev_idx)
|
||||
{
|
||||
/* only e7501 can be single channel */
|
||||
if (dev_idx == E7501) {
|
||||
drc_chan = ((drc >> 22) & 0x1);
|
||||
drc_drbg = (drc >> 18) & 0x3;
|
||||
}
|
||||
return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1;
|
||||
}
|
||||
|
||||
drc_ddim = (drc >> 20) & 0x3;
|
||||
mci = edac_mc_alloc(sizeof(*pvt), E7XXX_NR_CSROWS, drc_chan + 1);
|
||||
|
||||
if (mci == NULL) {
|
||||
rc = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
|
||||
int dev_idx, u32 drc)
|
||||
{
|
||||
unsigned long last_cumul_size;
|
||||
int index;
|
||||
u8 value;
|
||||
u32 dra, cumul_size;
|
||||
int drc_chan, drc_drbg, drc_ddim, mem_dev;
|
||||
struct csrow_info *csrow;
|
||||
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
|
||||
EDAC_FLAG_S4ECD4ED;
|
||||
/* FIXME - what if different memory types are in different csrows? */
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = E7XXX_REVISION;
|
||||
mci->dev = &pdev->dev;
|
||||
|
||||
debugf3("%s(): init pvt\n", __func__);
|
||||
pvt = (struct e7xxx_pvt *) mci->pvt_info;
|
||||
pvt->dev_info = &e7xxx_devs[dev_idx];
|
||||
pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||||
pvt->dev_info->err_dev,
|
||||
pvt->bridge_ck);
|
||||
|
||||
if (!pvt->bridge_ck) {
|
||||
e7xxx_printk(KERN_ERR, "error reporting device not found:"
|
||||
"vendor %x device 0x%x (broken BIOS?)\n",
|
||||
PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
debugf3("%s(): more mci init\n", __func__);
|
||||
mci->ctl_name = pvt->dev_info->ctl_name;
|
||||
mci->edac_check = e7xxx_check;
|
||||
mci->ctl_page_to_phys = ctl_page_to_phys;
|
||||
|
||||
/* find out the device types */
|
||||
pci_read_config_dword(pdev, E7XXX_DRA, &dra);
|
||||
drc_chan = dual_channel_active(drc, dev_idx);
|
||||
drc_drbg = drb_granularity(drc, dev_idx);
|
||||
drc_ddim = (drc >> 20) & 0x3;
|
||||
last_cumul_size = 0;
|
||||
|
||||
/*
|
||||
* The dram row boundary (DRB) reg values are boundary address
|
||||
/* The dram row boundary (DRB) reg values are boundary address
|
||||
* for each DRAM row with a granularity of 32 or 64MB (single/dual
|
||||
* channel operation). DRB regs are cumulative; therefore DRB7 will
|
||||
* contain the total memory contained in all eight rows.
|
||||
*/
|
||||
for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) {
|
||||
u8 value;
|
||||
u32 cumul_size;
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
/* mem_dev 0=x8, 1=x4 */
|
||||
int mem_dev = (dra >> (index * 4 + 3)) & 0x1;
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
mem_dev = (dra >> (index * 4 + 3)) & 0x1;
|
||||
csrow = &mci->csrows[index];
|
||||
|
||||
pci_read_config_byte(pdev, E7XXX_DRB + index, &value);
|
||||
/* convert a 64 or 32 MiB DRB to a page size. */
|
||||
cumul_size = value << (25 + drc_drbg - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
|
||||
csrow->mtype = MEM_RDDR; /* only one type supported */
|
||||
csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
|
||||
csrow->mtype = MEM_RDDR; /* only one type supported */
|
||||
csrow->dtype = mem_dev ? DEV_X4 : DEV_X8;
|
||||
|
||||
/*
|
||||
@ -445,9 +407,54 @@ static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
} else
|
||||
csrow->edac_mode = EDAC_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
u16 pci_data;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
struct e7xxx_pvt *pvt = NULL;
|
||||
u32 drc;
|
||||
int drc_chan;
|
||||
struct e7xxx_error_info discard;
|
||||
|
||||
debugf0("%s(): mci\n", __func__);
|
||||
pci_read_config_dword(pdev, E7XXX_DRC, &drc);
|
||||
|
||||
drc_chan = dual_channel_active(drc, dev_idx);
|
||||
mci = edac_mc_alloc(sizeof(*pvt), E7XXX_NR_CSROWS, drc_chan + 1);
|
||||
|
||||
if (mci == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
mci->mtype_cap = MEM_FLAG_RDDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
|
||||
EDAC_FLAG_S4ECD4ED;
|
||||
/* FIXME - what if different memory types are in different csrows? */
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = E7XXX_REVISION;
|
||||
mci->dev = &pdev->dev;
|
||||
debugf3("%s(): init pvt\n", __func__);
|
||||
pvt = (struct e7xxx_pvt *) mci->pvt_info;
|
||||
pvt->dev_info = &e7xxx_devs[dev_idx];
|
||||
pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||||
pvt->dev_info->err_dev,
|
||||
pvt->bridge_ck);
|
||||
|
||||
if (!pvt->bridge_ck) {
|
||||
e7xxx_printk(KERN_ERR, "error reporting device not found:"
|
||||
"vendor %x device 0x%x (broken BIOS?)\n",
|
||||
PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev);
|
||||
goto fail0;
|
||||
}
|
||||
|
||||
debugf3("%s(): more mci init\n", __func__);
|
||||
mci->ctl_name = pvt->dev_info->ctl_name;
|
||||
mci->edac_check = e7xxx_check;
|
||||
mci->ctl_page_to_phys = ctl_page_to_phys;
|
||||
e7xxx_init_csrows(mci, pdev, dev_idx, drc);
|
||||
mci->edac_cap |= EDAC_FLAG_NONE;
|
||||
|
||||
debugf3("%s(): tolm, remapbase, remaplimit\n", __func__);
|
||||
/* load the top of low memory, remap base, and remap limit vars */
|
||||
pci_read_config_word(pdev, E7XXX_TOLM, &pci_data);
|
||||
@ -468,21 +475,20 @@ static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
*/
|
||||
if (edac_mc_add_mc(mci,0)) {
|
||||
debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
|
||||
goto fail;
|
||||
goto fail1;
|
||||
}
|
||||
|
||||
/* get this far and it's successful */
|
||||
debugf3("%s(): success\n", __func__);
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
if (mci != NULL) {
|
||||
if(pvt != NULL && pvt->bridge_ck)
|
||||
pci_dev_put(pvt->bridge_ck);
|
||||
edac_mc_free(mci);
|
||||
}
|
||||
fail1:
|
||||
pci_dev_put(pvt->bridge_ck);
|
||||
|
||||
return rc;
|
||||
fail0:
|
||||
edac_mc_free(mci);
|
||||
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* returns count (>= 0), or negative on error */
|
||||
|
@ -133,16 +133,51 @@ static void i82860_check(struct mem_ctl_info *mci)
|
||||
i82860_process_error_info(mci, &info, 1);
|
||||
}
|
||||
|
||||
static void i82860_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev)
|
||||
{
|
||||
unsigned long last_cumul_size;
|
||||
u16 mchcfg_ddim; /* DRAM Data Integrity Mode 0=none, 2=edac */
|
||||
u16 value;
|
||||
u32 cumul_size;
|
||||
struct csrow_info *csrow;
|
||||
int index;
|
||||
|
||||
pci_read_config_word(pdev, I82860_MCHCFG, &mchcfg_ddim);
|
||||
mchcfg_ddim = mchcfg_ddim & 0x180;
|
||||
last_cumul_size = 0;
|
||||
|
||||
/* The group row boundary (GRA) reg values are boundary address
|
||||
* for each DRAM row with a granularity of 16MB. GRA regs are
|
||||
* cumulative; therefore GRA15 will contain the total memory contained
|
||||
* in all eight rows.
|
||||
*/
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
csrow = &mci->csrows[index];
|
||||
pci_read_config_word(pdev, I82860_GBA + index * 2, &value);
|
||||
cumul_size = (value & I82860_GBA_MASK) <<
|
||||
(I82860_GBA_SHIFT - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* I82860_EAP has 4KiB reolution */
|
||||
csrow->mtype = MEM_RMBS;
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
csrow->edac_mode = mchcfg_ddim ? EDAC_SECDED : EDAC_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
static int i82860_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
int index;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
unsigned long last_cumul_size;
|
||||
struct mem_ctl_info *mci;
|
||||
struct i82860_error_info discard;
|
||||
|
||||
u16 mchcfg_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */
|
||||
|
||||
/* RDRAM has channels but these don't map onto the abstractions that
|
||||
edac uses.
|
||||
The device groups from the GRA registers seem to map reasonably
|
||||
@ -159,53 +194,15 @@ static int i82860_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
mci->dev = &pdev->dev;
|
||||
mci->mtype_cap = MEM_FLAG_DDR;
|
||||
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
|
||||
/* I"m not sure about this but I think that all RDRAM is SECDED */
|
||||
mci->edac_cap = EDAC_FLAG_SECDED;
|
||||
/* adjust FLAGS */
|
||||
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = I82860_REVISION;
|
||||
mci->ctl_name = i82860_devs[dev_idx].ctl_name;
|
||||
mci->edac_check = i82860_check;
|
||||
mci->ctl_page_to_phys = NULL;
|
||||
|
||||
pci_read_config_word(pdev, I82860_MCHCFG, &mchcfg_ddim);
|
||||
mchcfg_ddim = mchcfg_ddim & 0x180;
|
||||
|
||||
/*
|
||||
* The group row boundary (GRA) reg values are boundary address
|
||||
* for each DRAM row with a granularity of 16MB. GRA regs are
|
||||
* cumulative; therefore GRA15 will contain the total memory contained
|
||||
* in all eight rows.
|
||||
*/
|
||||
for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) {
|
||||
u16 value;
|
||||
u32 cumul_size;
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
|
||||
pci_read_config_word(pdev, I82860_GBA + index * 2,
|
||||
&value);
|
||||
|
||||
cumul_size = (value & I82860_GBA_MASK) <<
|
||||
(I82860_GBA_SHIFT - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* I82860_EAP has 4KiB reolution */
|
||||
csrow->mtype = MEM_RMBS;
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
csrow->edac_mode = mchcfg_ddim ? EDAC_SECDED : EDAC_NONE;
|
||||
}
|
||||
|
||||
i82860_init_csrows(mci, pdev);
|
||||
i82860_get_error_info(mci, &discard); /* clear counters */
|
||||
|
||||
/* Here we assume that we will never see multiple instances of this
|
||||
@ -213,14 +210,17 @@ static int i82860_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
*/
|
||||
if (edac_mc_add_mc(mci,0)) {
|
||||
debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
|
||||
edac_mc_free(mci);
|
||||
} else {
|
||||
/* get this far and it's successful */
|
||||
debugf3("%s(): success\n", __func__);
|
||||
rc = 0;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
return rc;
|
||||
/* get this far and it's successful */
|
||||
debugf3("%s(): success\n", __func__);
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
edac_mc_free(mci);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* returns count (>= 0), or negative on error */
|
||||
|
@ -265,81 +265,147 @@ static void i82875p_check(struct mem_ctl_info *mci)
|
||||
extern int pci_proc_attach_device(struct pci_dev *);
|
||||
#endif
|
||||
|
||||
static int i82875p_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
/* Return 0 on success or 1 on failure. */
|
||||
static int i82875p_setup_overfl_dev(struct pci_dev *pdev,
|
||||
struct pci_dev **ovrfl_pdev, void __iomem **ovrfl_window)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
int index;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
struct i82875p_pvt *pvt = NULL;
|
||||
unsigned long last_cumul_size;
|
||||
struct pci_dev *ovrfl_pdev;
|
||||
void __iomem *ovrfl_window = NULL;
|
||||
u32 drc;
|
||||
u32 drc_chan; /* Number of channels 0=1chan,1=2chan */
|
||||
u32 nr_chans;
|
||||
u32 drc_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */
|
||||
struct i82875p_error_info discard;
|
||||
struct pci_dev *dev;
|
||||
void __iomem *window;
|
||||
|
||||
debugf0("%s()\n", __func__);
|
||||
ovrfl_pdev = pci_get_device(PCI_VEND_DEV(INTEL, 82875_6), NULL);
|
||||
*ovrfl_pdev = NULL;
|
||||
*ovrfl_window = NULL;
|
||||
dev = pci_get_device(PCI_VEND_DEV(INTEL, 82875_6), NULL);
|
||||
|
||||
if (!ovrfl_pdev) {
|
||||
/*
|
||||
* Intel tells BIOS developers to hide device 6 which
|
||||
if (dev == NULL) {
|
||||
/* Intel tells BIOS developers to hide device 6 which
|
||||
* configures the overflow device access containing
|
||||
* the DRBs - this is where we expose device 6.
|
||||
* http://www.x86-secret.com/articles/tweak/pat/patsecrets-2.htm
|
||||
*/
|
||||
pci_write_bits8(pdev, 0xf4, 0x2, 0x2);
|
||||
ovrfl_pdev =
|
||||
pci_scan_single_device(pdev->bus, PCI_DEVFN(6, 0));
|
||||
dev = pci_scan_single_device(pdev->bus, PCI_DEVFN(6, 0));
|
||||
|
||||
if (!ovrfl_pdev)
|
||||
return -ENODEV;
|
||||
if (dev == NULL)
|
||||
return 1;
|
||||
}
|
||||
|
||||
*ovrfl_pdev = dev;
|
||||
|
||||
#ifdef CONFIG_PROC_FS
|
||||
if (!ovrfl_pdev->procent && pci_proc_attach_device(ovrfl_pdev)) {
|
||||
i82875p_printk(KERN_ERR,
|
||||
"%s(): Failed to attach overflow device\n", __func__);
|
||||
return -ENODEV;
|
||||
if ((dev->procent == NULL) && pci_proc_attach_device(dev)) {
|
||||
i82875p_printk(KERN_ERR, "%s(): Failed to attach overflow "
|
||||
"device\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
/* CONFIG_PROC_FS */
|
||||
if (pci_enable_device(ovrfl_pdev)) {
|
||||
i82875p_printk(KERN_ERR,
|
||||
"%s(): Failed to enable overflow device\n", __func__);
|
||||
return -ENODEV;
|
||||
#endif /* CONFIG_PROC_FS */
|
||||
if (pci_enable_device(dev)) {
|
||||
i82875p_printk(KERN_ERR, "%s(): Failed to enable overflow "
|
||||
"device\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (pci_request_regions(ovrfl_pdev, pci_name(ovrfl_pdev))) {
|
||||
if (pci_request_regions(dev, pci_name(dev))) {
|
||||
#ifdef CORRECT_BIOS
|
||||
goto fail0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* cache is irrelevant for PCI bus reads/writes */
|
||||
ovrfl_window = ioremap_nocache(pci_resource_start(ovrfl_pdev, 0),
|
||||
pci_resource_len(ovrfl_pdev, 0));
|
||||
window = ioremap_nocache(pci_resource_start(dev, 0),
|
||||
pci_resource_len(dev, 0));
|
||||
|
||||
if (!ovrfl_window) {
|
||||
if (window == NULL) {
|
||||
i82875p_printk(KERN_ERR, "%s(): Failed to ioremap bar6\n",
|
||||
__func__);
|
||||
__func__);
|
||||
goto fail1;
|
||||
}
|
||||
|
||||
/* need to find out the number of channels */
|
||||
drc = readl(ovrfl_window + I82875P_DRC);
|
||||
drc_chan = ((drc >> 21) & 0x1);
|
||||
nr_chans = drc_chan + 1;
|
||||
*ovrfl_window = window;
|
||||
return 0;
|
||||
|
||||
fail1:
|
||||
pci_release_regions(dev);
|
||||
|
||||
#ifdef CORRECT_BIOS
|
||||
fail0:
|
||||
pci_disable_device(dev);
|
||||
#endif
|
||||
/* NOTE: the ovrfl proc entry and pci_dev are intentionally left */
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/* Return 1 if dual channel mode is active. Else return 0. */
|
||||
static inline int dual_channel_active(u32 drc)
|
||||
{
|
||||
return (drc >> 21) & 0x1;
|
||||
}
|
||||
|
||||
|
||||
static void i82875p_init_csrows(struct mem_ctl_info *mci,
|
||||
struct pci_dev *pdev, void __iomem *ovrfl_window, u32 drc)
|
||||
{
|
||||
struct csrow_info *csrow;
|
||||
unsigned long last_cumul_size;
|
||||
u8 value;
|
||||
u32 drc_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */
|
||||
u32 cumul_size;
|
||||
int index;
|
||||
|
||||
drc_ddim = (drc >> 18) & 0x1;
|
||||
last_cumul_size = 0;
|
||||
|
||||
/* The dram row boundary (DRB) reg values are boundary address
|
||||
* for each DRAM row with a granularity of 32 or 64MB (single/dual
|
||||
* channel operation). DRB regs are cumulative; therefore DRB7 will
|
||||
* contain the total memory contained in all eight rows.
|
||||
*/
|
||||
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
csrow = &mci->csrows[index];
|
||||
|
||||
value = readb(ovrfl_window + I82875P_DRB + index);
|
||||
cumul_size = value << (I82875P_DRB_SHIFT - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* I82875P_EAP has 4KiB reolution */
|
||||
csrow->mtype = MEM_DDR;
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
csrow->edac_mode = drc_ddim ? EDAC_SECDED : EDAC_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
static int i82875p_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
struct mem_ctl_info *mci;
|
||||
struct i82875p_pvt *pvt;
|
||||
struct pci_dev *ovrfl_pdev;
|
||||
void __iomem *ovrfl_window;
|
||||
u32 drc;
|
||||
u32 nr_chans;
|
||||
struct i82875p_error_info discard;
|
||||
|
||||
debugf0("%s()\n", __func__);
|
||||
ovrfl_pdev = pci_get_device(PCI_VEND_DEV(INTEL, 82875_6), NULL);
|
||||
|
||||
if (i82875p_setup_overfl_dev(pdev, &ovrfl_pdev, &ovrfl_window))
|
||||
return -ENODEV;
|
||||
drc = readl(ovrfl_window + I82875P_DRC);
|
||||
nr_chans = dual_channel_active(drc) + 1;
|
||||
mci = edac_mc_alloc(sizeof(*pvt), I82875P_NR_CSROWS(nr_chans),
|
||||
nr_chans);
|
||||
|
||||
if (!mci) {
|
||||
rc = -ENOMEM;
|
||||
goto fail2;
|
||||
goto fail0;
|
||||
}
|
||||
|
||||
debugf3("%s(): init mci\n", __func__);
|
||||
@ -347,8 +413,6 @@ static int i82875p_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
mci->mtype_cap = MEM_FLAG_DDR;
|
||||
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
|
||||
mci->edac_cap = EDAC_FLAG_UNKNOWN;
|
||||
/* adjust FLAGS */
|
||||
|
||||
mci->mod_name = EDAC_MOD_STR;
|
||||
mci->mod_ver = I82875P_REVISION;
|
||||
mci->ctl_name = i82875p_devs[dev_idx].ctl_name;
|
||||
@ -358,36 +422,7 @@ static int i82875p_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
pvt = (struct i82875p_pvt *) mci->pvt_info;
|
||||
pvt->ovrfl_pdev = ovrfl_pdev;
|
||||
pvt->ovrfl_window = ovrfl_window;
|
||||
|
||||
/*
|
||||
* The dram row boundary (DRB) reg values are boundary address
|
||||
* for each DRAM row with a granularity of 32 or 64MB (single/dual
|
||||
* channel operation). DRB regs are cumulative; therefore DRB7 will
|
||||
* contain the total memory contained in all eight rows.
|
||||
*/
|
||||
for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) {
|
||||
u8 value;
|
||||
u32 cumul_size;
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
|
||||
value = readb(ovrfl_window + I82875P_DRB + index);
|
||||
cumul_size = value << (I82875P_DRB_SHIFT - PAGE_SHIFT);
|
||||
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
|
||||
cumul_size);
|
||||
|
||||
if (cumul_size == last_cumul_size)
|
||||
continue; /* not populated */
|
||||
|
||||
csrow->first_page = last_cumul_size;
|
||||
csrow->last_page = cumul_size - 1;
|
||||
csrow->nr_pages = cumul_size - last_cumul_size;
|
||||
last_cumul_size = cumul_size;
|
||||
csrow->grain = 1 << 12; /* I82875P_EAP has 4KiB reolution */
|
||||
csrow->mtype = MEM_DDR;
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
csrow->edac_mode = drc_ddim ? EDAC_SECDED : EDAC_NONE;
|
||||
}
|
||||
|
||||
i82875p_init_csrows(mci, pdev, ovrfl_window, drc);
|
||||
i82875p_get_error_info(mci, &discard); /* clear counters */
|
||||
|
||||
/* Here we assume that we will never see multiple instances of this
|
||||
@ -395,25 +430,20 @@ static int i82875p_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
*/
|
||||
if (edac_mc_add_mc(mci,0)) {
|
||||
debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
|
||||
goto fail3;
|
||||
goto fail1;
|
||||
}
|
||||
|
||||
/* get this far and it's successful */
|
||||
debugf3("%s(): success\n", __func__);
|
||||
return 0;
|
||||
|
||||
fail3:
|
||||
fail1:
|
||||
edac_mc_free(mci);
|
||||
|
||||
fail2:
|
||||
fail0:
|
||||
iounmap(ovrfl_window);
|
||||
|
||||
fail1:
|
||||
pci_release_regions(ovrfl_pdev);
|
||||
|
||||
#ifdef CORRECT_BIOS
|
||||
fail0:
|
||||
#endif
|
||||
pci_disable_device(ovrfl_pdev);
|
||||
/* NOTE: the ovrfl proc entry and pci_dev are intentionally left */
|
||||
return rc;
|
||||
|
@ -205,25 +205,72 @@ static void r82600_check(struct mem_ctl_info *mci)
|
||||
r82600_process_error_info(mci, &info, 1);
|
||||
}
|
||||
|
||||
static inline int ecc_enabled(u8 dramcr)
|
||||
{
|
||||
return dramcr & BIT(5);
|
||||
}
|
||||
|
||||
static void r82600_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
|
||||
u8 dramcr)
|
||||
{
|
||||
struct csrow_info *csrow;
|
||||
int index;
|
||||
u8 drbar; /* SDRAM Row Boundry Address Register */
|
||||
u32 row_high_limit, row_high_limit_last;
|
||||
u32 reg_sdram, ecc_on, row_base;
|
||||
|
||||
ecc_on = ecc_enabled(dramcr);
|
||||
reg_sdram = dramcr & BIT(4);
|
||||
row_high_limit_last = 0;
|
||||
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
csrow = &mci->csrows[index];
|
||||
|
||||
/* find the DRAM Chip Select Base address and mask */
|
||||
pci_read_config_byte(pdev, R82600_DRBA + index, &drbar);
|
||||
|
||||
debugf1("%s() Row=%d DRBA = %#0x\n", __func__, index, drbar);
|
||||
|
||||
row_high_limit = ((u32) drbar << 24);
|
||||
/* row_high_limit = ((u32)drbar << 24) | 0xffffffUL; */
|
||||
|
||||
debugf1("%s() Row=%d, Boundry Address=%#0x, Last = %#0x\n",
|
||||
__func__, index, row_high_limit, row_high_limit_last);
|
||||
|
||||
/* Empty row [p.57] */
|
||||
if (row_high_limit == row_high_limit_last)
|
||||
continue;
|
||||
|
||||
row_base = row_high_limit_last;
|
||||
|
||||
csrow->first_page = row_base >> PAGE_SHIFT;
|
||||
csrow->last_page = (row_high_limit >> PAGE_SHIFT) - 1;
|
||||
csrow->nr_pages = csrow->last_page - csrow->first_page + 1;
|
||||
/* Error address is top 19 bits - so granularity is *
|
||||
* 14 bits */
|
||||
csrow->grain = 1 << 14;
|
||||
csrow->mtype = reg_sdram ? MEM_RDDR : MEM_DDR;
|
||||
/* FIXME - check that this is unknowable with this chipset */
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
|
||||
/* Mode is global on 82600 */
|
||||
csrow->edac_mode = ecc_on ? EDAC_SECDED : EDAC_NONE;
|
||||
row_high_limit_last = row_high_limit;
|
||||
}
|
||||
}
|
||||
|
||||
static int r82600_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
{
|
||||
int rc = -ENODEV;
|
||||
int index;
|
||||
struct mem_ctl_info *mci = NULL;
|
||||
struct mem_ctl_info *mci;
|
||||
u8 dramcr;
|
||||
u32 ecc_on;
|
||||
u32 reg_sdram;
|
||||
u32 eapr;
|
||||
u32 scrub_disabled;
|
||||
u32 sdram_refresh_rate;
|
||||
u32 row_high_limit_last = 0;
|
||||
struct r82600_error_info discard;
|
||||
|
||||
debugf0("%s()\n", __func__);
|
||||
pci_read_config_byte(pdev, R82600_DRAMC, &dramcr);
|
||||
pci_read_config_dword(pdev, R82600_EAP, &eapr);
|
||||
ecc_on = dramcr & BIT(5);
|
||||
reg_sdram = dramcr & BIT(4);
|
||||
scrub_disabled = eapr & BIT(31);
|
||||
sdram_refresh_rate = dramcr & (BIT(0) | BIT(1));
|
||||
debugf2("%s(): sdram refresh rate = %#0x\n", __func__,
|
||||
@ -231,10 +278,8 @@ static int r82600_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
debugf2("%s(): DRAMC register = %#0x\n", __func__, dramcr);
|
||||
mci = edac_mc_alloc(0, R82600_NR_CSROWS, R82600_NR_CHANS);
|
||||
|
||||
if (mci == NULL) {
|
||||
rc = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
if (mci == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
debugf0("%s(): mci = %p\n", __func__, mci);
|
||||
mci->dev = &pdev->dev;
|
||||
@ -250,7 +295,7 @@ static int r82600_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
* is possible. */
|
||||
mci->edac_cap = EDAC_FLAG_NONE | EDAC_FLAG_EC | EDAC_FLAG_SECDED;
|
||||
|
||||
if (ecc_on) {
|
||||
if (ecc_enabled(dramcr)) {
|
||||
if (scrub_disabled)
|
||||
debugf3("%s(): mci = %p - Scrubbing disabled! EAP: "
|
||||
"%#0x\n", __func__, mci, eapr);
|
||||
@ -262,46 +307,7 @@ static int r82600_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
mci->ctl_name = "R82600";
|
||||
mci->edac_check = r82600_check;
|
||||
mci->ctl_page_to_phys = NULL;
|
||||
|
||||
for (index = 0; index < mci->nr_csrows; index++) {
|
||||
struct csrow_info *csrow = &mci->csrows[index];
|
||||
u8 drbar; /* sDram Row Boundry Address Register */
|
||||
u32 row_high_limit;
|
||||
u32 row_base;
|
||||
|
||||
/* find the DRAM Chip Select Base address and mask */
|
||||
pci_read_config_byte(pdev, R82600_DRBA + index, &drbar);
|
||||
|
||||
debugf1("MC%d: %s() Row=%d DRBA = %#0x\n", mci->mc_idx,
|
||||
__func__, index, drbar);
|
||||
|
||||
row_high_limit = ((u32) drbar << 24);
|
||||
/* row_high_limit = ((u32)drbar << 24) | 0xffffffUL; */
|
||||
|
||||
debugf1("MC%d: %s() Row=%d, Boundry Address=%#0x, Last = "
|
||||
"%#0x \n", mci->mc_idx, __func__, index,
|
||||
row_high_limit, row_high_limit_last);
|
||||
|
||||
/* Empty row [p.57] */
|
||||
if (row_high_limit == row_high_limit_last)
|
||||
continue;
|
||||
|
||||
row_base = row_high_limit_last;
|
||||
csrow->first_page = row_base >> PAGE_SHIFT;
|
||||
csrow->last_page = (row_high_limit >> PAGE_SHIFT) - 1;
|
||||
csrow->nr_pages = csrow->last_page - csrow->first_page + 1;
|
||||
/* Error address is top 19 bits - so granularity is *
|
||||
* 14 bits */
|
||||
csrow->grain = 1 << 14;
|
||||
csrow->mtype = reg_sdram ? MEM_RDDR : MEM_DDR;
|
||||
/* FIXME - check that this is unknowable with this chipset */
|
||||
csrow->dtype = DEV_UNKNOWN;
|
||||
|
||||
/* Mode is global on 82600 */
|
||||
csrow->edac_mode = ecc_on ? EDAC_SECDED : EDAC_NONE;
|
||||
row_high_limit_last = row_high_limit;
|
||||
}
|
||||
|
||||
r82600_init_csrows(mci, pdev, dramcr);
|
||||
r82600_get_error_info(mci, &discard); /* clear counters */
|
||||
|
||||
/* Here we assume that we will never see multiple instances of this
|
||||
@ -324,10 +330,8 @@ static int r82600_probe1(struct pci_dev *pdev, int dev_idx)
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
if (mci)
|
||||
edac_mc_free(mci);
|
||||
|
||||
return rc;
|
||||
edac_mc_free(mci);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* returns count (>= 0), or negative on error */
|
||||
|
Loading…
x
Reference in New Issue
Block a user