mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 23:00:21 +00:00
Merge commit '3ff195b011d7decf501a4d55aeed312731094796' into for-linus
Conflicts: drivers/md/md.c - Resolved conflict in md_update_sb - Added extra 'NULL' arg to new instance of sysfs_get_dirent. Signed-off-by: NeilBrown <neilb@suse.de>
This commit is contained in:
commit
19fdb9eefb
20
.gitignore
vendored
20
.gitignore
vendored
@ -34,14 +34,18 @@ modules.builtin
|
||||
#
|
||||
# Top-level generic files
|
||||
#
|
||||
tags
|
||||
TAGS
|
||||
linux
|
||||
vmlinux
|
||||
vmlinuz
|
||||
System.map
|
||||
Module.markers
|
||||
Module.symvers
|
||||
/tags
|
||||
/TAGS
|
||||
/linux
|
||||
/vmlinux
|
||||
/vmlinuz
|
||||
/System.map
|
||||
/Module.markers
|
||||
/Module.symvers
|
||||
|
||||
#
|
||||
# git files that we don't want to ignore even it they are dot-files
|
||||
#
|
||||
!.gitignore
|
||||
!.mailmap
|
||||
|
||||
|
@ -250,6 +250,8 @@ numastat.txt
|
||||
- info on how to read Numa policy hit/miss statistics in sysfs.
|
||||
oops-tracing.txt
|
||||
- how to decode those nasty internal kernel error dump messages.
|
||||
padata.txt
|
||||
- An introduction to the "padata" parallel execution API
|
||||
parisc/
|
||||
- directory with info on using Linux on PA-RISC architecture.
|
||||
parport.txt
|
||||
|
31
Documentation/ABI/obsolete/sysfs-bus-usb
Normal file
31
Documentation/ABI/obsolete/sysfs-bus-usb
Normal file
@ -0,0 +1,31 @@
|
||||
What: /sys/bus/usb/devices/.../power/level
|
||||
Date: March 2007
|
||||
KernelVersion: 2.6.21
|
||||
Contact: Alan Stern <stern@rowland.harvard.edu>
|
||||
Description:
|
||||
Each USB device directory will contain a file named
|
||||
power/level. This file holds a power-level setting for
|
||||
the device, either "on" or "auto".
|
||||
|
||||
"on" means that the device is not allowed to autosuspend,
|
||||
although normal suspends for system sleep will still
|
||||
be honored. "auto" means the device will autosuspend
|
||||
and autoresume in the usual manner, according to the
|
||||
capabilities of its driver.
|
||||
|
||||
During normal use, devices should be left in the "auto"
|
||||
level. The "on" level is meant for administrative uses.
|
||||
If you want to suspend a device immediately but leave it
|
||||
free to wake up in response to I/O requests, you should
|
||||
write "0" to power/autosuspend.
|
||||
|
||||
Device not capable of proper suspend and resume should be
|
||||
left in the "on" level. Although the USB spec requires
|
||||
devices to support suspend/resume, many of them do not.
|
||||
In fact so many don't that by default, the USB core
|
||||
initializes all non-hub devices in the "on" level. Some
|
||||
drivers may change this setting when they are bound.
|
||||
|
||||
This file is deprecated and will be removed after 2010.
|
||||
Use the power/control file instead; it does exactly the
|
||||
same thing.
|
29
Documentation/ABI/obsolete/sysfs-class-rfkill
Normal file
29
Documentation/ABI/obsolete/sysfs-class-rfkill
Normal file
@ -0,0 +1,29 @@
|
||||
rfkill - radio frequency (RF) connector kill switch support
|
||||
|
||||
For details to this subsystem look at Documentation/rfkill.txt.
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/state
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Current state of the transmitter.
|
||||
This file is deprecated and sheduled to be removed in 2014,
|
||||
because its not possible to express the 'soft and hard block'
|
||||
state of the rfkill driver.
|
||||
Values: A numeric value.
|
||||
0: RFKILL_STATE_SOFT_BLOCKED
|
||||
transmitter is turned off by software
|
||||
1: RFKILL_STATE_UNBLOCKED
|
||||
transmitter is (potentially) active
|
||||
2: RFKILL_STATE_HARD_BLOCKED
|
||||
transmitter is forced off by something outside of
|
||||
the driver's control.
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/claim
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: This file is deprecated because there no longer is a way to
|
||||
claim just control over a single rfkill instance.
|
||||
This file is scheduled to be removed in 2012.
|
||||
Values: 0: Kernel handles events
|
67
Documentation/ABI/stable/sysfs-class-rfkill
Normal file
67
Documentation/ABI/stable/sysfs-class-rfkill
Normal file
@ -0,0 +1,67 @@
|
||||
rfkill - radio frequency (RF) connector kill switch support
|
||||
|
||||
For details to this subsystem look at Documentation/rfkill.txt.
|
||||
|
||||
For the deprecated /sys/class/rfkill/*/state and
|
||||
/sys/class/rfkill/*/claim knobs of this interface look in
|
||||
Documentation/ABI/obsolete/sysfs-class-rfkill.
|
||||
|
||||
What: /sys/class/rfkill
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion: v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org,
|
||||
Description: The rfkill class subsystem folder.
|
||||
Each registered rfkill driver is represented by an rfkillX
|
||||
subfolder (X being an integer > 0).
|
||||
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/name
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Name assigned by driver to this key (interface or driver name).
|
||||
Values: arbitrary string.
|
||||
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/type
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Driver type string ("wlan", "bluetooth", etc).
|
||||
Values: See include/linux/rfkill.h.
|
||||
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/persistent
|
||||
Date: 09-Jul-2007
|
||||
KernelVersion v2.6.22
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Whether the soft blocked state is initialised from non-volatile
|
||||
storage at startup.
|
||||
Values: A numeric value.
|
||||
0: false
|
||||
1: true
|
||||
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/hard
|
||||
Date: 12-March-2010
|
||||
KernelVersion v2.6.34
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Current hardblock state. This file is read only.
|
||||
Values: A numeric value.
|
||||
0: inactive
|
||||
The transmitter is (potentially) active.
|
||||
1: active
|
||||
The transmitter is forced off by something outside of
|
||||
the driver's control.
|
||||
|
||||
|
||||
What: /sys/class/rfkill/rfkill[0-9]+/soft
|
||||
Date: 12-March-2010
|
||||
KernelVersion v2.6.34
|
||||
Contact: linux-wireless@vger.kernel.org
|
||||
Description: Current softblock state. This file is read and write.
|
||||
Values: A numeric value.
|
||||
0: inactive
|
||||
The transmitter is (potentially) active.
|
||||
1: active
|
||||
The transmitter is turned off by software.
|
@ -14,34 +14,6 @@ Description:
|
||||
The autosuspend delay for newly-created devices is set to
|
||||
the value of the usbcore.autosuspend module parameter.
|
||||
|
||||
What: /sys/bus/usb/devices/.../power/level
|
||||
Date: March 2007
|
||||
KernelVersion: 2.6.21
|
||||
Contact: Alan Stern <stern@rowland.harvard.edu>
|
||||
Description:
|
||||
Each USB device directory will contain a file named
|
||||
power/level. This file holds a power-level setting for
|
||||
the device, either "on" or "auto".
|
||||
|
||||
"on" means that the device is not allowed to autosuspend,
|
||||
although normal suspends for system sleep will still
|
||||
be honored. "auto" means the device will autosuspend
|
||||
and autoresume in the usual manner, according to the
|
||||
capabilities of its driver.
|
||||
|
||||
During normal use, devices should be left in the "auto"
|
||||
level. The "on" level is meant for administrative uses.
|
||||
If you want to suspend a device immediately but leave it
|
||||
free to wake up in response to I/O requests, you should
|
||||
write "0" to power/autosuspend.
|
||||
|
||||
Device not capable of proper suspend and resume should be
|
||||
left in the "on" level. Although the USB spec requires
|
||||
devices to support suspend/resume, many of them do not.
|
||||
In fact so many don't that by default, the USB core
|
||||
initializes all non-hub devices in the "on" level. Some
|
||||
drivers may change this setting when they are bound.
|
||||
|
||||
What: /sys/bus/usb/devices/.../power/persist
|
||||
Date: May 2007
|
||||
KernelVersion: 2.6.23
|
||||
@ -160,7 +132,7 @@ Description:
|
||||
match the driver to the device. For example:
|
||||
# echo "046d c315" > /sys/bus/usb/drivers/foo/remove_id
|
||||
|
||||
What: /sys/bus/usb/device/.../avoid_reset
|
||||
What: /sys/bus/usb/device/.../avoid_reset_quirk
|
||||
Date: December 2009
|
||||
Contact: Oliver Neukum <oliver@neukum.org>
|
||||
Description:
|
||||
|
@ -43,7 +43,7 @@ Date: September 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The file /sys/devices/system/memory/memoryX/state
|
||||
is read-write. When read, it's contents show the
|
||||
is read-write. When read, its contents show the
|
||||
online/offline state of the memory section. When written,
|
||||
root can toggle the the online/offline state of a removable
|
||||
memory section (see removable file description above)
|
||||
|
@ -0,0 +1,9 @@
|
||||
What: /sys/devices/platform/_UDC_/gadget/suspended
|
||||
Date: April 2010
|
||||
Contact: Fabien Chouteau <fabien.chouteau@barco.com>
|
||||
Description:
|
||||
Show the suspend state of an USB composite gadget.
|
||||
1 -> suspended
|
||||
0 -> resumed
|
||||
|
||||
(_UDC_ is the name of the USB Device Controller driver)
|
@ -49,7 +49,7 @@ o oprofile 0.9 # oprofiled --version
|
||||
o udev 081 # udevinfo -V
|
||||
o grub 0.93 # grub --version
|
||||
o mcelog 0.6
|
||||
o iptables 1.4.1 # iptables -V
|
||||
o iptables 1.4.2 # iptables -V
|
||||
|
||||
|
||||
Kernel compilation
|
||||
|
@ -1,12 +1,12 @@
|
||||
Dynamic DMA mapping
|
||||
===================
|
||||
Dynamic DMA mapping Guide
|
||||
=========================
|
||||
|
||||
David S. Miller <davem@redhat.com>
|
||||
Richard Henderson <rth@cygnus.com>
|
||||
Jakub Jelinek <jakub@redhat.com>
|
||||
|
||||
This document describes the DMA mapping system in terms of the pci_
|
||||
API. For a similar API that works for generic devices, see
|
||||
This is a guide to device driver writers on how to use the DMA API
|
||||
with example pseudo-code. For a concise description of the API, see
|
||||
DMA-API.txt.
|
||||
|
||||
Most of the 64bit platforms have special hardware that translates bus
|
||||
@ -26,12 +26,15 @@ mapped only for the time they are actually used and unmapped after the DMA
|
||||
transfer.
|
||||
|
||||
The following API will work of course even on platforms where no such
|
||||
hardware exists, see e.g. arch/x86/include/asm/pci.h for how it is implemented on
|
||||
top of the virt_to_bus interface.
|
||||
hardware exists.
|
||||
|
||||
Note that the DMA API works with any bus independent of the underlying
|
||||
microprocessor architecture. You should use the DMA API rather than
|
||||
the bus specific DMA API (e.g. pci_dma_*).
|
||||
|
||||
First of all, you should make sure
|
||||
|
||||
#include <linux/pci.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
|
||||
is in your driver. This file will obtain for you the definition of the
|
||||
dma_addr_t (which can hold any valid DMA address for the platform)
|
||||
@ -78,44 +81,43 @@ for you to DMA from/to.
|
||||
DMA addressing limitations
|
||||
|
||||
Does your device have any DMA addressing limitations? For example, is
|
||||
your device only capable of driving the low order 24-bits of address
|
||||
on the PCI bus for SAC DMA transfers? If so, you need to inform the
|
||||
PCI layer of this fact.
|
||||
your device only capable of driving the low order 24-bits of address?
|
||||
If so, you need to inform the kernel of this fact.
|
||||
|
||||
By default, the kernel assumes that your device can address the full
|
||||
32-bits in a SAC cycle. For a 64-bit DAC capable device, this needs
|
||||
to be increased. And for a device with limitations, as discussed in
|
||||
the previous paragraph, it needs to be decreased.
|
||||
32-bits. For a 64-bit capable device, this needs to be increased.
|
||||
And for a device with limitations, as discussed in the previous
|
||||
paragraph, it needs to be decreased.
|
||||
|
||||
pci_alloc_consistent() by default will return 32-bit DMA addresses.
|
||||
PCI-X specification requires PCI-X devices to support 64-bit
|
||||
addressing (DAC) for all transactions. And at least one platform (SGI
|
||||
SN2) requires 64-bit consistent allocations to operate correctly when
|
||||
the IO bus is in PCI-X mode. Therefore, like with pci_set_dma_mask(),
|
||||
it's good practice to call pci_set_consistent_dma_mask() to set the
|
||||
appropriate mask even if your device only supports 32-bit DMA
|
||||
(default) and especially if it's a PCI-X device.
|
||||
Special note about PCI: PCI-X specification requires PCI-X devices to
|
||||
support 64-bit addressing (DAC) for all transactions. And at least
|
||||
one platform (SGI SN2) requires 64-bit consistent allocations to
|
||||
operate correctly when the IO bus is in PCI-X mode.
|
||||
|
||||
For correct operation, you must interrogate the PCI layer in your
|
||||
device probe routine to see if the PCI controller on the machine can
|
||||
properly support the DMA addressing limitation your device has. It is
|
||||
good style to do this even if your device holds the default setting,
|
||||
For correct operation, you must interrogate the kernel in your device
|
||||
probe routine to see if the DMA controller on the machine can properly
|
||||
support the DMA addressing limitation your device has. It is good
|
||||
style to do this even if your device holds the default setting,
|
||||
because this shows that you did think about these issues wrt. your
|
||||
device.
|
||||
|
||||
The query is performed via a call to pci_set_dma_mask():
|
||||
The query is performed via a call to dma_set_mask():
|
||||
|
||||
int pci_set_dma_mask(struct pci_dev *pdev, u64 device_mask);
|
||||
int dma_set_mask(struct device *dev, u64 mask);
|
||||
|
||||
The query for consistent allocations is performed via a call to
|
||||
pci_set_consistent_dma_mask():
|
||||
dma_set_coherent_mask():
|
||||
|
||||
int pci_set_consistent_dma_mask(struct pci_dev *pdev, u64 device_mask);
|
||||
int dma_set_coherent_mask(struct device *dev, u64 mask);
|
||||
|
||||
Here, pdev is a pointer to the PCI device struct of your device, and
|
||||
device_mask is a bit mask describing which bits of a PCI address your
|
||||
device supports. It returns zero if your card can perform DMA
|
||||
properly on the machine given the address mask you provided.
|
||||
Here, dev is a pointer to the device struct of your device, and mask
|
||||
is a bit mask describing which bits of an address your device
|
||||
supports. It returns zero if your card can perform DMA properly on
|
||||
the machine given the address mask you provided. In general, the
|
||||
device struct of your device is embedded in the bus specific device
|
||||
struct of your device. For example, a pointer to the device struct of
|
||||
your PCI device is pdev->dev (pdev is a pointer to the PCI device
|
||||
struct of your device).
|
||||
|
||||
If it returns non-zero, your device cannot perform DMA properly on
|
||||
this platform, and attempting to do so will result in undefined
|
||||
@ -133,31 +135,30 @@ of your driver reports that performance is bad or that the device is not
|
||||
even detected, you can ask them for the kernel messages to find out
|
||||
exactly why.
|
||||
|
||||
The standard 32-bit addressing PCI device would do something like
|
||||
this:
|
||||
The standard 32-bit addressing device would do something like this:
|
||||
|
||||
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
|
||||
if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
||||
printk(KERN_WARNING
|
||||
"mydev: No suitable DMA available.\n");
|
||||
goto ignore_this_device;
|
||||
}
|
||||
|
||||
Another common scenario is a 64-bit capable device. The approach
|
||||
here is to try for 64-bit DAC addressing, but back down to a
|
||||
32-bit mask should that fail. The PCI platform code may fail the
|
||||
64-bit mask not because the platform is not capable of 64-bit
|
||||
addressing. Rather, it may fail in this case simply because
|
||||
32-bit SAC addressing is done more efficiently than DAC addressing.
|
||||
Sparc64 is one platform which behaves in this way.
|
||||
Another common scenario is a 64-bit capable device. The approach here
|
||||
is to try for 64-bit addressing, but back down to a 32-bit mask that
|
||||
should not fail. The kernel may fail the 64-bit mask not because the
|
||||
platform is not capable of 64-bit addressing. Rather, it may fail in
|
||||
this case simply because 32-bit addressing is done more efficiently
|
||||
than 64-bit addressing. For example, Sparc64 PCI SAC addressing is
|
||||
more efficient than DAC addressing.
|
||||
|
||||
Here is how you would handle a 64-bit capable device which can drive
|
||||
all 64-bits when accessing streaming DMA:
|
||||
|
||||
int using_dac;
|
||||
|
||||
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
|
||||
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
|
||||
using_dac = 1;
|
||||
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
|
||||
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
||||
using_dac = 0;
|
||||
} else {
|
||||
printk(KERN_WARNING
|
||||
@ -170,36 +171,36 @@ the case would look like this:
|
||||
|
||||
int using_dac, consistent_using_dac;
|
||||
|
||||
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
|
||||
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
|
||||
using_dac = 1;
|
||||
consistent_using_dac = 1;
|
||||
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
|
||||
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
|
||||
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
|
||||
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
||||
using_dac = 0;
|
||||
consistent_using_dac = 0;
|
||||
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
||||
dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
|
||||
} else {
|
||||
printk(KERN_WARNING
|
||||
"mydev: No suitable DMA available.\n");
|
||||
goto ignore_this_device;
|
||||
}
|
||||
|
||||
pci_set_consistent_dma_mask() will always be able to set the same or a
|
||||
smaller mask as pci_set_dma_mask(). However for the rare case that a
|
||||
dma_set_coherent_mask() will always be able to set the same or a
|
||||
smaller mask as dma_set_mask(). However for the rare case that a
|
||||
device driver only uses consistent allocations, one would have to
|
||||
check the return value from pci_set_consistent_dma_mask().
|
||||
check the return value from dma_set_coherent_mask().
|
||||
|
||||
Finally, if your device can only drive the low 24-bits of
|
||||
address during PCI bus mastering you might do something like:
|
||||
address you might do something like:
|
||||
|
||||
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(24))) {
|
||||
if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
|
||||
printk(KERN_WARNING
|
||||
"mydev: 24-bit DMA addressing not available.\n");
|
||||
goto ignore_this_device;
|
||||
}
|
||||
|
||||
When pci_set_dma_mask() is successful, and returns zero, the PCI layer
|
||||
saves away this mask you have provided. The PCI layer will use this
|
||||
When dma_set_mask() is successful, and returns zero, the kernel saves
|
||||
away this mask you have provided. The kernel will use this
|
||||
information later when you make DMA mappings.
|
||||
|
||||
There is a case which we are aware of at this time, which is worth
|
||||
@ -208,7 +209,7 @@ functions (for example a sound card provides playback and record
|
||||
functions) and the various different functions have _different_
|
||||
DMA addressing limitations, you may wish to probe each mask and
|
||||
only provide the functionality which the machine can handle. It
|
||||
is important that the last call to pci_set_dma_mask() be for the
|
||||
is important that the last call to dma_set_mask() be for the
|
||||
most specific mask.
|
||||
|
||||
Here is pseudo-code showing how this might be done:
|
||||
@ -217,17 +218,17 @@ Here is pseudo-code showing how this might be done:
|
||||
#define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)
|
||||
|
||||
struct my_sound_card *card;
|
||||
struct pci_dev *pdev;
|
||||
struct device *dev;
|
||||
|
||||
...
|
||||
if (!pci_set_dma_mask(pdev, PLAYBACK_ADDRESS_BITS)) {
|
||||
if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
|
||||
card->playback_enabled = 1;
|
||||
} else {
|
||||
card->playback_enabled = 0;
|
||||
printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
|
||||
card->name);
|
||||
}
|
||||
if (!pci_set_dma_mask(pdev, RECORD_ADDRESS_BITS)) {
|
||||
if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
|
||||
card->record_enabled = 1;
|
||||
} else {
|
||||
card->record_enabled = 0;
|
||||
@ -252,8 +253,8 @@ There are two types of DMA mappings:
|
||||
Think of "consistent" as "synchronous" or "coherent".
|
||||
|
||||
The current default is to return consistent memory in the low 32
|
||||
bits of the PCI bus space. However, for future compatibility you
|
||||
should set the consistent mask even if this default is fine for your
|
||||
bits of the bus space. However, for future compatibility you should
|
||||
set the consistent mask even if this default is fine for your
|
||||
driver.
|
||||
|
||||
Good examples of what to use consistent mappings for are:
|
||||
@ -285,9 +286,9 @@ There are two types of DMA mappings:
|
||||
found in PCI bridges (such as by reading a register's value
|
||||
after writing it).
|
||||
|
||||
- Streaming DMA mappings which are usually mapped for one DMA transfer,
|
||||
unmapped right after it (unless you use pci_dma_sync_* below) and for which
|
||||
hardware can optimize for sequential accesses.
|
||||
- Streaming DMA mappings which are usually mapped for one DMA
|
||||
transfer, unmapped right after it (unless you use dma_sync_* below)
|
||||
and for which hardware can optimize for sequential accesses.
|
||||
|
||||
This of "streaming" as "asynchronous" or "outside the coherency
|
||||
domain".
|
||||
@ -302,8 +303,8 @@ There are two types of DMA mappings:
|
||||
optimizations the hardware allows. To this end, when using
|
||||
such mappings you must be explicit about what you want to happen.
|
||||
|
||||
Neither type of DMA mapping has alignment restrictions that come
|
||||
from PCI, although some devices may have such restrictions.
|
||||
Neither type of DMA mapping has alignment restrictions that come from
|
||||
the underlying bus, although some devices may have such restrictions.
|
||||
Also, systems with caches that aren't DMA-coherent will work better
|
||||
when the underlying buffers don't share cache lines with other data.
|
||||
|
||||
@ -315,33 +316,27 @@ you should do:
|
||||
|
||||
dma_addr_t dma_handle;
|
||||
|
||||
cpu_addr = pci_alloc_consistent(pdev, size, &dma_handle);
|
||||
cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
|
||||
|
||||
where pdev is a struct pci_dev *. This may be called in interrupt context.
|
||||
You should use dma_alloc_coherent (see DMA-API.txt) for buses
|
||||
where devices don't have struct pci_dev (like ISA, EISA).
|
||||
|
||||
This argument is needed because the DMA translations may be bus
|
||||
specific (and often is private to the bus which the device is attached
|
||||
to).
|
||||
where device is a struct device *. This may be called in interrupt
|
||||
context with the GFP_ATOMIC flag.
|
||||
|
||||
Size is the length of the region you want to allocate, in bytes.
|
||||
|
||||
This routine will allocate RAM for that region, so it acts similarly to
|
||||
__get_free_pages (but takes size instead of a page order). If your
|
||||
driver needs regions sized smaller than a page, you may prefer using
|
||||
the pci_pool interface, described below.
|
||||
the dma_pool interface, described below.
|
||||
|
||||
The consistent DMA mapping interfaces, for non-NULL pdev, will by
|
||||
default return a DMA address which is SAC (Single Address Cycle)
|
||||
addressable. Even if the device indicates (via PCI dma mask) that it
|
||||
may address the upper 32-bits and thus perform DAC cycles, consistent
|
||||
allocation will only return > 32-bit PCI addresses for DMA if the
|
||||
consistent dma mask has been explicitly changed via
|
||||
pci_set_consistent_dma_mask(). This is true of the pci_pool interface
|
||||
as well.
|
||||
The consistent DMA mapping interfaces, for non-NULL dev, will by
|
||||
default return a DMA address which is 32-bit addressable. Even if the
|
||||
device indicates (via DMA mask) that it may address the upper 32-bits,
|
||||
consistent allocation will only return > 32-bit addresses for DMA if
|
||||
the consistent DMA mask has been explicitly changed via
|
||||
dma_set_coherent_mask(). This is true of the dma_pool interface as
|
||||
well.
|
||||
|
||||
pci_alloc_consistent returns two values: the virtual address which you
|
||||
dma_alloc_coherent returns two values: the virtual address which you
|
||||
can use to access it from the CPU and dma_handle which you pass to the
|
||||
card.
|
||||
|
||||
@ -354,54 +349,54 @@ buffer you receive will not cross a 64K boundary.
|
||||
|
||||
To unmap and free such a DMA region, you call:
|
||||
|
||||
pci_free_consistent(pdev, size, cpu_addr, dma_handle);
|
||||
dma_free_coherent(dev, size, cpu_addr, dma_handle);
|
||||
|
||||
where pdev, size are the same as in the above call and cpu_addr and
|
||||
dma_handle are the values pci_alloc_consistent returned to you.
|
||||
where dev, size are the same as in the above call and cpu_addr and
|
||||
dma_handle are the values dma_alloc_coherent returned to you.
|
||||
This function may not be called in interrupt context.
|
||||
|
||||
If your driver needs lots of smaller memory regions, you can write
|
||||
custom code to subdivide pages returned by pci_alloc_consistent,
|
||||
or you can use the pci_pool API to do that. A pci_pool is like
|
||||
a kmem_cache, but it uses pci_alloc_consistent not __get_free_pages.
|
||||
custom code to subdivide pages returned by dma_alloc_coherent,
|
||||
or you can use the dma_pool API to do that. A dma_pool is like
|
||||
a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
|
||||
Also, it understands common hardware constraints for alignment,
|
||||
like queue heads needing to be aligned on N byte boundaries.
|
||||
|
||||
Create a pci_pool like this:
|
||||
Create a dma_pool like this:
|
||||
|
||||
struct pci_pool *pool;
|
||||
struct dma_pool *pool;
|
||||
|
||||
pool = pci_pool_create(name, pdev, size, align, alloc);
|
||||
pool = dma_pool_create(name, dev, size, align, alloc);
|
||||
|
||||
The "name" is for diagnostics (like a kmem_cache name); pdev and size
|
||||
The "name" is for diagnostics (like a kmem_cache name); dev and size
|
||||
are as above. The device's hardware alignment requirement for this
|
||||
type of data is "align" (which is expressed in bytes, and must be a
|
||||
power of two). If your device has no boundary crossing restrictions,
|
||||
pass 0 for alloc; passing 4096 says memory allocated from this pool
|
||||
must not cross 4KByte boundaries (but at that time it may be better to
|
||||
go for pci_alloc_consistent directly instead).
|
||||
go for dma_alloc_coherent directly instead).
|
||||
|
||||
Allocate memory from a pci pool like this:
|
||||
Allocate memory from a dma pool like this:
|
||||
|
||||
cpu_addr = pci_pool_alloc(pool, flags, &dma_handle);
|
||||
cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
|
||||
|
||||
flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
|
||||
holding SMP locks), SLAB_ATOMIC otherwise. Like pci_alloc_consistent,
|
||||
holding SMP locks), SLAB_ATOMIC otherwise. Like dma_alloc_coherent,
|
||||
this returns two values, cpu_addr and dma_handle.
|
||||
|
||||
Free memory that was allocated from a pci_pool like this:
|
||||
Free memory that was allocated from a dma_pool like this:
|
||||
|
||||
pci_pool_free(pool, cpu_addr, dma_handle);
|
||||
dma_pool_free(pool, cpu_addr, dma_handle);
|
||||
|
||||
where pool is what you passed to pci_pool_alloc, and cpu_addr and
|
||||
dma_handle are the values pci_pool_alloc returned. This function
|
||||
where pool is what you passed to dma_pool_alloc, and cpu_addr and
|
||||
dma_handle are the values dma_pool_alloc returned. This function
|
||||
may be called in interrupt context.
|
||||
|
||||
Destroy a pci_pool by calling:
|
||||
Destroy a dma_pool by calling:
|
||||
|
||||
pci_pool_destroy(pool);
|
||||
dma_pool_destroy(pool);
|
||||
|
||||
Make sure you've called pci_pool_free for all memory allocated
|
||||
Make sure you've called dma_pool_free for all memory allocated
|
||||
from a pool before you destroy the pool. This function may not
|
||||
be called in interrupt context.
|
||||
|
||||
@ -411,15 +406,15 @@ The interfaces described in subsequent portions of this document
|
||||
take a DMA direction argument, which is an integer and takes on
|
||||
one of the following values:
|
||||
|
||||
PCI_DMA_BIDIRECTIONAL
|
||||
PCI_DMA_TODEVICE
|
||||
PCI_DMA_FROMDEVICE
|
||||
PCI_DMA_NONE
|
||||
DMA_BIDIRECTIONAL
|
||||
DMA_TO_DEVICE
|
||||
DMA_FROM_DEVICE
|
||||
DMA_NONE
|
||||
|
||||
One should provide the exact DMA direction if you know it.
|
||||
|
||||
PCI_DMA_TODEVICE means "from main memory to the PCI device"
|
||||
PCI_DMA_FROMDEVICE means "from the PCI device to main memory"
|
||||
DMA_TO_DEVICE means "from main memory to the device"
|
||||
DMA_FROM_DEVICE means "from the device to main memory"
|
||||
It is the direction in which the data moves during the DMA
|
||||
transfer.
|
||||
|
||||
@ -427,12 +422,12 @@ You are _strongly_ encouraged to specify this as precisely
|
||||
as you possibly can.
|
||||
|
||||
If you absolutely cannot know the direction of the DMA transfer,
|
||||
specify PCI_DMA_BIDIRECTIONAL. It means that the DMA can go in
|
||||
specify DMA_BIDIRECTIONAL. It means that the DMA can go in
|
||||
either direction. The platform guarantees that you may legally
|
||||
specify this, and that it will work, but this may be at the
|
||||
cost of performance for example.
|
||||
|
||||
The value PCI_DMA_NONE is to be used for debugging. One can
|
||||
The value DMA_NONE is to be used for debugging. One can
|
||||
hold this in a data structure before you come to know the
|
||||
precise direction, and this will help catch cases where your
|
||||
direction tracking logic has failed to set things up properly.
|
||||
@ -442,21 +437,21 @@ potential platform-specific optimizations of such) is for debugging.
|
||||
Some platforms actually have a write permission boolean which DMA
|
||||
mappings can be marked with, much like page protections in the user
|
||||
program address space. Such platforms can and do report errors in the
|
||||
kernel logs when the PCI controller hardware detects violation of the
|
||||
kernel logs when the DMA controller hardware detects violation of the
|
||||
permission setting.
|
||||
|
||||
Only streaming mappings specify a direction, consistent mappings
|
||||
implicitly have a direction attribute setting of
|
||||
PCI_DMA_BIDIRECTIONAL.
|
||||
DMA_BIDIRECTIONAL.
|
||||
|
||||
The SCSI subsystem tells you the direction to use in the
|
||||
'sc_data_direction' member of the SCSI command your driver is
|
||||
working on.
|
||||
|
||||
For Networking drivers, it's a rather simple affair. For transmit
|
||||
packets, map/unmap them with the PCI_DMA_TODEVICE direction
|
||||
packets, map/unmap them with the DMA_TO_DEVICE direction
|
||||
specifier. For receive packets, just the opposite, map/unmap them
|
||||
with the PCI_DMA_FROMDEVICE direction specifier.
|
||||
with the DMA_FROM_DEVICE direction specifier.
|
||||
|
||||
Using Streaming DMA mappings
|
||||
|
||||
@ -467,43 +462,43 @@ scatterlist.
|
||||
|
||||
To map a single region, you do:
|
||||
|
||||
struct pci_dev *pdev = mydev->pdev;
|
||||
struct device *dev = &my_dev->dev;
|
||||
dma_addr_t dma_handle;
|
||||
void *addr = buffer->ptr;
|
||||
size_t size = buffer->len;
|
||||
|
||||
dma_handle = pci_map_single(pdev, addr, size, direction);
|
||||
dma_handle = dma_map_single(dev, addr, size, direction);
|
||||
|
||||
and to unmap it:
|
||||
|
||||
pci_unmap_single(pdev, dma_handle, size, direction);
|
||||
dma_unmap_single(dev, dma_handle, size, direction);
|
||||
|
||||
You should call pci_unmap_single when the DMA activity is finished, e.g.
|
||||
You should call dma_unmap_single when the DMA activity is finished, e.g.
|
||||
from the interrupt which told you that the DMA transfer is done.
|
||||
|
||||
Using cpu pointers like this for single mappings has a disadvantage,
|
||||
you cannot reference HIGHMEM memory in this way. Thus, there is a
|
||||
map/unmap interface pair akin to pci_{map,unmap}_single. These
|
||||
map/unmap interface pair akin to dma_{map,unmap}_single. These
|
||||
interfaces deal with page/offset pairs instead of cpu pointers.
|
||||
Specifically:
|
||||
|
||||
struct pci_dev *pdev = mydev->pdev;
|
||||
struct device *dev = &my_dev->dev;
|
||||
dma_addr_t dma_handle;
|
||||
struct page *page = buffer->page;
|
||||
unsigned long offset = buffer->offset;
|
||||
size_t size = buffer->len;
|
||||
|
||||
dma_handle = pci_map_page(pdev, page, offset, size, direction);
|
||||
dma_handle = dma_map_page(dev, page, offset, size, direction);
|
||||
|
||||
...
|
||||
|
||||
pci_unmap_page(pdev, dma_handle, size, direction);
|
||||
dma_unmap_page(dev, dma_handle, size, direction);
|
||||
|
||||
Here, "offset" means byte offset within the given page.
|
||||
|
||||
With scatterlists, you map a region gathered from several regions by:
|
||||
|
||||
int i, count = pci_map_sg(pdev, sglist, nents, direction);
|
||||
int i, count = dma_map_sg(dev, sglist, nents, direction);
|
||||
struct scatterlist *sg;
|
||||
|
||||
for_each_sg(sglist, sg, count, i) {
|
||||
@ -527,16 +522,16 @@ accessed sg->address and sg->length as shown above.
|
||||
|
||||
To unmap a scatterlist, just call:
|
||||
|
||||
pci_unmap_sg(pdev, sglist, nents, direction);
|
||||
dma_unmap_sg(dev, sglist, nents, direction);
|
||||
|
||||
Again, make sure DMA activity has already finished.
|
||||
|
||||
PLEASE NOTE: The 'nents' argument to the pci_unmap_sg call must be
|
||||
the _same_ one you passed into the pci_map_sg call,
|
||||
PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
|
||||
the _same_ one you passed into the dma_map_sg call,
|
||||
it should _NOT_ be the 'count' value _returned_ from the
|
||||
pci_map_sg call.
|
||||
dma_map_sg call.
|
||||
|
||||
Every pci_map_{single,sg} call should have its pci_unmap_{single,sg}
|
||||
Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
|
||||
counterpart, because the bus address space is a shared resource (although
|
||||
in some ports the mapping is per each BUS so less devices contend for the
|
||||
same bus address space) and you could render the machine unusable by eating
|
||||
@ -547,14 +542,14 @@ the data in between the DMA transfers, the buffer needs to be synced
|
||||
properly in order for the cpu and device to see the most uptodate and
|
||||
correct copy of the DMA buffer.
|
||||
|
||||
So, firstly, just map it with pci_map_{single,sg}, and after each DMA
|
||||
So, firstly, just map it with dma_map_{single,sg}, and after each DMA
|
||||
transfer call either:
|
||||
|
||||
pci_dma_sync_single_for_cpu(pdev, dma_handle, size, direction);
|
||||
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
|
||||
|
||||
or:
|
||||
|
||||
pci_dma_sync_sg_for_cpu(pdev, sglist, nents, direction);
|
||||
dma_sync_sg_for_cpu(dev, sglist, nents, direction);
|
||||
|
||||
as appropriate.
|
||||
|
||||
@ -562,27 +557,27 @@ Then, if you wish to let the device get at the DMA area again,
|
||||
finish accessing the data with the cpu, and then before actually
|
||||
giving the buffer to the hardware call either:
|
||||
|
||||
pci_dma_sync_single_for_device(pdev, dma_handle, size, direction);
|
||||
dma_sync_single_for_device(dev, dma_handle, size, direction);
|
||||
|
||||
or:
|
||||
|
||||
pci_dma_sync_sg_for_device(dev, sglist, nents, direction);
|
||||
dma_sync_sg_for_device(dev, sglist, nents, direction);
|
||||
|
||||
as appropriate.
|
||||
|
||||
After the last DMA transfer call one of the DMA unmap routines
|
||||
pci_unmap_{single,sg}. If you don't touch the data from the first pci_map_*
|
||||
call till pci_unmap_*, then you don't have to call the pci_dma_sync_*
|
||||
dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
|
||||
call till dma_unmap_*, then you don't have to call the dma_sync_*
|
||||
routines at all.
|
||||
|
||||
Here is pseudo code which shows a situation in which you would need
|
||||
to use the pci_dma_sync_*() interfaces.
|
||||
to use the dma_sync_*() interfaces.
|
||||
|
||||
my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
|
||||
{
|
||||
dma_addr_t mapping;
|
||||
|
||||
mapping = pci_map_single(cp->pdev, buffer, len, PCI_DMA_FROMDEVICE);
|
||||
mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
|
||||
|
||||
cp->rx_buf = buffer;
|
||||
cp->rx_len = len;
|
||||
@ -606,25 +601,25 @@ to use the pci_dma_sync_*() interfaces.
|
||||
* the DMA transfer with the CPU first
|
||||
* so that we see updated contents.
|
||||
*/
|
||||
pci_dma_sync_single_for_cpu(cp->pdev, cp->rx_dma,
|
||||
cp->rx_len,
|
||||
PCI_DMA_FROMDEVICE);
|
||||
dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
|
||||
cp->rx_len,
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
/* Now it is safe to examine the buffer. */
|
||||
hp = (struct my_card_header *) cp->rx_buf;
|
||||
if (header_is_ok(hp)) {
|
||||
pci_unmap_single(cp->pdev, cp->rx_dma, cp->rx_len,
|
||||
PCI_DMA_FROMDEVICE);
|
||||
dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
|
||||
DMA_FROM_DEVICE);
|
||||
pass_to_upper_layers(cp->rx_buf);
|
||||
make_and_setup_new_rx_buf(cp);
|
||||
} else {
|
||||
/* Just sync the buffer and give it back
|
||||
* to the card.
|
||||
*/
|
||||
pci_dma_sync_single_for_device(cp->pdev,
|
||||
cp->rx_dma,
|
||||
cp->rx_len,
|
||||
PCI_DMA_FROMDEVICE);
|
||||
dma_sync_single_for_device(&cp->dev,
|
||||
cp->rx_dma,
|
||||
cp->rx_len,
|
||||
DMA_FROM_DEVICE);
|
||||
give_rx_buf_to_card(cp);
|
||||
}
|
||||
}
|
||||
@ -634,19 +629,19 @@ Drivers converted fully to this interface should not use virt_to_bus any
|
||||
longer, nor should they use bus_to_virt. Some drivers have to be changed a
|
||||
little bit, because there is no longer an equivalent to bus_to_virt in the
|
||||
dynamic DMA mapping scheme - you have to always store the DMA addresses
|
||||
returned by the pci_alloc_consistent, pci_pool_alloc, and pci_map_single
|
||||
calls (pci_map_sg stores them in the scatterlist itself if the platform
|
||||
returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
|
||||
calls (dma_map_sg stores them in the scatterlist itself if the platform
|
||||
supports dynamic DMA mapping in hardware) in your driver structures and/or
|
||||
in the card registers.
|
||||
|
||||
All PCI drivers should be using these interfaces with no exceptions.
|
||||
It is planned to completely remove virt_to_bus() and bus_to_virt() as
|
||||
All drivers should be using these interfaces with no exceptions. It
|
||||
is planned to completely remove virt_to_bus() and bus_to_virt() as
|
||||
they are entirely deprecated. Some ports already do not provide these
|
||||
as it is impossible to correctly support them.
|
||||
|
||||
Optimizing Unmap State Space Consumption
|
||||
|
||||
On many platforms, pci_unmap_{single,page}() is simply a nop.
|
||||
On many platforms, dma_unmap_{single,page}() is simply a nop.
|
||||
Therefore, keeping track of the mapping address and length is a waste
|
||||
of space. Instead of filling your drivers up with ifdefs and the like
|
||||
to "work around" this (which would defeat the whole purpose of a
|
||||
@ -655,7 +650,7 @@ portable API) the following facilities are provided.
|
||||
Actually, instead of describing the macros one by one, we'll
|
||||
transform some example code.
|
||||
|
||||
1) Use DECLARE_PCI_UNMAP_{ADDR,LEN} in state saving structures.
|
||||
1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
|
||||
Example, before:
|
||||
|
||||
struct ring_state {
|
||||
@ -668,14 +663,11 @@ transform some example code.
|
||||
|
||||
struct ring_state {
|
||||
struct sk_buff *skb;
|
||||
DECLARE_PCI_UNMAP_ADDR(mapping)
|
||||
DECLARE_PCI_UNMAP_LEN(len)
|
||||
DEFINE_DMA_UNMAP_ADDR(mapping);
|
||||
DEFINE_DMA_UNMAP_LEN(len);
|
||||
};
|
||||
|
||||
NOTE: DO NOT put a semicolon at the end of the DECLARE_*()
|
||||
macro.
|
||||
|
||||
2) Use pci_unmap_{addr,len}_set to set these values.
|
||||
2) Use dma_unmap_{addr,len}_set to set these values.
|
||||
Example, before:
|
||||
|
||||
ringp->mapping = FOO;
|
||||
@ -683,21 +675,21 @@ transform some example code.
|
||||
|
||||
after:
|
||||
|
||||
pci_unmap_addr_set(ringp, mapping, FOO);
|
||||
pci_unmap_len_set(ringp, len, BAR);
|
||||
dma_unmap_addr_set(ringp, mapping, FOO);
|
||||
dma_unmap_len_set(ringp, len, BAR);
|
||||
|
||||
3) Use pci_unmap_{addr,len} to access these values.
|
||||
3) Use dma_unmap_{addr,len} to access these values.
|
||||
Example, before:
|
||||
|
||||
pci_unmap_single(pdev, ringp->mapping, ringp->len,
|
||||
PCI_DMA_FROMDEVICE);
|
||||
dma_unmap_single(dev, ringp->mapping, ringp->len,
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
after:
|
||||
|
||||
pci_unmap_single(pdev,
|
||||
pci_unmap_addr(ringp, mapping),
|
||||
pci_unmap_len(ringp, len),
|
||||
PCI_DMA_FROMDEVICE);
|
||||
dma_unmap_single(dev,
|
||||
dma_unmap_addr(ringp, mapping),
|
||||
dma_unmap_len(ringp, len),
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
It really should be self-explanatory. We treat the ADDR and LEN
|
||||
separately, because it is possible for an implementation to only
|
||||
@ -732,15 +724,15 @@ to "Closing".
|
||||
DMA address space is limited on some architectures and an allocation
|
||||
failure can be determined by:
|
||||
|
||||
- checking if pci_alloc_consistent returns NULL or pci_map_sg returns 0
|
||||
- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
|
||||
|
||||
- checking the returned dma_addr_t of pci_map_single and pci_map_page
|
||||
by using pci_dma_mapping_error():
|
||||
- checking the returned dma_addr_t of dma_map_single and dma_map_page
|
||||
by using dma_mapping_error():
|
||||
|
||||
dma_addr_t dma_handle;
|
||||
|
||||
dma_handle = pci_map_single(pdev, addr, size, direction);
|
||||
if (pci_dma_mapping_error(pdev, dma_handle)) {
|
||||
dma_handle = dma_map_single(dev, addr, size, direction);
|
||||
if (dma_mapping_error(dev, dma_handle)) {
|
||||
/*
|
||||
* reduce current DMA mapping usage,
|
||||
* delay and try again later or
|
||||
@ -750,7 +742,7 @@ failure can be determined by:
|
||||
|
||||
Closing
|
||||
|
||||
This document, and the API itself, would not be in it's current
|
||||
This document, and the API itself, would not be in its current
|
||||
form without the feedback and suggestions from numerous individuals.
|
||||
We would like to specifically mention, in no particular order, the
|
||||
following people:
|
@ -4,20 +4,18 @@
|
||||
James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
|
||||
|
||||
This document describes the DMA API. For a more gentle introduction
|
||||
phrased in terms of the pci_ equivalents (and actual examples) see
|
||||
Documentation/PCI/PCI-DMA-mapping.txt.
|
||||
of the API (and actual examples) see
|
||||
Documentation/DMA-API-HOWTO.txt.
|
||||
|
||||
This API is split into two pieces. Part I describes the API and the
|
||||
corresponding pci_ API. Part II describes the extensions to the API
|
||||
for supporting non-consistent memory machines. Unless you know that
|
||||
your driver absolutely has to support non-consistent platforms (this
|
||||
is usually only legacy platforms) you should only use the API
|
||||
described in part I.
|
||||
This API is split into two pieces. Part I describes the API. Part II
|
||||
describes the extensions to the API for supporting non-consistent
|
||||
memory machines. Unless you know that your driver absolutely has to
|
||||
support non-consistent platforms (this is usually only legacy
|
||||
platforms) you should only use the API described in part I.
|
||||
|
||||
Part I - pci_ and dma_ Equivalent API
|
||||
Part I - dma_ API
|
||||
-------------------------------------
|
||||
|
||||
To get the pci_ API, you must #include <linux/pci.h>
|
||||
To get the dma_ API, you must #include <linux/dma-mapping.h>
|
||||
|
||||
|
||||
@ -27,9 +25,6 @@ Part Ia - Using large dma-coherent buffers
|
||||
void *
|
||||
dma_alloc_coherent(struct device *dev, size_t size,
|
||||
dma_addr_t *dma_handle, gfp_t flag)
|
||||
void *
|
||||
pci_alloc_consistent(struct pci_dev *dev, size_t size,
|
||||
dma_addr_t *dma_handle)
|
||||
|
||||
Consistent memory is memory for which a write by either the device or
|
||||
the processor can immediately be read by the processor or device
|
||||
@ -53,15 +48,11 @@ The simplest way to do that is to use the dma_pool calls (see below).
|
||||
The flag parameter (dma_alloc_coherent only) allows the caller to
|
||||
specify the GFP_ flags (see kmalloc) for the allocation (the
|
||||
implementation may choose to ignore flags that affect the location of
|
||||
the returned memory, like GFP_DMA). For pci_alloc_consistent, you
|
||||
must assume GFP_ATOMIC behaviour.
|
||||
the returned memory, like GFP_DMA).
|
||||
|
||||
void
|
||||
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
|
||||
dma_addr_t dma_handle)
|
||||
void
|
||||
pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
|
||||
dma_addr_t dma_handle)
|
||||
|
||||
Free the region of consistent memory you previously allocated. dev,
|
||||
size and dma_handle must all be the same as those passed into the
|
||||
@ -89,10 +80,6 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
|
||||
dma_pool_create(const char *name, struct device *dev,
|
||||
size_t size, size_t align, size_t alloc);
|
||||
|
||||
struct pci_pool *
|
||||
pci_pool_create(const char *name, struct pci_device *dev,
|
||||
size_t size, size_t align, size_t alloc);
|
||||
|
||||
The pool create() routines initialize a pool of dma-coherent buffers
|
||||
for use with a given device. It must be called in a context which
|
||||
can sleep.
|
||||
@ -108,9 +95,6 @@ from this pool must not cross 4KByte boundaries.
|
||||
void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
|
||||
dma_addr_t *dma_handle);
|
||||
|
||||
void *pci_pool_alloc(struct pci_pool *pool, gfp_t gfp_flags,
|
||||
dma_addr_t *dma_handle);
|
||||
|
||||
This allocates memory from the pool; the returned memory will meet the size
|
||||
and alignment requirements specified at creation time. Pass GFP_ATOMIC to
|
||||
prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
|
||||
@ -122,9 +106,6 @@ pool's device.
|
||||
void dma_pool_free(struct dma_pool *pool, void *vaddr,
|
||||
dma_addr_t addr);
|
||||
|
||||
void pci_pool_free(struct pci_pool *pool, void *vaddr,
|
||||
dma_addr_t addr);
|
||||
|
||||
This puts memory back into the pool. The pool is what was passed to
|
||||
the pool allocation routine; the cpu (vaddr) and dma addresses are what
|
||||
were returned when that routine allocated the memory being freed.
|
||||
@ -132,8 +113,6 @@ were returned when that routine allocated the memory being freed.
|
||||
|
||||
void dma_pool_destroy(struct dma_pool *pool);
|
||||
|
||||
void pci_pool_destroy(struct pci_pool *pool);
|
||||
|
||||
The pool destroy() routines free the resources of the pool. They must be
|
||||
called in a context which can sleep. Make sure you've freed all allocated
|
||||
memory back to the pool before you destroy it.
|
||||
@ -144,8 +123,6 @@ Part Ic - DMA addressing limitations
|
||||
|
||||
int
|
||||
dma_supported(struct device *dev, u64 mask)
|
||||
int
|
||||
pci_dma_supported(struct pci_dev *hwdev, u64 mask)
|
||||
|
||||
Checks to see if the device can support DMA to the memory described by
|
||||
mask.
|
||||
@ -159,8 +136,14 @@ driver writers.
|
||||
|
||||
int
|
||||
dma_set_mask(struct device *dev, u64 mask)
|
||||
|
||||
Checks to see if the mask is possible and updates the device
|
||||
parameters if it is.
|
||||
|
||||
Returns: 0 if successful and a negative error if not.
|
||||
|
||||
int
|
||||
pci_set_dma_mask(struct pci_device *dev, u64 mask)
|
||||
dma_set_coherent_mask(struct device *dev, u64 mask)
|
||||
|
||||
Checks to see if the mask is possible and updates the device
|
||||
parameters if it is.
|
||||
@ -187,9 +170,6 @@ Part Id - Streaming DMA mappings
|
||||
dma_addr_t
|
||||
dma_map_single(struct device *dev, void *cpu_addr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
dma_addr_t
|
||||
pci_map_single(struct pci_dev *hwdev, void *cpu_addr, size_t size,
|
||||
int direction)
|
||||
|
||||
Maps a piece of processor virtual memory so it can be accessed by the
|
||||
device and returns the physical handle of the memory.
|
||||
@ -198,14 +178,10 @@ The direction for both api's may be converted freely by casting.
|
||||
However the dma_ API uses a strongly typed enumerator for its
|
||||
direction:
|
||||
|
||||
DMA_NONE = PCI_DMA_NONE no direction (used for
|
||||
debugging)
|
||||
DMA_TO_DEVICE = PCI_DMA_TODEVICE data is going from the
|
||||
memory to the device
|
||||
DMA_FROM_DEVICE = PCI_DMA_FROMDEVICE data is coming from
|
||||
the device to the
|
||||
memory
|
||||
DMA_BIDIRECTIONAL = PCI_DMA_BIDIRECTIONAL direction isn't known
|
||||
DMA_NONE no direction (used for debugging)
|
||||
DMA_TO_DEVICE data is going from the memory to the device
|
||||
DMA_FROM_DEVICE data is coming from the device to the memory
|
||||
DMA_BIDIRECTIONAL direction isn't known
|
||||
|
||||
Notes: Not all memory regions in a machine can be mapped by this
|
||||
API. Further, regions that appear to be physically contiguous in
|
||||
@ -268,9 +244,6 @@ cache lines are updated with data that the device may have changed).
|
||||
void
|
||||
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
void
|
||||
pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr,
|
||||
size_t size, int direction)
|
||||
|
||||
Unmaps the region previously mapped. All the parameters passed in
|
||||
must be identical to those passed in (and returned) by the mapping
|
||||
@ -280,15 +253,9 @@ dma_addr_t
|
||||
dma_map_page(struct device *dev, struct page *page,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
dma_addr_t
|
||||
pci_map_page(struct pci_dev *hwdev, struct page *page,
|
||||
unsigned long offset, size_t size, int direction)
|
||||
void
|
||||
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
void
|
||||
pci_unmap_page(struct pci_dev *hwdev, dma_addr_t dma_address,
|
||||
size_t size, int direction)
|
||||
|
||||
API for mapping and unmapping for pages. All the notes and warnings
|
||||
for the other mapping APIs apply here. Also, although the <offset>
|
||||
@ -299,9 +266,6 @@ cache width is.
|
||||
int
|
||||
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||||
|
||||
int
|
||||
pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
|
||||
|
||||
In some circumstances dma_map_single and dma_map_page will fail to create
|
||||
a mapping. A driver can check for these errors by testing the returned
|
||||
dma address with dma_mapping_error(). A non-zero return value means the mapping
|
||||
@ -311,9 +275,6 @@ reduce current DMA mapping usage or delay and try again later).
|
||||
int
|
||||
dma_map_sg(struct device *dev, struct scatterlist *sg,
|
||||
int nents, enum dma_data_direction direction)
|
||||
int
|
||||
pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
|
||||
int nents, int direction)
|
||||
|
||||
Returns: the number of physical segments mapped (this may be shorter
|
||||
than <nents> passed in if some elements of the scatter/gather list are
|
||||
@ -353,9 +314,6 @@ accessed sg->address and sg->length as shown above.
|
||||
void
|
||||
dma_unmap_sg(struct device *dev, struct scatterlist *sg,
|
||||
int nhwentries, enum dma_data_direction direction)
|
||||
void
|
||||
pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
|
||||
int nents, int direction)
|
||||
|
||||
Unmap the previously mapped scatter/gather list. All the parameters
|
||||
must be the same as those and passed in to the scatter/gather mapping
|
||||
@ -365,21 +323,23 @@ Note: <nents> must be the number you passed in, *not* the number of
|
||||
physical entries returned.
|
||||
|
||||
void
|
||||
dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
void
|
||||
pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle,
|
||||
size_t size, int direction)
|
||||
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
void
|
||||
dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems,
|
||||
enum dma_data_direction direction)
|
||||
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
|
||||
enum dma_data_direction direction)
|
||||
void
|
||||
pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg,
|
||||
int nelems, int direction)
|
||||
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
|
||||
enum dma_data_direction direction)
|
||||
|
||||
Synchronise a single contiguous or scatter/gather mapping. All the
|
||||
parameters must be the same as those passed into the single mapping
|
||||
API.
|
||||
Synchronise a single contiguous or scatter/gather mapping for the cpu
|
||||
and device. With the sync_sg API, all the parameters must be the same
|
||||
as those passed into the single mapping API. With the sync_single API,
|
||||
you can use dma_handle and size parameters that aren't identical to
|
||||
those passed into the single mapping API to do a partial sync.
|
||||
|
||||
Notes: You must do this:
|
||||
|
||||
@ -461,9 +421,9 @@ void whizco_dma_map_sg_attrs(struct device *dev, dma_addr_t dma_addr,
|
||||
Part II - Advanced dma_ usage
|
||||
-----------------------------
|
||||
|
||||
Warning: These pieces of the DMA API have no PCI equivalent. They
|
||||
should also not be used in the majority of cases, since they cater for
|
||||
unlikely corner cases that don't belong in usual drivers.
|
||||
Warning: These pieces of the DMA API should not be used in the
|
||||
majority of cases, since they cater for unlikely corner cases that
|
||||
don't belong in usual drivers.
|
||||
|
||||
If you don't understand how cache line coherency works between a
|
||||
processor and an I/O device, you should not be using this part of the
|
||||
@ -513,16 +473,6 @@ line, but it will guarantee that one or more cache lines fit exactly
|
||||
into the width returned by this call. It will also always be a power
|
||||
of two for easy alignment.
|
||||
|
||||
void
|
||||
dma_sync_single_range(struct device *dev, dma_addr_t dma_handle,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
|
||||
Does a partial sync, starting at offset and continuing for size. You
|
||||
must be careful to observe the cache alignment and width when doing
|
||||
anything like this. You must also be extra careful about accessing
|
||||
memory you intend to sync partially.
|
||||
|
||||
void
|
||||
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
|
@ -81,16 +81,14 @@ void (*port_disable) (struct ata_port *);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
Called from ata_bus_probe() and ata_bus_reset() error paths,
|
||||
as well as when unregistering from the SCSI module (rmmod, hot
|
||||
unplug).
|
||||
Called from ata_bus_probe() error path, as well as when
|
||||
unregistering from the SCSI module (rmmod, hot unplug).
|
||||
This function should do whatever needs to be done to take the
|
||||
port out of use. In most cases, ata_port_disable() can be used
|
||||
as this hook.
|
||||
</para>
|
||||
<para>
|
||||
Called from ata_bus_probe() on a failed probe.
|
||||
Called from ata_bus_reset() on a failed bus reset.
|
||||
Called from ata_scsi_release().
|
||||
</para>
|
||||
|
||||
@ -107,10 +105,6 @@ void (*dev_config) (struct ata_port *, struct ata_device *);
|
||||
issue of SET FEATURES - XFER MODE, and prior to operation.
|
||||
</para>
|
||||
<para>
|
||||
Called by ata_device_add() after ata_dev_identify() determines
|
||||
a device is present.
|
||||
</para>
|
||||
<para>
|
||||
This entry may be specified as NULL in ata_port_operations.
|
||||
</para>
|
||||
|
||||
@ -154,8 +148,8 @@ unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned in
|
||||
|
||||
<sect2><title>Taskfile read/write</title>
|
||||
<programlisting>
|
||||
void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
@ -164,36 +158,35 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
hardware registers / DMA buffers, to obtain the current set of
|
||||
taskfile register values.
|
||||
Most drivers for taskfile-based hardware (PIO or MMIO) use
|
||||
ata_tf_load() and ata_tf_read() for these hooks.
|
||||
ata_sff_tf_load() and ata_sff_tf_read() for these hooks.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>PIO data read/write</title>
|
||||
<programlisting>
|
||||
void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
|
||||
void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
All bmdma-style drivers must implement this hook. This is the low-level
|
||||
operation that actually copies the data bytes during a PIO data
|
||||
transfer.
|
||||
Typically the driver
|
||||
will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or
|
||||
ata_mmio_data_xfer().
|
||||
Typically the driver will choose one of ata_sff_data_xfer_noirq(),
|
||||
ata_sff_data_xfer(), or ata_sff_data_xfer32().
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>ATA command execute</title>
|
||||
<programlisting>
|
||||
void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
|
||||
void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
causes an ATA command, previously loaded with
|
||||
->tf_load(), to be initiated in hardware.
|
||||
Most drivers for taskfile-based hardware use ata_exec_command()
|
||||
Most drivers for taskfile-based hardware use ata_sff_exec_command()
|
||||
for this hook.
|
||||
</para>
|
||||
|
||||
@ -218,8 +211,8 @@ command.
|
||||
|
||||
<sect2><title>Read specific ATA shadow registers</title>
|
||||
<programlisting>
|
||||
u8 (*check_status)(struct ata_port *ap);
|
||||
u8 (*check_altstatus)(struct ata_port *ap);
|
||||
u8 (*sff_check_status)(struct ata_port *ap);
|
||||
u8 (*sff_check_altstatus)(struct ata_port *ap);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
@ -227,20 +220,26 @@ u8 (*check_altstatus)(struct ata_port *ap);
|
||||
hardware. On some hardware, reading the Status register has
|
||||
the side effect of clearing the interrupt condition.
|
||||
Most drivers for taskfile-based hardware use
|
||||
ata_check_status() for this hook.
|
||||
ata_sff_check_status() for this hook.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Write specific ATA shadow register</title>
|
||||
<programlisting>
|
||||
void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
Note that because this is called from ata_device_add(), at
|
||||
least a dummy function that clears device interrupts must be
|
||||
provided for all drivers, even if the controller doesn't
|
||||
actually have a taskfile status register.
|
||||
Write the device control ATA shadow register to the hardware.
|
||||
Most drivers don't need to define this.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Select ATA device on bus</title>
|
||||
<programlisting>
|
||||
void (*dev_select)(struct ata_port *ap, unsigned int device);
|
||||
void (*sff_dev_select)(struct ata_port *ap, unsigned int device);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
@ -251,9 +250,7 @@ void (*dev_select)(struct ata_port *ap, unsigned int device);
|
||||
</para>
|
||||
<para>
|
||||
Most drivers for taskfile-based hardware use
|
||||
ata_std_dev_select() for this hook. Controllers which do not
|
||||
support second drives on a port (such as SATA contollers) will
|
||||
use ata_noop_dev_select().
|
||||
ata_sff_dev_select() for this hook.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
@ -441,13 +438,13 @@ void (*irq_clear) (struct ata_port *);
|
||||
to struct ata_host_set.
|
||||
</para>
|
||||
<para>
|
||||
Most legacy IDE drivers use ata_interrupt() for the
|
||||
Most legacy IDE drivers use ata_sff_interrupt() for the
|
||||
irq_handler hook, which scans all ports in the host_set,
|
||||
determines which queued command was active (if any), and calls
|
||||
ata_host_intr(ap,qc).
|
||||
ata_sff_host_intr(ap,qc).
|
||||
</para>
|
||||
<para>
|
||||
Most legacy IDE drivers use ata_bmdma_irq_clear() for the
|
||||
Most legacy IDE drivers use ata_sff_irq_clear() for the
|
||||
irq_clear() hook, which simply clears the interrupt and error
|
||||
flags in the DMA status register.
|
||||
</para>
|
||||
@ -490,16 +487,12 @@ void (*host_stop) (struct ata_host_set *host_set);
|
||||
allocates space for a legacy IDE PRD table and returns.
|
||||
</para>
|
||||
<para>
|
||||
->port_stop() is called after ->host_stop(). It's sole function
|
||||
->port_stop() is called after ->host_stop(). Its sole function
|
||||
is to release DMA/memory resources, now that they are no longer
|
||||
actively being used. Many drivers also free driver-private
|
||||
data from port at this time.
|
||||
</para>
|
||||
<para>
|
||||
Many drivers use ata_port_stop() as this hook, which frees the
|
||||
PRD table.
|
||||
</para>
|
||||
<para>
|
||||
->host_stop() is called after all ->port_stop() calls
|
||||
have completed. The hook must finalize hardware shutdown, release DMA
|
||||
and other resources, etc.
|
||||
|
@ -17,6 +17,7 @@
|
||||
<!ENTITY VIDIOC-DBG-G-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_G_REGISTER</constant></link>">
|
||||
<!ENTITY VIDIOC-DBG-S-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_S_REGISTER</constant></link>">
|
||||
<!ENTITY VIDIOC-DQBUF "<link linkend='vidioc-qbuf'><constant>VIDIOC_DQBUF</constant></link>">
|
||||
<!ENTITY VIDIOC-DQEVENT "<link linkend='vidioc-dqevent'><constant>VIDIOC_DQEVENT</constant></link>">
|
||||
<!ENTITY VIDIOC-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_ENCODER_CMD</constant></link>">
|
||||
<!ENTITY VIDIOC-ENUMAUDIO "<link linkend='vidioc-enumaudio'><constant>VIDIOC_ENUMAUDIO</constant></link>">
|
||||
<!ENTITY VIDIOC-ENUMAUDOUT "<link linkend='vidioc-enumaudioout'><constant>VIDIOC_ENUMAUDOUT</constant></link>">
|
||||
@ -60,6 +61,7 @@
|
||||
<!ENTITY VIDIOC-REQBUFS "<link linkend='vidioc-reqbufs'><constant>VIDIOC_REQBUFS</constant></link>">
|
||||
<!ENTITY VIDIOC-STREAMOFF "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMOFF</constant></link>">
|
||||
<!ENTITY VIDIOC-STREAMON "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMON</constant></link>">
|
||||
<!ENTITY VIDIOC-SUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_SUBSCRIBE_EVENT</constant></link>">
|
||||
<!ENTITY VIDIOC-S-AUDIO "<link linkend='vidioc-g-audio'><constant>VIDIOC_S_AUDIO</constant></link>">
|
||||
<!ENTITY VIDIOC-S-AUDOUT "<link linkend='vidioc-g-audioout'><constant>VIDIOC_S_AUDOUT</constant></link>">
|
||||
<!ENTITY VIDIOC-S-CROP "<link linkend='vidioc-g-crop'><constant>VIDIOC_S_CROP</constant></link>">
|
||||
@ -83,6 +85,7 @@
|
||||
<!ENTITY VIDIOC-TRY-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_TRY_ENCODER_CMD</constant></link>">
|
||||
<!ENTITY VIDIOC-TRY-EXT-CTRLS "<link linkend='vidioc-g-ext-ctrls'><constant>VIDIOC_TRY_EXT_CTRLS</constant></link>">
|
||||
<!ENTITY VIDIOC-TRY-FMT "<link linkend='vidioc-g-fmt'><constant>VIDIOC_TRY_FMT</constant></link>">
|
||||
<!ENTITY VIDIOC-UNSUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_UNSUBSCRIBE_EVENT</constant></link>">
|
||||
|
||||
<!-- Types -->
|
||||
<!ENTITY v4l2-std-id "<link linkend='v4l2-std-id'>v4l2_std_id</link>">
|
||||
@ -141,6 +144,9 @@
|
||||
<!ENTITY v4l2-enc-idx "struct <link linkend='v4l2-enc-idx'>v4l2_enc_idx</link>">
|
||||
<!ENTITY v4l2-enc-idx-entry "struct <link linkend='v4l2-enc-idx-entry'>v4l2_enc_idx_entry</link>">
|
||||
<!ENTITY v4l2-encoder-cmd "struct <link linkend='v4l2-encoder-cmd'>v4l2_encoder_cmd</link>">
|
||||
<!ENTITY v4l2-event "struct <link linkend='v4l2-event'>v4l2_event</link>">
|
||||
<!ENTITY v4l2-event-subscription "struct <link linkend='v4l2-event-subscription'>v4l2_event_subscription</link>">
|
||||
<!ENTITY v4l2-event-vsync "struct <link linkend='v4l2-event-vsync'>v4l2_event_vsync</link>">
|
||||
<!ENTITY v4l2-ext-control "struct <link linkend='v4l2-ext-control'>v4l2_ext_control</link>">
|
||||
<!ENTITY v4l2-ext-controls "struct <link linkend='v4l2-ext-controls'>v4l2_ext_controls</link>">
|
||||
<!ENTITY v4l2-fmtdesc "struct <link linkend='v4l2-fmtdesc'>v4l2_fmtdesc</link>">
|
||||
@ -200,6 +206,7 @@
|
||||
<!ENTITY sub-controls SYSTEM "v4l/controls.xml">
|
||||
<!ENTITY sub-dev-capture SYSTEM "v4l/dev-capture.xml">
|
||||
<!ENTITY sub-dev-codec SYSTEM "v4l/dev-codec.xml">
|
||||
<!ENTITY sub-dev-event SYSTEM "v4l/dev-event.xml">
|
||||
<!ENTITY sub-dev-effect SYSTEM "v4l/dev-effect.xml">
|
||||
<!ENTITY sub-dev-osd SYSTEM "v4l/dev-osd.xml">
|
||||
<!ENTITY sub-dev-output SYSTEM "v4l/dev-output.xml">
|
||||
@ -292,6 +299,8 @@
|
||||
<!ENTITY sub-v4l2grab-c SYSTEM "v4l/v4l2grab.c.xml">
|
||||
<!ENTITY sub-videodev2-h SYSTEM "v4l/videodev2.h.xml">
|
||||
<!ENTITY sub-v4l2 SYSTEM "v4l/v4l2.xml">
|
||||
<!ENTITY sub-dqevent SYSTEM "v4l/vidioc-dqevent.xml">
|
||||
<!ENTITY sub-subscribe-event SYSTEM "v4l/vidioc-subscribe-event.xml">
|
||||
<!ENTITY sub-intro SYSTEM "dvb/intro.xml">
|
||||
<!ENTITY sub-frontend SYSTEM "dvb/frontend.xml">
|
||||
<!ENTITY sub-dvbproperty SYSTEM "dvb/dvbproperty.xml">
|
||||
@ -381,3 +390,5 @@
|
||||
<!ENTITY reqbufs SYSTEM "v4l/vidioc-reqbufs.xml">
|
||||
<!ENTITY s-hw-freq-seek SYSTEM "v4l/vidioc-s-hw-freq-seek.xml">
|
||||
<!ENTITY streamon SYSTEM "v4l/vidioc-streamon.xml">
|
||||
<!ENTITY dqevent SYSTEM "v4l/vidioc-dqevent.xml">
|
||||
<!ENTITY subscribe_event SYSTEM "v4l/vidioc-subscribe-event.xml">
|
||||
|
@ -488,7 +488,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
|
||||
The ECC bytes must be placed immidiately after the data
|
||||
bytes in order to make the syndrome generator work. This
|
||||
is contrary to the usual layout used by software ECC. The
|
||||
seperation of data and out of band area is not longer
|
||||
separation of data and out of band area is not longer
|
||||
possible. The nand driver code handles this layout and
|
||||
the remaining free bytes in the oob area are managed by
|
||||
the autoplacement code. Provide a matching oob-layout
|
||||
@ -560,7 +560,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
|
||||
bad blocks. They have factory marked good blocks. The marker pattern
|
||||
is erased when the block is erased to be reused. So in case of
|
||||
powerloss before writing the pattern back to the chip this block
|
||||
would be lost and added to the bad blocks. Therefor we scan the
|
||||
would be lost and added to the bad blocks. Therefore we scan the
|
||||
chip(s) when we detect them the first time for good blocks and
|
||||
store this information in a bad block table before erasing any
|
||||
of the blocks.
|
||||
@ -1094,7 +1094,7 @@ in this page</entry>
|
||||
manufacturers specifications. This applies similar to the spare area.
|
||||
</para>
|
||||
<para>
|
||||
Therefor NAND aware filesystems must either write in page size chunks
|
||||
Therefore NAND aware filesystems must either write in page size chunks
|
||||
or hold a writebuffer to collect smaller writes until they sum up to
|
||||
pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
|
||||
</para>
|
||||
|
@ -19,13 +19,17 @@
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2008</year>
|
||||
<year>2008-2010</year>
|
||||
<holder>Paul Mundt</holder>
|
||||
</copyright>
|
||||
<copyright>
|
||||
<year>2008</year>
|
||||
<year>2008-2010</year>
|
||||
<holder>Renesas Technology Corp.</holder>
|
||||
</copyright>
|
||||
<copyright>
|
||||
<year>2010</year>
|
||||
<holder>Renesas Electronics Corp.</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
@ -77,7 +81,7 @@
|
||||
</chapter>
|
||||
<chapter id="clk">
|
||||
<title>Clock Framework Extensions</title>
|
||||
!Iarch/sh/include/asm/clock.h
|
||||
!Iinclude/linux/sh_clk.h
|
||||
</chapter>
|
||||
<chapter id="mach">
|
||||
<title>Machine Specific Interfaces</title>
|
||||
|
@ -16,6 +16,15 @@
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
<author>
|
||||
<firstname>William</firstname>
|
||||
<surname>Cohen</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>wcohen@redhat.com</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<legalnotice>
|
||||
@ -91,4 +100,8 @@
|
||||
!Iinclude/trace/events/signal.h
|
||||
</chapter>
|
||||
|
||||
<chapter id="block">
|
||||
<title>Block IO</title>
|
||||
!Iinclude/trace/events/block.h
|
||||
</chapter>
|
||||
</book>
|
||||
|
@ -1170,7 +1170,7 @@ frames per second. If less than this number of frames is to be
|
||||
captured or output, applications can request frame skipping or
|
||||
duplicating on the driver side. This is especially useful when using
|
||||
the &func-read; or &func-write;, which are not augmented by timestamps
|
||||
or sequence counters, and to avoid unneccessary data copying.</para>
|
||||
or sequence counters, and to avoid unnecessary data copying.</para>
|
||||
|
||||
<para>Finally these ioctls can be used to determine the number of
|
||||
buffers used internally by a driver in read/write mode. For
|
||||
|
@ -2332,15 +2332,26 @@ more information.</para>
|
||||
</listitem>
|
||||
</orderedlist>
|
||||
</section>
|
||||
</section>
|
||||
<section>
|
||||
<title>V4L2 in Linux 2.6.34</title>
|
||||
<orderedlist>
|
||||
<listitem>
|
||||
<para>Added
|
||||
<constant>V4L2_CID_IRIS_ABSOLUTE</constant> and
|
||||
<constant>V4L2_CID_IRIS_RELATIVE</constant> controls to the
|
||||
<link linkend="camera-controls">Camera controls class</link>.
|
||||
</para>
|
||||
</listitem>
|
||||
</orderedlist>
|
||||
</section>
|
||||
|
||||
<section id="other">
|
||||
<title>Relation of V4L2 to other Linux multimedia APIs</title>
|
||||
<section id="other">
|
||||
<title>Relation of V4L2 to other Linux multimedia APIs</title>
|
||||
|
||||
<section id="xvideo">
|
||||
<title>X Video Extension</title>
|
||||
<section id="xvideo">
|
||||
<title>X Video Extension</title>
|
||||
|
||||
<para>The X Video Extension (abbreviated XVideo or just Xv) is
|
||||
<para>The X Video Extension (abbreviated XVideo or just Xv) is
|
||||
an extension of the X Window system, implemented for example by the
|
||||
XFree86 project. Its scope is similar to V4L2, an API to video capture
|
||||
and output devices for X clients. Xv allows applications to display
|
||||
@ -2351,7 +2362,7 @@ capture or output still images in XPixmaps<footnote>
|
||||
extension available across many operating systems and
|
||||
architectures.</para>
|
||||
|
||||
<para>Because the driver is embedded into the X server Xv has a
|
||||
<para>Because the driver is embedded into the X server Xv has a
|
||||
number of advantages over the V4L2 <link linkend="overlay">video
|
||||
overlay interface</link>. The driver can easily determine the overlay
|
||||
target, &ie; visible graphics memory or off-screen buffers for a
|
||||
@ -2360,16 +2371,16 @@ overlay, scaling or color-keying, or the clipping functions of the
|
||||
video capture hardware, always in sync with drawing operations or
|
||||
windows moving or changing their stacking order.</para>
|
||||
|
||||
<para>To combine the advantages of Xv and V4L a special Xv
|
||||
<para>To combine the advantages of Xv and V4L a special Xv
|
||||
driver exists in XFree86 and XOrg, just programming any overlay capable
|
||||
Video4Linux device it finds. To enable it
|
||||
<filename>/etc/X11/XF86Config</filename> must contain these lines:</para>
|
||||
<para><screen>
|
||||
<para><screen>
|
||||
Section "Module"
|
||||
Load "v4l"
|
||||
EndSection</screen></para>
|
||||
|
||||
<para>As of XFree86 4.2 this driver still supports only V4L
|
||||
<para>As of XFree86 4.2 this driver still supports only V4L
|
||||
ioctls, however it should work just fine with all V4L2 devices through
|
||||
the V4L2 backward-compatibility layer. Since V4L2 permits multiple
|
||||
opens it is possible (if supported by the V4L2 driver) to capture
|
||||
@ -2377,83 +2388,84 @@ video while an X client requested video overlay. Restrictions of
|
||||
simultaneous capturing and overlay are discussed in <xref
|
||||
linkend="overlay" /> apply.</para>
|
||||
|
||||
<para>Only marginally related to V4L2, XFree86 extended Xv to
|
||||
<para>Only marginally related to V4L2, XFree86 extended Xv to
|
||||
support hardware YUV to RGB conversion and scaling for faster video
|
||||
playback, and added an interface to MPEG-2 decoding hardware. This API
|
||||
is useful to display images captured with V4L2 devices.</para>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<title>Digital Video</title>
|
||||
<section>
|
||||
<title>Digital Video</title>
|
||||
|
||||
<para>V4L2 does not support digital terrestrial, cable or
|
||||
<para>V4L2 does not support digital terrestrial, cable or
|
||||
satellite broadcast. A separate project aiming at digital receivers
|
||||
exists. You can find its homepage at <ulink
|
||||
url="http://linuxtv.org">http://linuxtv.org</ulink>. The Linux DVB API
|
||||
has no connection to the V4L2 API except that drivers for hybrid
|
||||
hardware may support both.</para>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<title>Audio Interfaces</title>
|
||||
|
||||
<para>[to do - OSS/ALSA]</para>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<title>Audio Interfaces</title>
|
||||
<section id="experimental">
|
||||
<title>Experimental API Elements</title>
|
||||
|
||||
<para>[to do - OSS/ALSA]</para>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
<section id="experimental">
|
||||
<title>Experimental API Elements</title>
|
||||
|
||||
<para>The following V4L2 API elements are currently experimental
|
||||
<para>The following V4L2 API elements are currently experimental
|
||||
and may change in the future.</para>
|
||||
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para>Video Output Overlay (OSD) Interface, <xref
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para>Video Output Overlay (OSD) Interface, <xref
|
||||
linkend="osd" />.</para>
|
||||
</listitem>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
|
||||
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
|
||||
&v4l2-buf-type;, <xref linkend="v4l2-buf-type" />.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
|
||||
&VIDIOC-QUERYCAP; ioctl, <xref linkend="device-capabilities" />.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-ENUM-FRAMESIZES; and
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-ENUM-FRAMESIZES; and
|
||||
&VIDIOC-ENUM-FRAMEINTERVALS; ioctls.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
|
||||
ioctls.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
|
||||
ioctls.</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
</section>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
</section>
|
||||
|
||||
<section id="obsolete">
|
||||
<title>Obsolete API Elements</title>
|
||||
<section id="obsolete">
|
||||
<title>Obsolete API Elements</title>
|
||||
|
||||
<para>The following V4L2 API elements were superseded by new
|
||||
<para>The following V4L2 API elements were superseded by new
|
||||
interfaces and should not be implemented in new drivers.</para>
|
||||
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
|
||||
<constant>VIDIOC_S_MPEGCOMP</constant> ioctls. Use Extended Controls,
|
||||
<xref linkend="extended-controls" />.</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
<!--
|
||||
|
@ -266,6 +266,12 @@ minimum value disables backlight compensation.</entry>
|
||||
<entry>boolean</entry>
|
||||
<entry>Chroma automatic gain control.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_CID_CHROMA_GAIN</constant></entry>
|
||||
<entry>integer</entry>
|
||||
<entry>Adjusts the Chroma gain control (for use when chroma AGC
|
||||
is disabled).</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_CID_COLOR_KILLER</constant></entry>
|
||||
<entry>boolean</entry>
|
||||
@ -277,8 +283,15 @@ minimum value disables backlight compensation.</entry>
|
||||
<entry>Selects a color effect. Possible values for
|
||||
<constant>enum v4l2_colorfx</constant> are:
|
||||
<constant>V4L2_COLORFX_NONE</constant> (0),
|
||||
<constant>V4L2_COLORFX_BW</constant> (1) and
|
||||
<constant>V4L2_COLORFX_SEPIA</constant> (2).</entry>
|
||||
<constant>V4L2_COLORFX_BW</constant> (1),
|
||||
<constant>V4L2_COLORFX_SEPIA</constant> (2),
|
||||
<constant>V4L2_COLORFX_NEGATIVE</constant> (3),
|
||||
<constant>V4L2_COLORFX_EMBOSS</constant> (4),
|
||||
<constant>V4L2_COLORFX_SKETCH</constant> (5),
|
||||
<constant>V4L2_COLORFX_SKY_BLUE</constant> (6),
|
||||
<constant>V4L2_COLORFX_GRASS_GREEN</constant> (7),
|
||||
<constant>V4L2_COLORFX_SKIN_WHITEN</constant> (8) and
|
||||
<constant>V4L2_COLORFX_VIVID</constant> (9).</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_CID_ROTATE</constant></entry>
|
||||
@ -1824,6 +1837,25 @@ wide-angle direction. The zoom speed unit is driver-specific.</entry>
|
||||
</row>
|
||||
<row><entry></entry></row>
|
||||
|
||||
<row>
|
||||
<entry spanname="id"><constant>V4L2_CID_IRIS_ABSOLUTE</constant> </entry>
|
||||
<entry>integer</entry>
|
||||
</row><row><entry spanname="descr">This control sets the
|
||||
camera's aperture to the specified value. The unit is undefined.
|
||||
Larger values open the iris wider, smaller values close it.</entry>
|
||||
</row>
|
||||
<row><entry></entry></row>
|
||||
|
||||
<row>
|
||||
<entry spanname="id"><constant>V4L2_CID_IRIS_RELATIVE</constant> </entry>
|
||||
<entry>integer</entry>
|
||||
</row><row><entry spanname="descr">This control modifies the
|
||||
camera's aperture by the specified amount. The unit is undefined.
|
||||
Positive values open the iris one step further, negative values close
|
||||
it one step further. This is a write-only control.</entry>
|
||||
</row>
|
||||
<row><entry></entry></row>
|
||||
|
||||
<row>
|
||||
<entry spanname="id"><constant>V4L2_CID_PRIVACY</constant> </entry>
|
||||
<entry>boolean</entry>
|
||||
|
31
Documentation/DocBook/v4l/dev-event.xml
Normal file
31
Documentation/DocBook/v4l/dev-event.xml
Normal file
@ -0,0 +1,31 @@
|
||||
<title>Event Interface</title>
|
||||
|
||||
<para>The V4L2 event interface provides means for user to get
|
||||
immediately notified on certain conditions taking place on a device.
|
||||
This might include start of frame or loss of signal events, for
|
||||
example.
|
||||
</para>
|
||||
|
||||
<para>To receive events, the events the user is interested in first must
|
||||
be subscribed using the &VIDIOC-SUBSCRIBE-EVENT; ioctl. Once an event is
|
||||
subscribed, the events of subscribed types are dequeueable using the
|
||||
&VIDIOC-DQEVENT; ioctl. Events may be unsubscribed using
|
||||
VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may
|
||||
be used to unsubscribe all the events the driver supports.</para>
|
||||
|
||||
<para>The event subscriptions and event queues are specific to file
|
||||
handles. Subscribing an event on one file handle does not affect
|
||||
other file handles.
|
||||
</para>
|
||||
|
||||
<para>The information on dequeueable events is obtained by using select or
|
||||
poll system calls on video devices. The V4L2 events use POLLPRI events on
|
||||
poll system call and exceptions on select system call. </para>
|
||||
|
||||
<!--
|
||||
Local Variables:
|
||||
mode: sgml
|
||||
sgml-parent-document: "v4l2.sgml"
|
||||
indent-tabs-mode: nil
|
||||
End:
|
||||
-->
|
@ -701,6 +701,16 @@ buffer cannot be on both queues at the same time, the
|
||||
They can be both cleared however, then the buffer is in "dequeued"
|
||||
state, in the application domain to say so.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
|
||||
<entry>0x0040</entry>
|
||||
<entry>When this flag is set, the buffer has been dequeued
|
||||
successfully, although the data might have been corrupted.
|
||||
This is recoverable, streaming may continue as normal and
|
||||
the buffer may be reused normally.
|
||||
Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
|
||||
ioctl is called.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
|
||||
<entry>0x0008</entry>
|
||||
@ -918,8 +928,8 @@ order</emphasis>.</para>
|
||||
|
||||
<para>When the driver provides or accepts images field by field
|
||||
rather than interleaved, it is also important applications understand
|
||||
how the fields combine to frames. We distinguish between top and
|
||||
bottom fields, the <emphasis>spatial order</emphasis>: The first line
|
||||
how the fields combine to frames. We distinguish between top (aka odd) and
|
||||
bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
|
||||
of the top field is the first line of an interlaced frame, the first
|
||||
line of the bottom field is the second line of that frame.</para>
|
||||
|
||||
@ -972,12 +982,12 @@ between <constant>V4L2_FIELD_TOP</constant> and
|
||||
<row>
|
||||
<entry><constant>V4L2_FIELD_TOP</constant></entry>
|
||||
<entry>2</entry>
|
||||
<entry>Images consist of the top field only.</entry>
|
||||
<entry>Images consist of the top (aka odd) field only.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
|
||||
<entry>3</entry>
|
||||
<entry>Images consist of the bottom field only.
|
||||
<entry>Images consist of the bottom (aka even) field only.
|
||||
Applications may wish to prevent a device from capturing interlaced
|
||||
images because they will have "comb" or "feathering" artefacts around
|
||||
moving objects.</entry>
|
||||
|
@ -792,6 +792,18 @@ http://www.thedirks.org/winnov/</ulink></para></entry>
|
||||
<entry>'YYUV'</entry>
|
||||
<entry>unknown</entry>
|
||||
</row>
|
||||
<row id="V4L2-PIX-FMT-Y4">
|
||||
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
|
||||
<entry>'Y04 '</entry>
|
||||
<entry>Old 4-bit greyscale format. Only the least significant 4 bits of each byte are used,
|
||||
the other bits are set to 0.</entry>
|
||||
</row>
|
||||
<row id="V4L2-PIX-FMT-Y6">
|
||||
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
|
||||
<entry>'Y06 '</entry>
|
||||
<entry>Old 6-bit greyscale format. Only the least significant 6 bits of each byte are used,
|
||||
the other bits are set to 0.</entry>
|
||||
</row>
|
||||
</tbody>
|
||||
</tgroup>
|
||||
</table>
|
||||
|
@ -401,6 +401,7 @@ and discussions on the V4L mailing list.</revremark>
|
||||
<section id="ttx"> &sub-dev-teletext; </section>
|
||||
<section id="radio"> &sub-dev-radio; </section>
|
||||
<section id="rds"> &sub-dev-rds; </section>
|
||||
<section id="event"> &sub-dev-event; </section>
|
||||
</chapter>
|
||||
|
||||
<chapter id="driver">
|
||||
@ -426,6 +427,7 @@ and discussions on the V4L mailing list.</revremark>
|
||||
&sub-cropcap;
|
||||
&sub-dbg-g-chip-ident;
|
||||
&sub-dbg-g-register;
|
||||
&sub-dqevent;
|
||||
&sub-encoder-cmd;
|
||||
&sub-enumaudio;
|
||||
&sub-enumaudioout;
|
||||
@ -467,6 +469,7 @@ and discussions on the V4L mailing list.</revremark>
|
||||
&sub-reqbufs;
|
||||
&sub-s-hw-freq-seek;
|
||||
&sub-streamon;
|
||||
&sub-subscribe-event;
|
||||
<!-- End of ioctls. -->
|
||||
&sub-mmap;
|
||||
&sub-munmap;
|
||||
|
@ -1018,6 +1018,13 @@ enum <link linkend="v4l2-colorfx">v4l2_colorfx</link> {
|
||||
V4L2_COLORFX_NONE = 0,
|
||||
V4L2_COLORFX_BW = 1,
|
||||
V4L2_COLORFX_SEPIA = 2,
|
||||
V4L2_COLORFX_NEGATIVE = 3,
|
||||
V4L2_COLORFX_EMBOSS = 4,
|
||||
V4L2_COLORFX_SKETCH = 5,
|
||||
V4L2_COLORFX_SKY_BLUE = 6,
|
||||
V4L2_COLORFX_GRASS_GREEN = 7,
|
||||
V4L2_COLORFX_SKIN_WHITEN = 8,
|
||||
V4L2_COLORFX_VIVID = 9.
|
||||
};
|
||||
#define V4L2_CID_AUTOBRIGHTNESS (V4L2_CID_BASE+32)
|
||||
#define V4L2_CID_BAND_STOP_FILTER (V4L2_CID_BASE+33)
|
||||
@ -1271,6 +1278,9 @@ enum <link linkend="v4l2-exposure-auto-type">v4l2_exposure_auto_type</link> {
|
||||
|
||||
#define V4L2_CID_PRIVACY (V4L2_CID_CAMERA_CLASS_BASE+16)
|
||||
|
||||
#define V4L2_CID_IRIS_ABSOLUTE (V4L2_CID_CAMERA_CLASS_BASE+17)
|
||||
#define V4L2_CID_IRIS_RELATIVE (V4L2_CID_CAMERA_CLASS_BASE+18)
|
||||
|
||||
/* FM Modulator class control IDs */
|
||||
#define V4L2_CID_FM_TX_CLASS_BASE (V4L2_CTRL_CLASS_FM_TX | 0x900)
|
||||
#define V4L2_CID_FM_TX_CLASS (V4L2_CTRL_CLASS_FM_TX | 1)
|
||||
|
131
Documentation/DocBook/v4l/vidioc-dqevent.xml
Normal file
131
Documentation/DocBook/v4l/vidioc-dqevent.xml
Normal file
@ -0,0 +1,131 @@
|
||||
<refentry id="vidioc-dqevent">
|
||||
<refmeta>
|
||||
<refentrytitle>ioctl VIDIOC_DQEVENT</refentrytitle>
|
||||
&manvol;
|
||||
</refmeta>
|
||||
|
||||
<refnamediv>
|
||||
<refname>VIDIOC_DQEVENT</refname>
|
||||
<refpurpose>Dequeue event</refpurpose>
|
||||
</refnamediv>
|
||||
|
||||
<refsynopsisdiv>
|
||||
<funcsynopsis>
|
||||
<funcprototype>
|
||||
<funcdef>int <function>ioctl</function></funcdef>
|
||||
<paramdef>int <parameter>fd</parameter></paramdef>
|
||||
<paramdef>int <parameter>request</parameter></paramdef>
|
||||
<paramdef>struct v4l2_event
|
||||
*<parameter>argp</parameter></paramdef>
|
||||
</funcprototype>
|
||||
</funcsynopsis>
|
||||
</refsynopsisdiv>
|
||||
|
||||
<refsect1>
|
||||
<title>Arguments</title>
|
||||
|
||||
<variablelist>
|
||||
<varlistentry>
|
||||
<term><parameter>fd</parameter></term>
|
||||
<listitem>
|
||||
<para>&fd;</para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
<varlistentry>
|
||||
<term><parameter>request</parameter></term>
|
||||
<listitem>
|
||||
<para>VIDIOC_DQEVENT</para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
<varlistentry>
|
||||
<term><parameter>argp</parameter></term>
|
||||
<listitem>
|
||||
<para></para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
</variablelist>
|
||||
</refsect1>
|
||||
|
||||
<refsect1>
|
||||
<title>Description</title>
|
||||
|
||||
<para>Dequeue an event from a video device. No input is required
|
||||
for this ioctl. All the fields of the &v4l2-event; structure are
|
||||
filled by the driver. The file handle will also receive exceptions
|
||||
which the application may get by e.g. using the select system
|
||||
call.</para>
|
||||
|
||||
<table frame="none" pgwide="1" id="v4l2-event">
|
||||
<title>struct <structname>v4l2_event</structname></title>
|
||||
<tgroup cols="4">
|
||||
&cs-str;
|
||||
<tbody valign="top">
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>type</structfield></entry>
|
||||
<entry></entry>
|
||||
<entry>Type of the event.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>union</entry>
|
||||
<entry><structfield>u</structfield></entry>
|
||||
<entry></entry>
|
||||
<entry></entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry></entry>
|
||||
<entry>&v4l2-event-vsync;</entry>
|
||||
<entry><structfield>vsync</structfield></entry>
|
||||
<entry>Event data for event V4L2_EVENT_VSYNC.
|
||||
</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry></entry>
|
||||
<entry>__u8</entry>
|
||||
<entry><structfield>data</structfield>[64]</entry>
|
||||
<entry>Event data. Defined by the event type. The union
|
||||
should be used to define easily accessible type for
|
||||
events.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>pending</structfield></entry>
|
||||
<entry></entry>
|
||||
<entry>Number of pending events excluding this one.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>sequence</structfield></entry>
|
||||
<entry></entry>
|
||||
<entry>Event sequence number. The sequence number is
|
||||
incremented for every subscribed event that takes place.
|
||||
If sequence numbers are not contiguous it means that
|
||||
events have been lost.
|
||||
</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>struct timespec</entry>
|
||||
<entry><structfield>timestamp</structfield></entry>
|
||||
<entry></entry>
|
||||
<entry>Event timestamp.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>reserved</structfield>[9]</entry>
|
||||
<entry></entry>
|
||||
<entry>Reserved for future extensions. Drivers must set
|
||||
the array to zero.</entry>
|
||||
</row>
|
||||
</tbody>
|
||||
</tgroup>
|
||||
</table>
|
||||
|
||||
</refsect1>
|
||||
</refentry>
|
||||
<!--
|
||||
Local Variables:
|
||||
mode: sgml
|
||||
sgml-parent-document: "v4l2.sgml"
|
||||
indent-tabs-mode: nil
|
||||
End:
|
||||
-->
|
@ -283,7 +283,7 @@ input/output interface to linux-media@vger.kernel.org on 19 Oct 2009.
|
||||
<entry>This input supports setting DV presets by using VIDIOC_S_DV_PRESET.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_OUT_CAP_CUSTOM_TIMINGS</constant></entry>
|
||||
<entry><constant>V4L2_IN_CAP_CUSTOM_TIMINGS</constant></entry>
|
||||
<entry>0x00000002</entry>
|
||||
<entry>This input supports setting custom video timings by using VIDIOC_S_DV_TIMINGS.</entry>
|
||||
</row>
|
||||
|
@ -55,7 +55,7 @@ captured or output, applications can request frame skipping or
|
||||
duplicating on the driver side. This is especially useful when using
|
||||
the <function>read()</function> or <function>write()</function>, which
|
||||
are not augmented by timestamps or sequence counters, and to avoid
|
||||
unneccessary data copying.</para>
|
||||
unnecessary data copying.</para>
|
||||
|
||||
<para>Further these ioctls can be used to determine the number of
|
||||
buffers used internally by a driver in read/write mode. For
|
||||
|
@ -111,7 +111,11 @@ from the driver's outgoing queue. They just set the
|
||||
and <structfield>reserved</structfield>
|
||||
fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant>
|
||||
is called with a pointer to this structure the driver fills the
|
||||
remaining fields or returns an error code.</para>
|
||||
remaining fields or returns an error code. The driver may also set
|
||||
<constant>V4L2_BUF_FLAG_ERROR</constant> in the <structfield>flags</structfield>
|
||||
field. It indicates a non-critical (recoverable) streaming error. In such case
|
||||
the application may continue as normal, but should be aware that data in the
|
||||
dequeued buffer might be corrupted.</para>
|
||||
|
||||
<para>By default <constant>VIDIOC_DQBUF</constant> blocks when no
|
||||
buffer is in the outgoing queue. When the
|
||||
@ -158,7 +162,13 @@ enqueue a user pointer buffer.</para>
|
||||
<para><constant>VIDIOC_DQBUF</constant> failed due to an
|
||||
internal error. Can also indicate temporary problems like signal
|
||||
loss. Note the driver might dequeue an (empty) buffer despite
|
||||
returning an error, or even stop capturing.</para>
|
||||
returning an error, or even stop capturing. Reusing such buffer may be unsafe
|
||||
though and its details (e.g. <structfield>index</structfield>) may not be
|
||||
returned either. It is recommended that drivers indicate recoverable errors
|
||||
by setting the <constant>V4L2_BUF_FLAG_ERROR</constant> and returning 0 instead.
|
||||
In that case the application should be able to safely reuse the buffer and
|
||||
continue streaming.
|
||||
</para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
</variablelist>
|
||||
|
@ -325,7 +325,7 @@ should be part of the control documentation.</entry>
|
||||
<entry>n/a</entry>
|
||||
<entry>This is not a control. When
|
||||
<constant>VIDIOC_QUERYCTRL</constant> is called with a control ID
|
||||
equal to a control class code (see <xref linkend="ctrl-class" />), the
|
||||
equal to a control class code (see <xref linkend="ctrl-class" />) + 1, the
|
||||
ioctl returns the name of the control class and this control type.
|
||||
Older drivers which do not support this feature return an
|
||||
&EINVAL;.</entry>
|
||||
|
@ -61,7 +61,7 @@ fields of the <structname>v4l2_requestbuffers</structname> structure.
|
||||
They set the <structfield>type</structfield> field to the respective
|
||||
stream or buffer type, the <structfield>count</structfield> field to
|
||||
the desired number of buffers, <structfield>memory</structfield>
|
||||
must be set to the requested I/O method and the reserved array
|
||||
must be set to the requested I/O method and the <structfield>reserved</structfield> array
|
||||
must be zeroed. When the ioctl
|
||||
is called with a pointer to this structure the driver will attempt to allocate
|
||||
the requested number of buffers and it stores the actual number
|
||||
|
133
Documentation/DocBook/v4l/vidioc-subscribe-event.xml
Normal file
133
Documentation/DocBook/v4l/vidioc-subscribe-event.xml
Normal file
@ -0,0 +1,133 @@
|
||||
<refentry id="vidioc-subscribe-event">
|
||||
<refmeta>
|
||||
<refentrytitle>ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refentrytitle>
|
||||
&manvol;
|
||||
</refmeta>
|
||||
|
||||
<refnamediv>
|
||||
<refname>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refname>
|
||||
<refpurpose>Subscribe or unsubscribe event</refpurpose>
|
||||
</refnamediv>
|
||||
|
||||
<refsynopsisdiv>
|
||||
<funcsynopsis>
|
||||
<funcprototype>
|
||||
<funcdef>int <function>ioctl</function></funcdef>
|
||||
<paramdef>int <parameter>fd</parameter></paramdef>
|
||||
<paramdef>int <parameter>request</parameter></paramdef>
|
||||
<paramdef>struct v4l2_event_subscription
|
||||
*<parameter>argp</parameter></paramdef>
|
||||
</funcprototype>
|
||||
</funcsynopsis>
|
||||
</refsynopsisdiv>
|
||||
|
||||
<refsect1>
|
||||
<title>Arguments</title>
|
||||
|
||||
<variablelist>
|
||||
<varlistentry>
|
||||
<term><parameter>fd</parameter></term>
|
||||
<listitem>
|
||||
<para>&fd;</para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
<varlistentry>
|
||||
<term><parameter>request</parameter></term>
|
||||
<listitem>
|
||||
<para>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
<varlistentry>
|
||||
<term><parameter>argp</parameter></term>
|
||||
<listitem>
|
||||
<para></para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
</variablelist>
|
||||
</refsect1>
|
||||
|
||||
<refsect1>
|
||||
<title>Description</title>
|
||||
|
||||
<para>Subscribe or unsubscribe V4L2 event. Subscribed events are
|
||||
dequeued by using the &VIDIOC-DQEVENT; ioctl.</para>
|
||||
|
||||
<table frame="none" pgwide="1" id="v4l2-event-subscription">
|
||||
<title>struct <structname>v4l2_event_subscription</structname></title>
|
||||
<tgroup cols="3">
|
||||
&cs-str;
|
||||
<tbody valign="top">
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>type</structfield></entry>
|
||||
<entry>Type of the event.</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>__u32</entry>
|
||||
<entry><structfield>reserved</structfield>[7]</entry>
|
||||
<entry>Reserved for future extensions. Drivers and applications
|
||||
must set the array to zero.</entry>
|
||||
</row>
|
||||
</tbody>
|
||||
</tgroup>
|
||||
</table>
|
||||
|
||||
<table frame="none" pgwide="1" id="event-type">
|
||||
<title>Event Types</title>
|
||||
<tgroup cols="3">
|
||||
&cs-def;
|
||||
<tbody valign="top">
|
||||
<row>
|
||||
<entry><constant>V4L2_EVENT_ALL</constant></entry>
|
||||
<entry>0</entry>
|
||||
<entry>All events. V4L2_EVENT_ALL is valid only for
|
||||
VIDIOC_UNSUBSCRIBE_EVENT for unsubscribing all events at once.
|
||||
</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_EVENT_VSYNC</constant></entry>
|
||||
<entry>1</entry>
|
||||
<entry>This event is triggered on the vertical sync.
|
||||
This event has &v4l2-event-vsync; associated with it.
|
||||
</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_EVENT_EOS</constant></entry>
|
||||
<entry>2</entry>
|
||||
<entry>This event is triggered when the end of a stream is reached.
|
||||
This is typically used with MPEG decoders to report to the application
|
||||
when the last of the MPEG stream has been decoded.
|
||||
</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><constant>V4L2_EVENT_PRIVATE_START</constant></entry>
|
||||
<entry>0x08000000</entry>
|
||||
<entry>Base event number for driver-private events.</entry>
|
||||
</row>
|
||||
</tbody>
|
||||
</tgroup>
|
||||
</table>
|
||||
|
||||
<table frame="none" pgwide="1" id="v4l2-event-vsync">
|
||||
<title>struct <structname>v4l2_event_vsync</structname></title>
|
||||
<tgroup cols="3">
|
||||
&cs-str;
|
||||
<tbody valign="top">
|
||||
<row>
|
||||
<entry>__u8</entry>
|
||||
<entry><structfield>field</structfield></entry>
|
||||
<entry>The upcoming field. See &v4l2-field;.</entry>
|
||||
</row>
|
||||
</tbody>
|
||||
</tgroup>
|
||||
</table>
|
||||
|
||||
</refsect1>
|
||||
</refentry>
|
||||
<!--
|
||||
Local Variables:
|
||||
mode: sgml
|
||||
sgml-parent-document: "v4l2.sgml"
|
||||
indent-tabs-mode: nil
|
||||
End:
|
||||
-->
|
@ -5518,34 +5518,41 @@ struct _snd_pcm_runtime {
|
||||
]]>
|
||||
</programlisting>
|
||||
</informalexample>
|
||||
|
||||
For the raw data, <structfield>size</structfield> field must be
|
||||
set properly. This specifies the maximum size of the proc file access.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The callback is much more complicated than the text-file
|
||||
version. You need to use a low-level I/O functions such as
|
||||
The read/write callbacks of raw mode are more direct than the text mode.
|
||||
You need to use a low-level I/O functions such as
|
||||
<function>copy_from/to_user()</function> to transfer the
|
||||
data.
|
||||
|
||||
<informalexample>
|
||||
<programlisting>
|
||||
<![CDATA[
|
||||
static long my_file_io_read(struct snd_info_entry *entry,
|
||||
static ssize_t my_file_io_read(struct snd_info_entry *entry,
|
||||
void *file_private_data,
|
||||
struct file *file,
|
||||
char *buf,
|
||||
unsigned long count,
|
||||
unsigned long pos)
|
||||
size_t count,
|
||||
loff_t pos)
|
||||
{
|
||||
long size = count;
|
||||
if (pos + size > local_max_size)
|
||||
size = local_max_size - pos;
|
||||
if (copy_to_user(buf, local_data + pos, size))
|
||||
if (copy_to_user(buf, local_data + pos, count))
|
||||
return -EFAULT;
|
||||
return size;
|
||||
return count;
|
||||
}
|
||||
]]>
|
||||
</programlisting>
|
||||
</informalexample>
|
||||
|
||||
If the size of the info entry has been set up properly,
|
||||
<structfield>count</structfield> and <structfield>pos</structfield> are
|
||||
guaranteed to fit within 0 and the given size.
|
||||
You don't have to check the range in the callbacks unless any
|
||||
other condition is required.
|
||||
|
||||
</para>
|
||||
|
||||
</chapter>
|
||||
|
@ -342,7 +342,7 @@ static inline void skel_delete (struct usb_skel *dev)
|
||||
{
|
||||
kfree (dev->bulk_in_buffer);
|
||||
if (dev->bulk_out_buffer != NULL)
|
||||
usb_buffer_free (dev->udev, dev->bulk_out_size,
|
||||
usb_free_coherent (dev->udev, dev->bulk_out_size,
|
||||
dev->bulk_out_buffer,
|
||||
dev->write_urb->transfer_dma);
|
||||
usb_free_urb (dev->write_urb);
|
||||
|
@ -221,8 +221,8 @@ branches. These different branches are:
|
||||
- main 2.6.x kernel tree
|
||||
- 2.6.x.y -stable kernel tree
|
||||
- 2.6.x -git kernel patches
|
||||
- 2.6.x -mm kernel patches
|
||||
- subsystem specific kernel trees and patches
|
||||
- the 2.6.x -next kernel tree for integration tests
|
||||
|
||||
2.6.x kernel tree
|
||||
-----------------
|
||||
@ -232,9 +232,9 @@ process is as follows:
|
||||
- As soon as a new kernel is released a two weeks window is open,
|
||||
during this period of time maintainers can submit big diffs to
|
||||
Linus, usually the patches that have already been included in the
|
||||
-mm kernel for a few weeks. The preferred way to submit big changes
|
||||
-next kernel for a few weeks. The preferred way to submit big changes
|
||||
is using git (the kernel's source management tool, more information
|
||||
can be found at http://git.or.cz/) but plain patches are also just
|
||||
can be found at http://git-scm.com/) but plain patches are also just
|
||||
fine.
|
||||
- After two weeks a -rc1 kernel is released it is now possible to push
|
||||
only patches that do not include new features that could affect the
|
||||
@ -293,84 +293,43 @@ daily and represent the current state of Linus' tree. They are more
|
||||
experimental than -rc kernels since they are generated automatically
|
||||
without even a cursory glance to see if they are sane.
|
||||
|
||||
2.6.x -mm kernel patches
|
||||
------------------------
|
||||
These are experimental kernel patches released by Andrew Morton. Andrew
|
||||
takes all of the different subsystem kernel trees and patches and mushes
|
||||
them together, along with a lot of patches that have been plucked from
|
||||
the linux-kernel mailing list. This tree serves as a proving ground for
|
||||
new features and patches. Once a patch has proved its worth in -mm for
|
||||
a while Andrew or the subsystem maintainer pushes it on to Linus for
|
||||
inclusion in mainline.
|
||||
|
||||
It is heavily encouraged that all new patches get tested in the -mm tree
|
||||
before they are sent to Linus for inclusion in the main kernel tree. Code
|
||||
which does not make an appearance in -mm before the opening of the merge
|
||||
window will prove hard to merge into the mainline.
|
||||
|
||||
These kernels are not appropriate for use on systems that are supposed
|
||||
to be stable and they are more risky to run than any of the other
|
||||
branches.
|
||||
|
||||
If you wish to help out with the kernel development process, please test
|
||||
and use these kernel releases and provide feedback to the linux-kernel
|
||||
mailing list if you have any problems, and if everything works properly.
|
||||
|
||||
In addition to all the other experimental patches, these kernels usually
|
||||
also contain any changes in the mainline -git kernels available at the
|
||||
time of release.
|
||||
|
||||
The -mm kernels are not released on a fixed schedule, but usually a few
|
||||
-mm kernels are released in between each -rc kernel (1 to 3 is common).
|
||||
|
||||
Subsystem Specific kernel trees and patches
|
||||
-------------------------------------------
|
||||
A number of the different kernel subsystem developers expose their
|
||||
development trees so that others can see what is happening in the
|
||||
different areas of the kernel. These trees are pulled into the -mm
|
||||
kernel releases as described above.
|
||||
The maintainers of the various kernel subsystems --- and also many
|
||||
kernel subsystem developers --- expose their current state of
|
||||
development in source repositories. That way, others can see what is
|
||||
happening in the different areas of the kernel. In areas where
|
||||
development is rapid, a developer may be asked to base his submissions
|
||||
onto such a subsystem kernel tree so that conflicts between the
|
||||
submission and other already ongoing work are avoided.
|
||||
|
||||
Here is a list of some of the different kernel trees available:
|
||||
git trees:
|
||||
- Kbuild development tree, Sam Ravnborg <sam@ravnborg.org>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git
|
||||
Most of these repositories are git trees, but there are also other SCMs
|
||||
in use, or patch queues being published as quilt series. Addresses of
|
||||
these subsystem repositories are listed in the MAINTAINERS file. Many
|
||||
of them can be browsed at http://git.kernel.org/.
|
||||
|
||||
- ACPI development tree, Len Brown <len.brown@intel.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git
|
||||
Before a proposed patch is committed to such a subsystem tree, it is
|
||||
subject to review which primarily happens on mailing lists (see the
|
||||
respective section below). For several kernel subsystems, this review
|
||||
process is tracked with the tool patchwork. Patchwork offers a web
|
||||
interface which shows patch postings, any comments on a patch or
|
||||
revisions to it, and maintainers can mark patches as under review,
|
||||
accepted, or rejected. Most of these patchwork sites are listed at
|
||||
http://patchwork.kernel.org/ or http://patchwork.ozlabs.org/.
|
||||
|
||||
- Block development tree, Jens Axboe <jens.axboe@oracle.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git
|
||||
2.6.x -next kernel tree for integration tests
|
||||
---------------------------------------------
|
||||
Before updates from subsystem trees are merged into the mainline 2.6.x
|
||||
tree, they need to be integration-tested. For this purpose, a special
|
||||
testing repository exists into which virtually all subsystem trees are
|
||||
pulled on an almost daily basis:
|
||||
http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
|
||||
http://linux.f-seidel.de/linux-next/pmwiki/
|
||||
|
||||
- DRM development tree, Dave Airlie <airlied@linux.ie>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git
|
||||
This way, the -next kernel gives a summary outlook onto what will be
|
||||
expected to go into the mainline kernel at the next merge period.
|
||||
Adventurous testers are very welcome to runtime-test the -next kernel.
|
||||
|
||||
- ia64 development tree, Tony Luck <tony.luck@intel.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git
|
||||
|
||||
- infiniband, Roland Dreier <rolandd@cisco.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git
|
||||
|
||||
- libata, Jeff Garzik <jgarzik@pobox.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git
|
||||
|
||||
- network drivers, Jeff Garzik <jgarzik@pobox.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git
|
||||
|
||||
- pcmcia, Dominik Brodowski <linux@dominikbrodowski.net>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
|
||||
|
||||
- SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
|
||||
git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
|
||||
|
||||
- x86, Ingo Molnar <mingo@elte.hu>
|
||||
git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
|
||||
|
||||
quilt trees:
|
||||
- USB, Driver Core, and I2C, Greg Kroah-Hartman <gregkh@suse.de>
|
||||
kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
|
||||
|
||||
Other kernel trees can be found listed at http://git.kernel.org/ and in
|
||||
the MAINTAINERS file.
|
||||
|
||||
Bug Reporting
|
||||
-------------
|
||||
|
@ -365,6 +365,7 @@ You can change this at module load time (for a module) with:
|
||||
regshifts=<shift1>,<shift2>,...
|
||||
slave_addrs=<addr1>,<addr2>,...
|
||||
force_kipmid=<enable1>,<enable2>,...
|
||||
kipmid_max_busy_us=<ustime1>,<ustime2>,...
|
||||
unload_when_empty=[0|1]
|
||||
|
||||
Each of these except si_trydefaults is a list, the first item for the
|
||||
@ -433,6 +434,7 @@ kernel command line as:
|
||||
ipmi_si.regshifts=<shift1>,<shift2>,...
|
||||
ipmi_si.slave_addrs=<addr1>,<addr2>,...
|
||||
ipmi_si.force_kipmid=<enable1>,<enable2>,...
|
||||
ipmi_si.kipmid_max_busy_us=<ustime1>,<ustime2>,...
|
||||
|
||||
It works the same as the module parameters of the same names.
|
||||
|
||||
@ -450,6 +452,16 @@ force this thread on or off. If you force it off and don't have
|
||||
interrupts, the driver will run VERY slowly. Don't blame me,
|
||||
these interfaces suck.
|
||||
|
||||
Unfortunately, this thread can use a lot of CPU depending on the
|
||||
interface's performance. This can waste a lot of CPU and cause
|
||||
various issues with detecting idle CPU and using extra power. To
|
||||
avoid this, the kipmid_max_busy_us sets the maximum amount of time, in
|
||||
microseconds, that kipmid will spin before sleeping for a tick. This
|
||||
value sets a balance between performance and CPU waste and needs to be
|
||||
tuned to your needs. Maybe, someday, auto-tuning will be added, but
|
||||
that's not a simple thing and even the auto-tuning would need to be
|
||||
tuned to the user's desired performance.
|
||||
|
||||
The driver supports a hot add and remove of interfaces. This way,
|
||||
interfaces can be added or removed after the kernel is up and running.
|
||||
This is done using /sys/modules/ipmi_si/parameters/hotmod, which is a
|
||||
|
@ -1,3 +1,3 @@
|
||||
obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
|
||||
filesystems/configfs/ ia64/ networking/ \
|
||||
pcmcia/ spi/ video4linux/ vm/ watchdog/src/
|
||||
filesystems/ filesystems/configfs/ ia64/ laptops/ networking/ \
|
||||
pcmcia/ spi/ timers/ video4linux/ vm/ watchdog/src/
|
||||
|
@ -216,7 +216,7 @@ The driver should return one of the following result codes:
|
||||
|
||||
- PCI_ERS_RESULT_NEED_RESET
|
||||
Driver returns this if it thinks the device is not
|
||||
recoverable in it's current state and it needs a slot
|
||||
recoverable in its current state and it needs a slot
|
||||
reset to proceed.
|
||||
|
||||
- PCI_ERS_RESULT_DISCONNECT
|
||||
@ -241,7 +241,7 @@ in working condition.
|
||||
|
||||
The driver is not supposed to restart normal driver I/O operations
|
||||
at this point. It should limit itself to "probing" the device to
|
||||
check it's recoverability status. If all is right, then the platform
|
||||
check its recoverability status. If all is right, then the platform
|
||||
will call resume() once all drivers have ack'd link_reset().
|
||||
|
||||
Result codes:
|
||||
|
@ -34,7 +34,7 @@ NMI handler.
|
||||
cpu = smp_processor_id();
|
||||
++nmi_count(cpu);
|
||||
|
||||
if (!rcu_dereference(nmi_callback)(regs, cpu))
|
||||
if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
|
||||
default_do_nmi(regs);
|
||||
|
||||
nmi_exit();
|
||||
@ -47,12 +47,13 @@ function pointer. If this handler returns zero, do_nmi() invokes the
|
||||
default_do_nmi() function to handle a machine-specific NMI. Finally,
|
||||
preemption is restored.
|
||||
|
||||
Strictly speaking, rcu_dereference() is not needed, since this code runs
|
||||
only on i386, which does not need rcu_dereference() anyway. However,
|
||||
it is a good documentation aid, particularly for anyone attempting to
|
||||
do something similar on Alpha.
|
||||
In theory, rcu_dereference_sched() is not needed, since this code runs
|
||||
only on i386, which in theory does not need rcu_dereference_sched()
|
||||
anyway. However, in practice it is a good documentation aid, particularly
|
||||
for anyone attempting to do something similar on Alpha or on systems
|
||||
with aggressive optimizing compilers.
|
||||
|
||||
Quick Quiz: Why might the rcu_dereference() be necessary on Alpha,
|
||||
Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
|
||||
given that the code referenced by the pointer is read-only?
|
||||
|
||||
|
||||
@ -99,17 +100,21 @@ invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.
|
||||
|
||||
Answer to Quick Quiz
|
||||
|
||||
Why might the rcu_dereference() be necessary on Alpha, given
|
||||
Why might the rcu_dereference_sched() be necessary on Alpha, given
|
||||
that the code referenced by the pointer is read-only?
|
||||
|
||||
Answer: The caller to set_nmi_callback() might well have
|
||||
initialized some data that is to be used by the
|
||||
new NMI handler. In this case, the rcu_dereference()
|
||||
would be needed, because otherwise a CPU that received
|
||||
an NMI just after the new handler was set might see
|
||||
the pointer to the new NMI handler, but the old
|
||||
pre-initialized version of the handler's data.
|
||||
initialized some data that is to be used by the new NMI
|
||||
handler. In this case, the rcu_dereference_sched() would
|
||||
be needed, because otherwise a CPU that received an NMI
|
||||
just after the new handler was set might see the pointer
|
||||
to the new NMI handler, but the old pre-initialized
|
||||
version of the handler's data.
|
||||
|
||||
More important, the rcu_dereference() makes it clear
|
||||
to someone reading the code that the pointer is being
|
||||
protected by RCU.
|
||||
This same sad story can happen on other CPUs when using
|
||||
a compiler with aggressive pointer-value speculation
|
||||
optimizations.
|
||||
|
||||
More important, the rcu_dereference_sched() makes it
|
||||
clear to someone reading the code that the pointer is
|
||||
being protected by RCU-sched.
|
||||
|
@ -260,7 +260,8 @@ over a rather long period of time, but improvements are always welcome!
|
||||
The reason that it is permissible to use RCU list-traversal
|
||||
primitives when the update-side lock is held is that doing so
|
||||
can be quite helpful in reducing code bloat when common code is
|
||||
shared between readers and updaters.
|
||||
shared between readers and updaters. Additional primitives
|
||||
are provided for this case, as discussed in lockdep.txt.
|
||||
|
||||
10. Conversely, if you are in an RCU read-side critical section,
|
||||
and you don't hold the appropriate update-side lock, you -must-
|
||||
@ -344,8 +345,8 @@ over a rather long period of time, but improvements are always welcome!
|
||||
requiring SRCU's read-side deadlock immunity or low read-side
|
||||
realtime latency.
|
||||
|
||||
Note that, rcu_assign_pointer() and rcu_dereference() relate to
|
||||
SRCU just as they do to other forms of RCU.
|
||||
Note that, rcu_assign_pointer() relates to SRCU just as they do
|
||||
to other forms of RCU.
|
||||
|
||||
15. The whole point of call_rcu(), synchronize_rcu(), and friends
|
||||
is to wait until all pre-existing readers have finished before
|
||||
|
@ -32,9 +32,20 @@ checking of rcu_dereference() primitives:
|
||||
srcu_dereference(p, sp):
|
||||
Check for SRCU read-side critical section.
|
||||
rcu_dereference_check(p, c):
|
||||
Use explicit check expression "c".
|
||||
Use explicit check expression "c". This is useful in
|
||||
code that is invoked by both readers and updaters.
|
||||
rcu_dereference_raw(p)
|
||||
Don't check. (Use sparingly, if at all.)
|
||||
rcu_dereference_protected(p, c):
|
||||
Use explicit check expression "c", and omit all barriers
|
||||
and compiler constraints. This is useful when the data
|
||||
structure cannot change, for example, in code that is
|
||||
invoked only by updaters.
|
||||
rcu_access_pointer(p):
|
||||
Return the value of the pointer and omit all barriers,
|
||||
but retain the compiler constraints that prevent duplicating
|
||||
or coalescsing. This is useful when when testing the
|
||||
value of the pointer itself, for example, against NULL.
|
||||
|
||||
The rcu_dereference_check() check expression can be any boolean
|
||||
expression, but would normally include one of the rcu_read_lock_held()
|
||||
@ -59,7 +70,20 @@ In case (1), the pointer is picked up in an RCU-safe manner for vanilla
|
||||
RCU read-side critical sections, in case (2) the ->file_lock prevents
|
||||
any change from taking place, and finally, in case (3) the current task
|
||||
is the only task accessing the file_struct, again preventing any change
|
||||
from taking place.
|
||||
from taking place. If the above statement was invoked only from updater
|
||||
code, it could instead be written as follows:
|
||||
|
||||
file = rcu_dereference_protected(fdt->fd[fd],
|
||||
lockdep_is_held(&files->file_lock) ||
|
||||
atomic_read(&files->count) == 1);
|
||||
|
||||
This would verify cases #2 and #3 above, and furthermore lockdep would
|
||||
complain if this was used in an RCU read-side critical section unless one
|
||||
of these two cases held. Because rcu_dereference_protected() omits all
|
||||
barriers and compiler constraints, it generates better code than do the
|
||||
other flavors of rcu_dereference(). On the other hand, it is illegal
|
||||
to use rcu_dereference_protected() if either the RCU-protected pointer
|
||||
or the RCU-protected data that it points to can change concurrently.
|
||||
|
||||
There are currently only "universal" versions of the rcu_assign_pointer()
|
||||
and RCU list-/tree-traversal primitives, which do not (yet) check for
|
||||
|
@ -3,35 +3,79 @@ Using RCU's CPU Stall Detector
|
||||
The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables
|
||||
RCU's CPU stall detector, which detects conditions that unduly delay
|
||||
RCU grace periods. The stall detector's idea of what constitutes
|
||||
"unduly delayed" is controlled by a pair of C preprocessor macros:
|
||||
"unduly delayed" is controlled by a set of C preprocessor macros:
|
||||
|
||||
RCU_SECONDS_TILL_STALL_CHECK
|
||||
|
||||
This macro defines the period of time that RCU will wait from
|
||||
the beginning of a grace period until it issues an RCU CPU
|
||||
stall warning. It is normally ten seconds.
|
||||
stall warning. This time period is normally ten seconds.
|
||||
|
||||
RCU_SECONDS_TILL_STALL_RECHECK
|
||||
|
||||
This macro defines the period of time that RCU will wait after
|
||||
issuing a stall warning until it issues another stall warning.
|
||||
It is normally set to thirty seconds.
|
||||
issuing a stall warning until it issues another stall warning
|
||||
for the same stall. This time period is normally set to thirty
|
||||
seconds.
|
||||
|
||||
RCU_STALL_RAT_DELAY
|
||||
|
||||
The CPU stall detector tries to make the offending CPU rat on itself,
|
||||
as this often gives better-quality stack traces. However, if
|
||||
the offending CPU does not detect its own stall in the number
|
||||
of jiffies specified by RCU_STALL_RAT_DELAY, then other CPUs will
|
||||
complain. This is normally set to two jiffies.
|
||||
The CPU stall detector tries to make the offending CPU print its
|
||||
own warnings, as this often gives better-quality stack traces.
|
||||
However, if the offending CPU does not detect its own stall in
|
||||
the number of jiffies specified by RCU_STALL_RAT_DELAY, then
|
||||
some other CPU will complain. This delay is normally set to
|
||||
two jiffies.
|
||||
|
||||
The following problems can result in an RCU CPU stall warning:
|
||||
When a CPU detects that it is stalling, it will print a message similar
|
||||
to the following:
|
||||
|
||||
INFO: rcu_sched_state detected stall on CPU 5 (t=2500 jiffies)
|
||||
|
||||
This message indicates that CPU 5 detected that it was causing a stall,
|
||||
and that the stall was affecting RCU-sched. This message will normally be
|
||||
followed by a stack dump of the offending CPU. On TREE_RCU kernel builds,
|
||||
RCU and RCU-sched are implemented by the same underlying mechanism,
|
||||
while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented
|
||||
by rcu_preempt_state.
|
||||
|
||||
On the other hand, if the offending CPU fails to print out a stall-warning
|
||||
message quickly enough, some other CPU will print a message similar to
|
||||
the following:
|
||||
|
||||
INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 jiffies)
|
||||
|
||||
This message indicates that CPU 2 detected that CPUs 3 and 5 were both
|
||||
causing stalls, and that the stall was affecting RCU-bh. This message
|
||||
will normally be followed by stack dumps for each CPU. Please note that
|
||||
TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
|
||||
and that the tasks will be indicated by PID, for example, "P3421".
|
||||
It is even possible for a rcu_preempt_state stall to be caused by both
|
||||
CPUs -and- tasks, in which case the offending CPUs and tasks will all
|
||||
be called out in the list.
|
||||
|
||||
Finally, if the grace period ends just as the stall warning starts
|
||||
printing, there will be a spurious stall-warning message:
|
||||
|
||||
INFO: rcu_bh_state detected stalls on CPUs/tasks: { } (detected by 4, 2502 jiffies)
|
||||
|
||||
This is rare, but does happen from time to time in real life.
|
||||
|
||||
So your kernel printed an RCU CPU stall warning. The next question is
|
||||
"What caused it?" The following problems can result in RCU CPU stall
|
||||
warnings:
|
||||
|
||||
o A CPU looping in an RCU read-side critical section.
|
||||
|
||||
o A CPU looping with interrupts disabled.
|
||||
o A CPU looping with interrupts disabled. This condition can
|
||||
result in RCU-sched and RCU-bh stalls.
|
||||
|
||||
o A CPU looping with preemption disabled.
|
||||
o A CPU looping with preemption disabled. This condition can
|
||||
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
|
||||
stalls.
|
||||
|
||||
o A CPU looping with bottom halves disabled. This condition can
|
||||
result in RCU-sched and RCU-bh stalls.
|
||||
|
||||
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
|
||||
without invoking schedule().
|
||||
@ -39,20 +83,24 @@ o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
|
||||
o A bug in the RCU implementation.
|
||||
|
||||
o A hardware failure. This is quite unlikely, but has occurred
|
||||
at least once in a former life. A CPU failed in a running system,
|
||||
at least once in real life. A CPU failed in a running system,
|
||||
becoming unresponsive, but not causing an immediate crash.
|
||||
This resulted in a series of RCU CPU stall warnings, eventually
|
||||
leading the realization that the CPU had failed.
|
||||
|
||||
The RCU, RCU-sched, and RCU-bh implementations have CPU stall warning.
|
||||
SRCU does not do so directly, but its calls to synchronize_sched() will
|
||||
result in RCU-sched detecting any CPU stalls that might be occurring.
|
||||
The RCU, RCU-sched, and RCU-bh implementations have CPU stall
|
||||
warning. SRCU does not have its own CPU stall warnings, but its
|
||||
calls to synchronize_sched() will result in RCU-sched detecting
|
||||
RCU-sched-related CPU stalls. Please note that RCU only detects
|
||||
CPU stalls when there is a grace period in progress. No grace period,
|
||||
no CPU stall warnings.
|
||||
|
||||
To diagnose the cause of the stall, inspect the stack traces. The offending
|
||||
function will usually be near the top of the stack. If you have a series
|
||||
of stall warnings from a single extended stall, comparing the stack traces
|
||||
can often help determine where the stall is occurring, which will usually
|
||||
be in the function nearest the top of the stack that stays the same from
|
||||
trace to trace.
|
||||
To diagnose the cause of the stall, inspect the stack traces.
|
||||
The offending function will usually be near the top of the stack.
|
||||
If you have a series of stall warnings from a single extended stall,
|
||||
comparing the stack traces can often help determine where the stall
|
||||
is occurring, which will usually be in the function nearest the top of
|
||||
that portion of the stack which remains the same from trace to trace.
|
||||
If you can reliably trigger the stall, ftrace can be quite helpful.
|
||||
|
||||
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE.
|
||||
|
@ -182,16 +182,6 @@ Similarly, sched_expedited RCU provides the following:
|
||||
sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0
|
||||
sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0
|
||||
sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0
|
||||
state: -1 / 0:0 3:0 4:0
|
||||
|
||||
As before, the first four lines are similar to those for RCU.
|
||||
The last line shows the task-migration state. The first number is
|
||||
-1 if synchronize_sched_expedited() is idle, -2 if in the process of
|
||||
posting wakeups to the migration kthreads, and N when waiting on CPU N.
|
||||
Each of the colon-separated fields following the "/" is a CPU:state pair.
|
||||
Valid states are "0" for idle, "1" for waiting for quiescent state,
|
||||
"2" for passed through quiescent state, and "3" when a race with a
|
||||
CPU-hotplug event forces use of the synchronize_sched() primitive.
|
||||
|
||||
|
||||
USAGE
|
||||
|
@ -256,23 +256,23 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
|
||||
The output of "cat rcu/rcu_pending" looks as follows:
|
||||
|
||||
rcu_sched:
|
||||
0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
|
||||
1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
|
||||
2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
|
||||
3 np=236249 qsp=48766 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
|
||||
4 np=221310 qsp=46850 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
|
||||
5 np=237332 qsp=48449 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
|
||||
6 np=219995 qsp=46718 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
|
||||
7 np=249893 qsp=49390 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
|
||||
0 np=255892 qsp=53936 rpq=85 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
|
||||
1 np=261224 qsp=54638 rpq=33 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
|
||||
2 np=237496 qsp=49664 rpq=23 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
|
||||
3 np=236249 qsp=48766 rpq=98 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
|
||||
4 np=221310 qsp=46850 rpq=7 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
|
||||
5 np=237332 qsp=48449 rpq=9 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
|
||||
6 np=219995 qsp=46718 rpq=12 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
|
||||
7 np=249893 qsp=49390 rpq=42 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
|
||||
rcu_bh:
|
||||
0 np=146741 qsp=1419 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
|
||||
1 np=155792 qsp=12597 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
|
||||
2 np=136629 qsp=18680 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
|
||||
3 np=137723 qsp=2843 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
|
||||
4 np=123110 qsp=12433 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
|
||||
5 np=137456 qsp=4210 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
|
||||
6 np=120834 qsp=9902 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
|
||||
7 np=144888 qsp=26336 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
|
||||
0 np=146741 qsp=1419 rpq=6 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
|
||||
1 np=155792 qsp=12597 rpq=3 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
|
||||
2 np=136629 qsp=18680 rpq=1 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
|
||||
3 np=137723 qsp=2843 rpq=0 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
|
||||
4 np=123110 qsp=12433 rpq=0 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
|
||||
5 np=137456 qsp=4210 rpq=1 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
|
||||
6 np=120834 qsp=9902 rpq=2 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
|
||||
7 np=144888 qsp=26336 rpq=0 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
|
||||
|
||||
As always, this is once again split into "rcu_sched" and "rcu_bh"
|
||||
portions, with CONFIG_TREE_PREEMPT_RCU kernels having an additional
|
||||
@ -284,6 +284,9 @@ o "np" is the number of times that __rcu_pending() has been invoked
|
||||
o "qsp" is the number of times that the RCU was waiting for a
|
||||
quiescent state from this CPU.
|
||||
|
||||
o "rpq" is the number of times that the CPU had passed through
|
||||
a quiescent state, but not yet reported it to RCU.
|
||||
|
||||
o "cbr" is the number of times that this CPU had RCU callbacks
|
||||
that had passed through a grace period, and were thus ready
|
||||
to be invoked.
|
||||
|
@ -840,6 +840,12 @@ SRCU: Initialization/cleanup
|
||||
init_srcu_struct
|
||||
cleanup_srcu_struct
|
||||
|
||||
All: lockdep-checked RCU-protected pointer access
|
||||
|
||||
rcu_dereference_check
|
||||
rcu_dereference_protected
|
||||
rcu_access_pointer
|
||||
|
||||
See the comment headers in the source code (or the docbook generated
|
||||
from them) for more information.
|
||||
|
||||
|
@ -73,7 +73,7 @@ NOTE: Smack labels are limited to 23 characters. The attr command
|
||||
If you don't do anything special all users will get the floor ("_")
|
||||
label when they log in. If you do want to log in via the hacked ssh
|
||||
at other labels use the attr command to set the smack value on the
|
||||
home directory and it's contents.
|
||||
home directory and its contents.
|
||||
|
||||
You can add access rules in /etc/smack/accesses. They take the form:
|
||||
|
||||
|
@ -9,10 +9,14 @@ Documentation/SubmittingPatches and elsewhere regarding submitting Linux
|
||||
kernel patches.
|
||||
|
||||
|
||||
1: Builds cleanly with applicable or modified CONFIG options =y, =m, and
|
||||
1: If you use a facility then #include the file that defines/declares
|
||||
that facility. Don't depend on other header files pulling in ones
|
||||
that you use.
|
||||
|
||||
2: Builds cleanly with applicable or modified CONFIG options =y, =m, and
|
||||
=n. No gcc warnings/errors, no linker warnings/errors.
|
||||
|
||||
2: Passes allnoconfig, allmodconfig
|
||||
2b: Passes allnoconfig, allmodconfig
|
||||
|
||||
3: Builds on multiple CPU architectures by using local cross-compile tools
|
||||
or some other build farm.
|
||||
|
@ -20,6 +20,8 @@ Samsung-S3C24XX
|
||||
- S3C24XX ARM Linux Overview
|
||||
Sharp-LH
|
||||
- Linux on Sharp LH79524 and LH7A40X System On a Chip (SOC)
|
||||
SPEAr
|
||||
- ST SPEAr platform Linux Overview
|
||||
VFP/
|
||||
- Release notes for Linux Kernel Vector Floating Point support code
|
||||
empeg/
|
||||
|
@ -32,7 +32,7 @@ Notes:
|
||||
|
||||
- The flash on board is divided into 3 partitions.
|
||||
You should be careful to use flash on board.
|
||||
It's partition is different from GraphicsClient Plus and GraphicsMaster
|
||||
Its partition is different from GraphicsClient Plus and GraphicsMaster
|
||||
|
||||
- 16bpp mode requires a different cable than what ships with the board.
|
||||
Contact ADS or look through the manual to wire your own. Currently,
|
||||
|
60
Documentation/arm/SPEAr/overview.txt
Normal file
60
Documentation/arm/SPEAr/overview.txt
Normal file
@ -0,0 +1,60 @@
|
||||
SPEAr ARM Linux Overview
|
||||
==========================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
SPEAr (Structured Processor Enhanced Architecture).
|
||||
weblink : http://www.st.com/spear
|
||||
|
||||
The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-Chip CPUs are
|
||||
supported by the 'spear' platform of ARM Linux. Currently SPEAr300,
|
||||
SPEAr310, SPEAr320 and SPEAr600 SOCs are supported. Support for the SPEAr13XX
|
||||
series is in progress.
|
||||
|
||||
Hierarchy in SPEAr is as follows:
|
||||
|
||||
SPEAr (Platform)
|
||||
- SPEAr3XX (3XX SOC series, based on ARM9)
|
||||
- SPEAr300 (SOC)
|
||||
- SPEAr300_EVB (Evaluation Board)
|
||||
- SPEAr310 (SOC)
|
||||
- SPEAr310_EVB (Evaluation Board)
|
||||
- SPEAr320 (SOC)
|
||||
- SPEAr320_EVB (Evaluation Board)
|
||||
- SPEAr6XX (6XX SOC series, based on ARM9)
|
||||
- SPEAr600 (SOC)
|
||||
- SPEAr600_EVB (Evaluation Board)
|
||||
- SPEAr13XX (13XX SOC series, based on ARM CORTEXA9)
|
||||
- SPEAr1300 (SOC)
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
A generic configuration is provided for each machine, and can be used as the
|
||||
default by
|
||||
make spear600_defconfig
|
||||
make spear300_defconfig
|
||||
make spear310_defconfig
|
||||
make spear320_defconfig
|
||||
|
||||
Layout
|
||||
------
|
||||
|
||||
The common files for multiple machine families (SPEAr3XX, SPEAr6XX and
|
||||
SPEAr13XX) are located in the platform code contained in arch/arm/plat-spear
|
||||
with headers in plat/.
|
||||
|
||||
Each machine series have a directory with name arch/arm/mach-spear followed by
|
||||
series name. Like mach-spear3xx, mach-spear6xx and mach-spear13xx.
|
||||
|
||||
Common file for machines of spear3xx family is mach-spear3xx/spear3xx.c and for
|
||||
spear6xx is mach-spear6xx/spear6xx.c. mach-spear* also contain soc/machine
|
||||
specific files, like spear300.c, spear310.c, spear320.c and spear600.c.
|
||||
mach-spear* also contains board specific files for each machine type.
|
||||
|
||||
|
||||
Document Author
|
||||
---------------
|
||||
|
||||
Viresh Kumar, (c) 2010 ST Microelectronics
|
@ -14,8 +14,8 @@ Introduction
|
||||
how the clocks are arranged. The first implementation used as single
|
||||
PLL to feed the ARM, memory and peripherals via a series of dividers
|
||||
and muxes and this is the implementation that is documented here. A
|
||||
newer version where there is a seperate PLL and clock divider for the
|
||||
ARM core is available as a seperate driver.
|
||||
newer version where there is a separate PLL and clock divider for the
|
||||
ARM core is available as a separate driver.
|
||||
|
||||
|
||||
Layout
|
||||
|
86
Documentation/arm/Samsung/Overview.txt
Normal file
86
Documentation/arm/Samsung/Overview.txt
Normal file
@ -0,0 +1,86 @@
|
||||
Samsung ARM Linux Overview
|
||||
==========================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
The Samsung range of ARM SoCs spans many similar devices, from the initial
|
||||
ARM9 through to the newest ARM cores. This document shows an overview of
|
||||
the current kernel support, how to use it and where to find the code
|
||||
that supports this.
|
||||
|
||||
The currently supported SoCs are:
|
||||
|
||||
- S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
|
||||
- S3C64XX: S3C6400 and S3C6410
|
||||
- S5PC6440
|
||||
|
||||
S5PC100 and S5PC110 support is currently being merged
|
||||
|
||||
|
||||
S3C24XX Systems
|
||||
---------------
|
||||
|
||||
There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which
|
||||
deals with the architecture and drivers specific to these devices.
|
||||
|
||||
See Documentation/arm/Samsung-S3C24XX/Overview.txt for more information
|
||||
on the implementation details and specific support.
|
||||
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
A number of configurations are supplied, as there is no current way of
|
||||
unifying all the SoCs into one kernel.
|
||||
|
||||
s5p6440_defconfig - S5P6440 specific default configuration
|
||||
s5pc100_defconfig - S5PC100 specific default configuration
|
||||
|
||||
|
||||
Layout
|
||||
------
|
||||
|
||||
The directory layout is currently being restructured, and consists of
|
||||
several platform directories and then the machine specific directories
|
||||
of the CPUs being built for.
|
||||
|
||||
plat-samsung provides the base for all the implementations, and is the
|
||||
last in the line of include directories that are processed for the build
|
||||
specific information. It contains the base clock, GPIO and device definitions
|
||||
to get the system running.
|
||||
|
||||
plat-s3c is the s3c24xx/s3c64xx platform directory, although it is currently
|
||||
involved in other builds this will be phased out once the relevant code is
|
||||
moved elsewhere.
|
||||
|
||||
plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs.
|
||||
|
||||
plat-s3c64xx is for the s3c64xx specific bits, see the S3C24XX docs.
|
||||
|
||||
plat-s5p is for s5p specific builds, more to be added.
|
||||
|
||||
|
||||
[ to finish ]
|
||||
|
||||
|
||||
Port Contributors
|
||||
-----------------
|
||||
|
||||
Ben Dooks (BJD)
|
||||
Vincent Sanders
|
||||
Herbert Potzl
|
||||
Arnaud Patard (RTP)
|
||||
Roc Wu
|
||||
Klaus Fetscher
|
||||
Dimitry Andric
|
||||
Shannon Holland
|
||||
Guillaume Gourat (NexVision)
|
||||
Christer Weinigel (wingel) (Acer N30)
|
||||
Lucas Correia Villa Real (S3C2400 port)
|
||||
|
||||
|
||||
Document Author
|
||||
---------------
|
||||
|
||||
Copyright 2009-2010 Ben Dooks <ben-linux@fluff.org>
|
167
Documentation/arm/Samsung/clksrc-change-registers.awk
Executable file
167
Documentation/arm/Samsung/clksrc-change-registers.awk
Executable file
@ -0,0 +1,167 @@
|
||||
#!/usr/bin/awk -f
|
||||
#
|
||||
# Copyright 2010 Ben Dooks <ben-linux@fluff.org>
|
||||
#
|
||||
# Released under GPLv2
|
||||
|
||||
# example usage
|
||||
# ./clksrc-change-registers.awk arch/arm/plat-s5pc1xx/include/plat/regs-clock.h < src > dst
|
||||
|
||||
function extract_value(s)
|
||||
{
|
||||
eqat = index(s, "=")
|
||||
comat = index(s, ",")
|
||||
return substr(s, eqat+2, (comat-eqat)-2)
|
||||
}
|
||||
|
||||
function remove_brackets(b)
|
||||
{
|
||||
return substr(b, 2, length(b)-2)
|
||||
}
|
||||
|
||||
function splitdefine(l, p)
|
||||
{
|
||||
r = split(l, tp)
|
||||
|
||||
p[0] = tp[2]
|
||||
p[1] = remove_brackets(tp[3])
|
||||
}
|
||||
|
||||
function find_length(f)
|
||||
{
|
||||
if (0)
|
||||
printf "find_length " f "\n" > "/dev/stderr"
|
||||
|
||||
if (f ~ /0x1/)
|
||||
return 1
|
||||
else if (f ~ /0x3/)
|
||||
return 2
|
||||
else if (f ~ /0x7/)
|
||||
return 3
|
||||
else if (f ~ /0xf/)
|
||||
return 4
|
||||
|
||||
printf "unknown legnth " f "\n" > "/dev/stderr"
|
||||
exit
|
||||
}
|
||||
|
||||
function find_shift(s)
|
||||
{
|
||||
id = index(s, "<")
|
||||
if (id <= 0) {
|
||||
printf "cannot find shift " s "\n" > "/dev/stderr"
|
||||
exit
|
||||
}
|
||||
|
||||
return substr(s, id+2)
|
||||
}
|
||||
|
||||
|
||||
BEGIN {
|
||||
if (ARGC < 2) {
|
||||
print "too few arguments" > "/dev/stderr"
|
||||
exit
|
||||
}
|
||||
|
||||
# read the header file and find the mask values that we will need
|
||||
# to replace and create an associative array of values
|
||||
|
||||
while (getline line < ARGV[1] > 0) {
|
||||
if (line ~ /\#define.*_MASK/ &&
|
||||
!(line ~ /S5PC100_EPLL_MASK/) &&
|
||||
!(line ~ /USB_SIG_MASK/)) {
|
||||
splitdefine(line, fields)
|
||||
name = fields[0]
|
||||
if (0)
|
||||
printf "MASK " line "\n" > "/dev/stderr"
|
||||
dmask[name,0] = find_length(fields[1])
|
||||
dmask[name,1] = find_shift(fields[1])
|
||||
if (0)
|
||||
printf "=> '" name "' LENGTH=" dmask[name,0] " SHIFT=" dmask[name,1] "\n" > "/dev/stderr"
|
||||
} else {
|
||||
}
|
||||
}
|
||||
|
||||
delete ARGV[1]
|
||||
}
|
||||
|
||||
/clksrc_clk.*=.*{/ {
|
||||
shift=""
|
||||
mask=""
|
||||
divshift=""
|
||||
reg_div=""
|
||||
reg_src=""
|
||||
indent=1
|
||||
|
||||
print $0
|
||||
|
||||
for(; indent >= 1;) {
|
||||
if ((getline line) <= 0) {
|
||||
printf "unexpected end of file" > "/dev/stderr"
|
||||
exit 1;
|
||||
}
|
||||
|
||||
if (line ~ /\.shift/) {
|
||||
shift = extract_value(line)
|
||||
} else if (line ~ /\.mask/) {
|
||||
mask = extract_value(line)
|
||||
} else if (line ~ /\.reg_divider/) {
|
||||
reg_div = extract_value(line)
|
||||
} else if (line ~ /\.reg_source/) {
|
||||
reg_src = extract_value(line)
|
||||
} else if (line ~ /\.divider_shift/) {
|
||||
divshift = extract_value(line)
|
||||
} else if (line ~ /{/) {
|
||||
indent++
|
||||
print line
|
||||
} else if (line ~ /}/) {
|
||||
indent--
|
||||
|
||||
if (indent == 0) {
|
||||
if (0) {
|
||||
printf "shift '" shift "' ='" dmask[shift,0] "'\n" > "/dev/stderr"
|
||||
printf "mask '" mask "'\n" > "/dev/stderr"
|
||||
printf "dshft '" divshift "'\n" > "/dev/stderr"
|
||||
printf "rdiv '" reg_div "'\n" > "/dev/stderr"
|
||||
printf "rsrc '" reg_src "'\n" > "/dev/stderr"
|
||||
}
|
||||
|
||||
generated = mask
|
||||
sub(reg_src, reg_div, generated)
|
||||
|
||||
if (0) {
|
||||
printf "/* rsrc " reg_src " */\n"
|
||||
printf "/* rdiv " reg_div " */\n"
|
||||
printf "/* shift " shift " */\n"
|
||||
printf "/* mask " mask " */\n"
|
||||
printf "/* generated " generated " */\n"
|
||||
}
|
||||
|
||||
if (reg_div != "") {
|
||||
printf "\t.reg_div = { "
|
||||
printf ".reg = " reg_div ", "
|
||||
printf ".shift = " dmask[generated,1] ", "
|
||||
printf ".size = " dmask[generated,0] ", "
|
||||
printf "},\n"
|
||||
}
|
||||
|
||||
printf "\t.reg_src = { "
|
||||
printf ".reg = " reg_src ", "
|
||||
printf ".shift = " dmask[mask,1] ", "
|
||||
printf ".size = " dmask[mask,0] ", "
|
||||
|
||||
printf "},\n"
|
||||
|
||||
}
|
||||
|
||||
print line
|
||||
} else {
|
||||
print line
|
||||
}
|
||||
|
||||
if (0)
|
||||
printf indent ":" line "\n" > "/dev/stderr"
|
||||
}
|
||||
}
|
||||
|
||||
// && ! /clksrc_clk.*=.*{/ { print $0 }
|
@ -7,7 +7,7 @@ The driver only implements a four-wire touch panel protocol.
|
||||
|
||||
The touchscreen driver is maintenance free except for the pen-down or
|
||||
touch threshold. Some resistive displays and board combinations may
|
||||
require tuning of this threshold. The driver exposes some of it's
|
||||
require tuning of this threshold. The driver exposes some of its
|
||||
internal state in the sys filesystem. If the kernel is configured
|
||||
with it, CONFIG_SYSFS, and sysfs is mounted at /sys, there will be a
|
||||
directory
|
||||
|
@ -320,7 +320,7 @@ counter decrement would not become globally visible until the
|
||||
obj->active update does.
|
||||
|
||||
As a historical note, 32-bit Sparc used to only allow usage of
|
||||
24-bits of it's atomic_t type. This was because it used 8 bits
|
||||
24-bits of its atomic_t type. This was because it used 8 bits
|
||||
as a spinlock for SMP safety. Sparc32 lacked a "compare and swap"
|
||||
type instruction. However, 32-bit Sparc has since been moved over
|
||||
to a "hash table of spinlocks" scheme, that allows the full 32-bit
|
||||
|
@ -43,7 +43,7 @@
|
||||
void bfin_gpio_irq_free(unsigned gpio);
|
||||
|
||||
The request functions will record the function state for a certain pin,
|
||||
the free functions will clear it's function state.
|
||||
the free functions will clear its function state.
|
||||
Once a pin is requested, it can't be requested again before it is freed by
|
||||
previous caller, otherwise kernel will dump stacks, and the request
|
||||
function fail.
|
||||
|
@ -1162,8 +1162,8 @@ where a driver received a request ala this before:
|
||||
|
||||
As mentioned, there is no virtual mapping of a bio. For DMA, this is
|
||||
not a problem as the driver probably never will need a virtual mapping.
|
||||
Instead it needs a bus mapping (pci_map_page for a single segment or
|
||||
use blk_rq_map_sg for scatter gather) to be able to ship it to the driver. For
|
||||
Instead it needs a bus mapping (dma_map_page for a single segment or
|
||||
use dma_map_sg for scatter gather) to be able to ship it to the driver. For
|
||||
PIO drivers (or drivers that need to revert to PIO transfer once in a
|
||||
while (IDE for example)), where the CPU is doing the actual data
|
||||
transfer a virtual mapping is needed. If the driver supports highmem I/O,
|
||||
|
@ -5,7 +5,7 @@
|
||||
|
||||
This document describes the cache/tlb flushing interfaces called
|
||||
by the Linux VM subsystem. It enumerates over each interface,
|
||||
describes it's intended purpose, and what side effect is expected
|
||||
describes its intended purpose, and what side effect is expected
|
||||
after the interface is invoked.
|
||||
|
||||
The side effects described below are stated for a uniprocessor
|
||||
@ -231,7 +231,7 @@ require a whole different set of interfaces to handle properly.
|
||||
The biggest problem is that of virtual aliasing in the data cache
|
||||
of a processor.
|
||||
|
||||
Is your port susceptible to virtual aliasing in it's D-cache?
|
||||
Is your port susceptible to virtual aliasing in its D-cache?
|
||||
Well, if your D-cache is virtually indexed, is larger in size than
|
||||
PAGE_SIZE, and does not prevent multiple cache lines for the same
|
||||
physical address from existing at once, you have this problem.
|
||||
@ -249,7 +249,7 @@ one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
|
||||
Next, you have to solve the D-cache aliasing issue for all
|
||||
other cases. Please keep in mind that fact that, for a given page
|
||||
mapped into some user address space, there is always at least one more
|
||||
mapping, that of the kernel in it's linear mapping starting at
|
||||
mapping, that of the kernel in its linear mapping starting at
|
||||
PAGE_OFFSET. So immediately, once the first user maps a given
|
||||
physical page into its address space, by implication the D-cache
|
||||
aliasing problem has the potential to exist since the kernel already
|
||||
|
110
Documentation/cgroups/cgroup_event_listener.c
Normal file
110
Documentation/cgroups/cgroup_event_listener.c
Normal file
@ -0,0 +1,110 @@
|
||||
/*
|
||||
* cgroup_event_listener.c - Simple listener of cgroup events
|
||||
*
|
||||
* Copyright (C) Kirill A. Shutemov <kirill@shutemov.name>
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <fcntl.h>
|
||||
#include <libgen.h>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <sys/eventfd.h>
|
||||
|
||||
#define USAGE_STR "Usage: cgroup_event_listener <path-to-control-file> <args>\n"
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int efd = -1;
|
||||
int cfd = -1;
|
||||
int event_control = -1;
|
||||
char event_control_path[PATH_MAX];
|
||||
char line[LINE_MAX];
|
||||
int ret;
|
||||
|
||||
if (argc != 3) {
|
||||
fputs(USAGE_STR, stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
cfd = open(argv[1], O_RDONLY);
|
||||
if (cfd == -1) {
|
||||
fprintf(stderr, "Cannot open %s: %s\n", argv[1],
|
||||
strerror(errno));
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = snprintf(event_control_path, PATH_MAX, "%s/cgroup.event_control",
|
||||
dirname(argv[1]));
|
||||
if (ret >= PATH_MAX) {
|
||||
fputs("Path to cgroup.event_control is too long\n", stderr);
|
||||
goto out;
|
||||
}
|
||||
|
||||
event_control = open(event_control_path, O_WRONLY);
|
||||
if (event_control == -1) {
|
||||
fprintf(stderr, "Cannot open %s: %s\n", event_control_path,
|
||||
strerror(errno));
|
||||
goto out;
|
||||
}
|
||||
|
||||
efd = eventfd(0, 0);
|
||||
if (efd == -1) {
|
||||
perror("eventfd() failed");
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = snprintf(line, LINE_MAX, "%d %d %s", efd, cfd, argv[2]);
|
||||
if (ret >= LINE_MAX) {
|
||||
fputs("Arguments string is too long\n", stderr);
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = write(event_control, line, strlen(line) + 1);
|
||||
if (ret == -1) {
|
||||
perror("Cannot write to cgroup.event_control");
|
||||
goto out;
|
||||
}
|
||||
|
||||
while (1) {
|
||||
uint64_t result;
|
||||
|
||||
ret = read(efd, &result, sizeof(result));
|
||||
if (ret == -1) {
|
||||
if (errno == EINTR)
|
||||
continue;
|
||||
perror("Cannot read from eventfd");
|
||||
break;
|
||||
}
|
||||
assert(ret == sizeof(result));
|
||||
|
||||
ret = access(event_control_path, W_OK);
|
||||
if ((ret == -1) && (errno == ENOENT)) {
|
||||
puts("The cgroup seems to have removed.");
|
||||
ret = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ret == -1) {
|
||||
perror("cgroup.event_control "
|
||||
"is not accessable any more");
|
||||
break;
|
||||
}
|
||||
|
||||
printf("%s %s: crossed\n", argv[1], argv[2]);
|
||||
}
|
||||
|
||||
out:
|
||||
if (efd >= 0)
|
||||
close(efd);
|
||||
if (event_control >= 0)
|
||||
close(event_control);
|
||||
if (cfd >= 0)
|
||||
close(cfd);
|
||||
|
||||
return (ret != 0);
|
||||
}
|
@ -22,6 +22,8 @@ CONTENTS:
|
||||
2. Usage Examples and Syntax
|
||||
2.1 Basic Usage
|
||||
2.2 Attaching processes
|
||||
2.3 Mounting hierarchies by name
|
||||
2.4 Notification API
|
||||
3. Kernel API
|
||||
3.1 Overview
|
||||
3.2 Synchronization
|
||||
@ -233,8 +235,7 @@ containing the following files describing that cgroup:
|
||||
- cgroup.procs: list of tgids in the cgroup. This list is not
|
||||
guaranteed to be sorted or free of duplicate tgids, and userspace
|
||||
should sort/uniquify the list if this property is required.
|
||||
Writing a tgid into this file moves all threads with that tgid into
|
||||
this cgroup.
|
||||
This is a read-only file, for now.
|
||||
- notify_on_release flag: run the release agent on exit?
|
||||
- release_agent: the path to use for release notifications (this file
|
||||
exists in the top cgroup only)
|
||||
@ -434,6 +435,25 @@ you give a subsystem a name.
|
||||
The name of the subsystem appears as part of the hierarchy description
|
||||
in /proc/mounts and /proc/<pid>/cgroups.
|
||||
|
||||
2.4 Notification API
|
||||
--------------------
|
||||
|
||||
There is mechanism which allows to get notifications about changing
|
||||
status of a cgroup.
|
||||
|
||||
To register new notification handler you need:
|
||||
- create a file descriptor for event notification using eventfd(2);
|
||||
- open a control file to be monitored (e.g. memory.usage_in_bytes);
|
||||
- write "<event_fd> <control_fd> <args>" to cgroup.event_control.
|
||||
Interpretation of args is defined by control file implementation;
|
||||
|
||||
eventfd will be woken up by control file implementation or when the
|
||||
cgroup is removed.
|
||||
|
||||
To unregister notification handler just close eventfd.
|
||||
|
||||
NOTE: Support of notifications should be implemented for the control
|
||||
file. See documentation for the subsystem.
|
||||
|
||||
3. Kernel API
|
||||
=============
|
||||
@ -488,6 +508,11 @@ Each subsystem should:
|
||||
- add an entry in linux/cgroup_subsys.h
|
||||
- define a cgroup_subsys object called <name>_subsys
|
||||
|
||||
If a subsystem can be compiled as a module, it should also have in its
|
||||
module initcall a call to cgroup_load_subsys(), and in its exitcall a
|
||||
call to cgroup_unload_subsys(). It should also set its_subsys.module =
|
||||
THIS_MODULE in its .c file.
|
||||
|
||||
Each subsystem may export the following methods. The only mandatory
|
||||
methods are create/destroy. Any others that are null are presumed to
|
||||
be successful no-ops.
|
||||
@ -536,10 +561,21 @@ returns an error, this will abort the attach operation. If a NULL
|
||||
task is passed, then a successful result indicates that *any*
|
||||
unspecified task can be moved into the cgroup. Note that this isn't
|
||||
called on a fork. If this method returns 0 (success) then this should
|
||||
remain valid while the caller holds cgroup_mutex. If threadgroup is
|
||||
remain valid while the caller holds cgroup_mutex and it is ensured that either
|
||||
attach() or cancel_attach() will be called in future. If threadgroup is
|
||||
true, then a successful result indicates that all threads in the given
|
||||
thread's threadgroup can be moved together.
|
||||
|
||||
void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
|
||||
struct task_struct *task, bool threadgroup)
|
||||
(cgroup_mutex held by caller)
|
||||
|
||||
Called when a task attach operation has failed after can_attach() has succeeded.
|
||||
A subsystem whose can_attach() has some side-effects should provide this
|
||||
function, so that the subsystem can implement a rollback. If not, not necessary.
|
||||
This will be called only about subsystems whose can_attach() operation have
|
||||
succeeded.
|
||||
|
||||
void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
|
||||
struct cgroup *old_cgrp, struct task_struct *task,
|
||||
bool threadgroup)
|
||||
|
@ -42,7 +42,7 @@ Nodes to a set of tasks. In this document "Memory Node" refers to
|
||||
an on-line node that contains memory.
|
||||
|
||||
Cpusets constrain the CPU and Memory placement of tasks to only
|
||||
the resources within a tasks current cpuset. They form a nested
|
||||
the resources within a task's current cpuset. They form a nested
|
||||
hierarchy visible in a virtual file system. These are the essential
|
||||
hooks, beyond what is already present, required to manage dynamic
|
||||
job placement on large systems.
|
||||
@ -53,11 +53,11 @@ Documentation/cgroups/cgroups.txt.
|
||||
Requests by a task, using the sched_setaffinity(2) system call to
|
||||
include CPUs in its CPU affinity mask, and using the mbind(2) and
|
||||
set_mempolicy(2) system calls to include Memory Nodes in its memory
|
||||
policy, are both filtered through that tasks cpuset, filtering out any
|
||||
policy, are both filtered through that task's cpuset, filtering out any
|
||||
CPUs or Memory Nodes not in that cpuset. The scheduler will not
|
||||
schedule a task on a CPU that is not allowed in its cpus_allowed
|
||||
vector, and the kernel page allocator will not allocate a page on a
|
||||
node that is not allowed in the requesting tasks mems_allowed vector.
|
||||
node that is not allowed in the requesting task's mems_allowed vector.
|
||||
|
||||
User level code may create and destroy cpusets by name in the cgroup
|
||||
virtual file system, manage the attributes and permissions of these
|
||||
@ -121,9 +121,9 @@ Cpusets extends these two mechanisms as follows:
|
||||
- Each task in the system is attached to a cpuset, via a pointer
|
||||
in the task structure to a reference counted cgroup structure.
|
||||
- Calls to sched_setaffinity are filtered to just those CPUs
|
||||
allowed in that tasks cpuset.
|
||||
allowed in that task's cpuset.
|
||||
- Calls to mbind and set_mempolicy are filtered to just
|
||||
those Memory Nodes allowed in that tasks cpuset.
|
||||
those Memory Nodes allowed in that task's cpuset.
|
||||
- The root cpuset contains all the systems CPUs and Memory
|
||||
Nodes.
|
||||
- For any cpuset, one can define child cpusets containing a subset
|
||||
@ -141,11 +141,11 @@ into the rest of the kernel, none in performance critical paths:
|
||||
- in init/main.c, to initialize the root cpuset at system boot.
|
||||
- in fork and exit, to attach and detach a task from its cpuset.
|
||||
- in sched_setaffinity, to mask the requested CPUs by what's
|
||||
allowed in that tasks cpuset.
|
||||
allowed in that task's cpuset.
|
||||
- in sched.c migrate_live_tasks(), to keep migrating tasks within
|
||||
the CPUs allowed by their cpuset, if possible.
|
||||
- in the mbind and set_mempolicy system calls, to mask the requested
|
||||
Memory Nodes by what's allowed in that tasks cpuset.
|
||||
Memory Nodes by what's allowed in that task's cpuset.
|
||||
- in page_alloc.c, to restrict memory to allowed nodes.
|
||||
- in vmscan.c, to restrict page recovery to the current cpuset.
|
||||
|
||||
@ -155,7 +155,7 @@ new system calls are added for cpusets - all support for querying and
|
||||
modifying cpusets is via this cpuset file system.
|
||||
|
||||
The /proc/<pid>/status file for each task has four added lines,
|
||||
displaying the tasks cpus_allowed (on which CPUs it may be scheduled)
|
||||
displaying the task's cpus_allowed (on which CPUs it may be scheduled)
|
||||
and mems_allowed (on which Memory Nodes it may obtain memory),
|
||||
in the two formats seen in the following example:
|
||||
|
||||
@ -168,20 +168,20 @@ Each cpuset is represented by a directory in the cgroup file system
|
||||
containing (on top of the standard cgroup files) the following
|
||||
files describing that cpuset:
|
||||
|
||||
- cpus: list of CPUs in that cpuset
|
||||
- mems: list of Memory Nodes in that cpuset
|
||||
- memory_migrate flag: if set, move pages to cpusets nodes
|
||||
- cpu_exclusive flag: is cpu placement exclusive?
|
||||
- mem_exclusive flag: is memory placement exclusive?
|
||||
- mem_hardwall flag: is memory allocation hardwalled
|
||||
- memory_pressure: measure of how much paging pressure in cpuset
|
||||
- memory_spread_page flag: if set, spread page cache evenly on allowed nodes
|
||||
- memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
|
||||
- sched_load_balance flag: if set, load balance within CPUs on that cpuset
|
||||
- sched_relax_domain_level: the searching range when migrating tasks
|
||||
- cpuset.cpus: list of CPUs in that cpuset
|
||||
- cpuset.mems: list of Memory Nodes in that cpuset
|
||||
- cpuset.memory_migrate flag: if set, move pages to cpusets nodes
|
||||
- cpuset.cpu_exclusive flag: is cpu placement exclusive?
|
||||
- cpuset.mem_exclusive flag: is memory placement exclusive?
|
||||
- cpuset.mem_hardwall flag: is memory allocation hardwalled
|
||||
- cpuset.memory_pressure: measure of how much paging pressure in cpuset
|
||||
- cpuset.memory_spread_page flag: if set, spread page cache evenly on allowed nodes
|
||||
- cpuset.memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
|
||||
- cpuset.sched_load_balance flag: if set, load balance within CPUs on that cpuset
|
||||
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
|
||||
|
||||
In addition, the root cpuset only has the following file:
|
||||
- memory_pressure_enabled flag: compute memory_pressure?
|
||||
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
|
||||
|
||||
New cpusets are created using the mkdir system call or shell
|
||||
command. The properties of a cpuset, such as its flags, allowed
|
||||
@ -229,7 +229,7 @@ If a cpuset is cpu or mem exclusive, no other cpuset, other than
|
||||
a direct ancestor or descendant, may share any of the same CPUs or
|
||||
Memory Nodes.
|
||||
|
||||
A cpuset that is mem_exclusive *or* mem_hardwall is "hardwalled",
|
||||
A cpuset that is cpuset.mem_exclusive *or* cpuset.mem_hardwall is "hardwalled",
|
||||
i.e. it restricts kernel allocations for page, buffer and other data
|
||||
commonly shared by the kernel across multiple users. All cpusets,
|
||||
whether hardwalled or not, restrict allocations of memory for user
|
||||
@ -304,15 +304,15 @@ times 1000.
|
||||
---------------------------
|
||||
There are two boolean flag files per cpuset that control where the
|
||||
kernel allocates pages for the file system buffers and related in
|
||||
kernel data structures. They are called 'memory_spread_page' and
|
||||
'memory_spread_slab'.
|
||||
kernel data structures. They are called 'cpuset.memory_spread_page' and
|
||||
'cpuset.memory_spread_slab'.
|
||||
|
||||
If the per-cpuset boolean flag file 'memory_spread_page' is set, then
|
||||
If the per-cpuset boolean flag file 'cpuset.memory_spread_page' is set, then
|
||||
the kernel will spread the file system buffers (page cache) evenly
|
||||
over all the nodes that the faulting task is allowed to use, instead
|
||||
of preferring to put those pages on the node where the task is running.
|
||||
|
||||
If the per-cpuset boolean flag file 'memory_spread_slab' is set,
|
||||
If the per-cpuset boolean flag file 'cpuset.memory_spread_slab' is set,
|
||||
then the kernel will spread some file system related slab caches,
|
||||
such as for inodes and dentries evenly over all the nodes that the
|
||||
faulting task is allowed to use, instead of preferring to put those
|
||||
@ -323,41 +323,41 @@ stack segment pages of a task.
|
||||
|
||||
By default, both kinds of memory spreading are off, and memory
|
||||
pages are allocated on the node local to where the task is running,
|
||||
except perhaps as modified by the tasks NUMA mempolicy or cpuset
|
||||
except perhaps as modified by the task's NUMA mempolicy or cpuset
|
||||
configuration, so long as sufficient free memory pages are available.
|
||||
|
||||
When new cpusets are created, they inherit the memory spread settings
|
||||
of their parent.
|
||||
|
||||
Setting memory spreading causes allocations for the affected page
|
||||
or slab caches to ignore the tasks NUMA mempolicy and be spread
|
||||
or slab caches to ignore the task's NUMA mempolicy and be spread
|
||||
instead. Tasks using mbind() or set_mempolicy() calls to set NUMA
|
||||
mempolicies will not notice any change in these calls as a result of
|
||||
their containing tasks memory spread settings. If memory spreading
|
||||
their containing task's memory spread settings. If memory spreading
|
||||
is turned off, then the currently specified NUMA mempolicy once again
|
||||
applies to memory page allocations.
|
||||
|
||||
Both 'memory_spread_page' and 'memory_spread_slab' are boolean flag
|
||||
Both 'cpuset.memory_spread_page' and 'cpuset.memory_spread_slab' are boolean flag
|
||||
files. By default they contain "0", meaning that the feature is off
|
||||
for that cpuset. If a "1" is written to that file, then that turns
|
||||
the named feature on.
|
||||
|
||||
The implementation is simple.
|
||||
|
||||
Setting the flag 'memory_spread_page' turns on a per-process flag
|
||||
Setting the flag 'cpuset.memory_spread_page' turns on a per-process flag
|
||||
PF_SPREAD_PAGE for each task that is in that cpuset or subsequently
|
||||
joins that cpuset. The page allocation calls for the page cache
|
||||
is modified to perform an inline check for this PF_SPREAD_PAGE task
|
||||
flag, and if set, a call to a new routine cpuset_mem_spread_node()
|
||||
returns the node to prefer for the allocation.
|
||||
|
||||
Similarly, setting 'memory_spread_slab' turns on the flag
|
||||
Similarly, setting 'cpuset.memory_spread_slab' turns on the flag
|
||||
PF_SPREAD_SLAB, and appropriately marked slab caches will allocate
|
||||
pages from the node returned by cpuset_mem_spread_node().
|
||||
|
||||
The cpuset_mem_spread_node() routine is also simple. It uses the
|
||||
value of a per-task rotor cpuset_mem_spread_rotor to select the next
|
||||
node in the current tasks mems_allowed to prefer for the allocation.
|
||||
node in the current task's mems_allowed to prefer for the allocation.
|
||||
|
||||
This memory placement policy is also known (in other contexts) as
|
||||
round-robin or interleave.
|
||||
@ -404,24 +404,24 @@ the following two situations:
|
||||
system overhead on those CPUs, including avoiding task load
|
||||
balancing if that is not needed.
|
||||
|
||||
When the per-cpuset flag "sched_load_balance" is enabled (the default
|
||||
setting), it requests that all the CPUs in that cpusets allowed 'cpus'
|
||||
When the per-cpuset flag "cpuset.sched_load_balance" is enabled (the default
|
||||
setting), it requests that all the CPUs in that cpusets allowed 'cpuset.cpus'
|
||||
be contained in a single sched domain, ensuring that load balancing
|
||||
can move a task (not otherwised pinned, as by sched_setaffinity)
|
||||
from any CPU in that cpuset to any other.
|
||||
|
||||
When the per-cpuset flag "sched_load_balance" is disabled, then the
|
||||
When the per-cpuset flag "cpuset.sched_load_balance" is disabled, then the
|
||||
scheduler will avoid load balancing across the CPUs in that cpuset,
|
||||
--except-- in so far as is necessary because some overlapping cpuset
|
||||
has "sched_load_balance" enabled.
|
||||
|
||||
So, for example, if the top cpuset has the flag "sched_load_balance"
|
||||
So, for example, if the top cpuset has the flag "cpuset.sched_load_balance"
|
||||
enabled, then the scheduler will have one sched domain covering all
|
||||
CPUs, and the setting of the "sched_load_balance" flag in any other
|
||||
CPUs, and the setting of the "cpuset.sched_load_balance" flag in any other
|
||||
cpusets won't matter, as we're already fully load balancing.
|
||||
|
||||
Therefore in the above two situations, the top cpuset flag
|
||||
"sched_load_balance" should be disabled, and only some of the smaller,
|
||||
"cpuset.sched_load_balance" should be disabled, and only some of the smaller,
|
||||
child cpusets have this flag enabled.
|
||||
|
||||
When doing this, you don't usually want to leave any unpinned tasks in
|
||||
@ -433,7 +433,7 @@ scheduler might not consider the possibility of load balancing that
|
||||
task to that underused CPU.
|
||||
|
||||
Of course, tasks pinned to a particular CPU can be left in a cpuset
|
||||
that disables "sched_load_balance" as those tasks aren't going anywhere
|
||||
that disables "cpuset.sched_load_balance" as those tasks aren't going anywhere
|
||||
else anyway.
|
||||
|
||||
There is an impedance mismatch here, between cpusets and sched domains.
|
||||
@ -443,19 +443,19 @@ overlap and each CPU is in at most one sched domain.
|
||||
It is necessary for sched domains to be flat because load balancing
|
||||
across partially overlapping sets of CPUs would risk unstable dynamics
|
||||
that would be beyond our understanding. So if each of two partially
|
||||
overlapping cpusets enables the flag 'sched_load_balance', then we
|
||||
overlapping cpusets enables the flag 'cpuset.sched_load_balance', then we
|
||||
form a single sched domain that is a superset of both. We won't move
|
||||
a task to a CPU outside it cpuset, but the scheduler load balancing
|
||||
code might waste some compute cycles considering that possibility.
|
||||
|
||||
This mismatch is why there is not a simple one-to-one relation
|
||||
between which cpusets have the flag "sched_load_balance" enabled,
|
||||
between which cpusets have the flag "cpuset.sched_load_balance" enabled,
|
||||
and the sched domain configuration. If a cpuset enables the flag, it
|
||||
will get balancing across all its CPUs, but if it disables the flag,
|
||||
it will only be assured of no load balancing if no other overlapping
|
||||
cpuset enables the flag.
|
||||
|
||||
If two cpusets have partially overlapping 'cpus' allowed, and only
|
||||
If two cpusets have partially overlapping 'cpuset.cpus' allowed, and only
|
||||
one of them has this flag enabled, then the other may find its
|
||||
tasks only partially load balanced, just on the overlapping CPUs.
|
||||
This is just the general case of the top_cpuset example given a few
|
||||
@ -468,23 +468,23 @@ load balancing to the other CPUs.
|
||||
1.7.1 sched_load_balance implementation details.
|
||||
------------------------------------------------
|
||||
|
||||
The per-cpuset flag 'sched_load_balance' defaults to enabled (contrary
|
||||
The per-cpuset flag 'cpuset.sched_load_balance' defaults to enabled (contrary
|
||||
to most cpuset flags.) When enabled for a cpuset, the kernel will
|
||||
ensure that it can load balance across all the CPUs in that cpuset
|
||||
(makes sure that all the CPUs in the cpus_allowed of that cpuset are
|
||||
in the same sched domain.)
|
||||
|
||||
If two overlapping cpusets both have 'sched_load_balance' enabled,
|
||||
If two overlapping cpusets both have 'cpuset.sched_load_balance' enabled,
|
||||
then they will be (must be) both in the same sched domain.
|
||||
|
||||
If, as is the default, the top cpuset has 'sched_load_balance' enabled,
|
||||
If, as is the default, the top cpuset has 'cpuset.sched_load_balance' enabled,
|
||||
then by the above that means there is a single sched domain covering
|
||||
the whole system, regardless of any other cpuset settings.
|
||||
|
||||
The kernel commits to user space that it will avoid load balancing
|
||||
where it can. It will pick as fine a granularity partition of sched
|
||||
domains as it can while still providing load balancing for any set
|
||||
of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
|
||||
of CPUs allowed to a cpuset having 'cpuset.sched_load_balance' enabled.
|
||||
|
||||
The internal kernel cpuset to scheduler interface passes from the
|
||||
cpuset code to the scheduler code a partition of the load balanced
|
||||
@ -495,9 +495,9 @@ all the CPUs that must be load balanced.
|
||||
The cpuset code builds a new such partition and passes it to the
|
||||
scheduler sched domain setup code, to have the sched domains rebuilt
|
||||
as necessary, whenever:
|
||||
- the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
|
||||
- the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
|
||||
- or CPUs come or go from a cpuset with this flag enabled,
|
||||
- or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
|
||||
- or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
|
||||
and with this flag enabled changes,
|
||||
- or a cpuset with non-empty CPUs and with this flag enabled is removed,
|
||||
- or a cpu is offlined/onlined.
|
||||
@ -542,7 +542,7 @@ As the result, task B on CPU X need to wait task A or wait load balance
|
||||
on the next tick. For some applications in special situation, waiting
|
||||
1 tick may be too long.
|
||||
|
||||
The 'sched_relax_domain_level' file allows you to request changing
|
||||
The 'cpuset.sched_relax_domain_level' file allows you to request changing
|
||||
this searching range as you like. This file takes int value which
|
||||
indicates size of searching range in levels ideally as follows,
|
||||
otherwise initial value -1 that indicates the cpuset has no request.
|
||||
@ -559,8 +559,8 @@ The system default is architecture dependent. The system default
|
||||
can be changed using the relax_domain_level= boot parameter.
|
||||
|
||||
This file is per-cpuset and affect the sched domain where the cpuset
|
||||
belongs to. Therefore if the flag 'sched_load_balance' of a cpuset
|
||||
is disabled, then 'sched_relax_domain_level' have no effect since
|
||||
belongs to. Therefore if the flag 'cpuset.sched_load_balance' of a cpuset
|
||||
is disabled, then 'cpuset.sched_relax_domain_level' have no effect since
|
||||
there is no sched domain belonging the cpuset.
|
||||
|
||||
If multiple cpusets are overlapping and hence they form a single sched
|
||||
@ -594,7 +594,7 @@ is attached, is subtle.
|
||||
If a cpuset has its Memory Nodes modified, then for each task attached
|
||||
to that cpuset, the next time that the kernel attempts to allocate
|
||||
a page of memory for that task, the kernel will notice the change
|
||||
in the tasks cpuset, and update its per-task memory placement to
|
||||
in the task's cpuset, and update its per-task memory placement to
|
||||
remain within the new cpusets memory placement. If the task was using
|
||||
mempolicy MPOL_BIND, and the nodes to which it was bound overlap with
|
||||
its new cpuset, then the task will continue to use whatever subset
|
||||
@ -603,13 +603,13 @@ was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
|
||||
in the new cpuset, then the task will be essentially treated as if it
|
||||
was MPOL_BIND bound to the new cpuset (even though its NUMA placement,
|
||||
as queried by get_mempolicy(), doesn't change). If a task is moved
|
||||
from one cpuset to another, then the kernel will adjust the tasks
|
||||
from one cpuset to another, then the kernel will adjust the task's
|
||||
memory placement, as above, the next time that the kernel attempts
|
||||
to allocate a page of memory for that task.
|
||||
|
||||
If a cpuset has its 'cpus' modified, then each task in that cpuset
|
||||
If a cpuset has its 'cpuset.cpus' modified, then each task in that cpuset
|
||||
will have its allowed CPU placement changed immediately. Similarly,
|
||||
if a tasks pid is written to another cpusets 'tasks' file, then its
|
||||
if a task's pid is written to another cpusets 'cpuset.tasks' file, then its
|
||||
allowed CPU placement is changed immediately. If such a task had been
|
||||
bound to some subset of its cpuset using the sched_setaffinity() call,
|
||||
the task will be allowed to run on any CPU allowed in its new cpuset,
|
||||
@ -622,21 +622,21 @@ and the processor placement is updated immediately.
|
||||
Normally, once a page is allocated (given a physical page
|
||||
of main memory) then that page stays on whatever node it
|
||||
was allocated, so long as it remains allocated, even if the
|
||||
cpusets memory placement policy 'mems' subsequently changes.
|
||||
If the cpuset flag file 'memory_migrate' is set true, then when
|
||||
cpusets memory placement policy 'cpuset.mems' subsequently changes.
|
||||
If the cpuset flag file 'cpuset.memory_migrate' is set true, then when
|
||||
tasks are attached to that cpuset, any pages that task had
|
||||
allocated to it on nodes in its previous cpuset are migrated
|
||||
to the tasks new cpuset. The relative placement of the page within
|
||||
to the task's new cpuset. The relative placement of the page within
|
||||
the cpuset is preserved during these migration operations if possible.
|
||||
For example if the page was on the second valid node of the prior cpuset
|
||||
then the page will be placed on the second valid node of the new cpuset.
|
||||
|
||||
Also if 'memory_migrate' is set true, then if that cpusets
|
||||
'mems' file is modified, pages allocated to tasks in that
|
||||
cpuset, that were on nodes in the previous setting of 'mems',
|
||||
Also if 'cpuset.memory_migrate' is set true, then if that cpuset's
|
||||
'cpuset.mems' file is modified, pages allocated to tasks in that
|
||||
cpuset, that were on nodes in the previous setting of 'cpuset.mems',
|
||||
will be moved to nodes in the new setting of 'mems.'
|
||||
Pages that were not in the tasks prior cpuset, or in the cpusets
|
||||
prior 'mems' setting, will not be moved.
|
||||
Pages that were not in the task's prior cpuset, or in the cpuset's
|
||||
prior 'cpuset.mems' setting, will not be moved.
|
||||
|
||||
There is an exception to the above. If hotplug functionality is used
|
||||
to remove all the CPUs that are currently assigned to a cpuset,
|
||||
@ -655,7 +655,7 @@ There is a second exception to the above. GFP_ATOMIC requests are
|
||||
kernel internal allocations that must be satisfied, immediately.
|
||||
The kernel may drop some request, in rare cases even panic, if a
|
||||
GFP_ATOMIC alloc fails. If the request cannot be satisfied within
|
||||
the current tasks cpuset, then we relax the cpuset, and look for
|
||||
the current task's cpuset, then we relax the cpuset, and look for
|
||||
memory anywhere we can find it. It's better to violate the cpuset
|
||||
than stress the kernel.
|
||||
|
||||
@ -678,8 +678,8 @@ and then start a subshell 'sh' in that cpuset:
|
||||
cd /dev/cpuset
|
||||
mkdir Charlie
|
||||
cd Charlie
|
||||
/bin/echo 2-3 > cpus
|
||||
/bin/echo 1 > mems
|
||||
/bin/echo 2-3 > cpuset.cpus
|
||||
/bin/echo 1 > cpuset.mems
|
||||
/bin/echo $$ > tasks
|
||||
sh
|
||||
# The subshell 'sh' is now running in cpuset Charlie
|
||||
@ -725,10 +725,13 @@ Now you want to do something with this cpuset.
|
||||
|
||||
In this directory you can find several files:
|
||||
# ls
|
||||
cpu_exclusive memory_migrate mems tasks
|
||||
cpus memory_pressure notify_on_release
|
||||
mem_exclusive memory_spread_page sched_load_balance
|
||||
mem_hardwall memory_spread_slab sched_relax_domain_level
|
||||
cpuset.cpu_exclusive cpuset.memory_spread_slab
|
||||
cpuset.cpus cpuset.mems
|
||||
cpuset.mem_exclusive cpuset.sched_load_balance
|
||||
cpuset.mem_hardwall cpuset.sched_relax_domain_level
|
||||
cpuset.memory_migrate notify_on_release
|
||||
cpuset.memory_pressure tasks
|
||||
cpuset.memory_spread_page
|
||||
|
||||
Reading them will give you information about the state of this cpuset:
|
||||
the CPUs and Memory Nodes it can use, the processes that are using
|
||||
@ -736,13 +739,13 @@ it, its properties. By writing to these files you can manipulate
|
||||
the cpuset.
|
||||
|
||||
Set some flags:
|
||||
# /bin/echo 1 > cpu_exclusive
|
||||
# /bin/echo 1 > cpuset.cpu_exclusive
|
||||
|
||||
Add some cpus:
|
||||
# /bin/echo 0-7 > cpus
|
||||
# /bin/echo 0-7 > cpuset.cpus
|
||||
|
||||
Add some mems:
|
||||
# /bin/echo 0-7 > mems
|
||||
# /bin/echo 0-7 > cpuset.mems
|
||||
|
||||
Now attach your shell to this cpuset:
|
||||
# /bin/echo $$ > tasks
|
||||
@ -774,28 +777,28 @@ echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
|
||||
This is the syntax to use when writing in the cpus or mems files
|
||||
in cpuset directories:
|
||||
|
||||
# /bin/echo 1-4 > cpus -> set cpus list to cpus 1,2,3,4
|
||||
# /bin/echo 1,2,3,4 > cpus -> set cpus list to cpus 1,2,3,4
|
||||
# /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
|
||||
# /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
|
||||
|
||||
To add a CPU to a cpuset, write the new list of CPUs including the
|
||||
CPU to be added. To add 6 to the above cpuset:
|
||||
|
||||
# /bin/echo 1-4,6 > cpus -> set cpus list to cpus 1,2,3,4,6
|
||||
# /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
|
||||
|
||||
Similarly to remove a CPU from a cpuset, write the new list of CPUs
|
||||
without the CPU to be removed.
|
||||
|
||||
To remove all the CPUs:
|
||||
|
||||
# /bin/echo "" > cpus -> clear cpus list
|
||||
# /bin/echo "" > cpuset.cpus -> clear cpus list
|
||||
|
||||
2.3 Setting flags
|
||||
-----------------
|
||||
|
||||
The syntax is very simple:
|
||||
|
||||
# /bin/echo 1 > cpu_exclusive -> set flag 'cpu_exclusive'
|
||||
# /bin/echo 0 > cpu_exclusive -> unset flag 'cpu_exclusive'
|
||||
# /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
|
||||
# /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
|
||||
|
||||
2.4 Attaching processes
|
||||
-----------------------
|
||||
|
@ -1,6 +1,6 @@
|
||||
Memory Resource Controller(Memcg) Implementation Memo.
|
||||
Last Updated: 2009/1/20
|
||||
Base Kernel Version: based on 2.6.29-rc2.
|
||||
Last Updated: 2010/2
|
||||
Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
|
||||
|
||||
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
|
||||
is complex. This is a document for memcg's internal behavior.
|
||||
@ -244,7 +244,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
|
||||
we have to check if OLDPAGE/NEWPAGE is a valid page after commit().
|
||||
|
||||
8. LRU
|
||||
Each memcg has its own private LRU. Now, it's handling is under global
|
||||
Each memcg has its own private LRU. Now, its handling is under global
|
||||
VM's control (means that it's handled under global zone->lru_lock).
|
||||
Almost all routines around memcg's LRU is called by global LRU's
|
||||
list management functions under zone->lru_lock().
|
||||
@ -337,7 +337,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
|
||||
race and lock dependency with other cgroup subsystems.
|
||||
|
||||
example)
|
||||
# mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices
|
||||
# mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
|
||||
|
||||
and do task move, mkdir, rmdir etc...under this.
|
||||
|
||||
@ -348,7 +348,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
|
||||
|
||||
For example, test like following is good.
|
||||
(Shell-A)
|
||||
# mount -t cgroup none /cgroup -t memory
|
||||
# mount -t cgroup none /cgroup -o memory
|
||||
# mkdir /cgroup/test
|
||||
# echo 40M > /cgroup/test/memory.limit_in_bytes
|
||||
# echo 0 > /cgroup/test/tasks
|
||||
@ -378,3 +378,42 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
|
||||
#echo 50M > memory.limit_in_bytes
|
||||
#echo 50M > memory.memsw.limit_in_bytes
|
||||
run 51M of malloc
|
||||
|
||||
9.9 Move charges at task migration
|
||||
Charges associated with a task can be moved along with task migration.
|
||||
|
||||
(Shell-A)
|
||||
#mkdir /cgroup/A
|
||||
#echo $$ >/cgroup/A/tasks
|
||||
run some programs which uses some amount of memory in /cgroup/A.
|
||||
|
||||
(Shell-B)
|
||||
#mkdir /cgroup/B
|
||||
#echo 1 >/cgroup/B/memory.move_charge_at_immigrate
|
||||
#echo "pid of the program running in group A" >/cgroup/B/tasks
|
||||
|
||||
You can see charges have been moved by reading *.usage_in_bytes or
|
||||
memory.stat of both A and B.
|
||||
See 8.2 of Documentation/cgroups/memory.txt to see what value should be
|
||||
written to move_charge_at_immigrate.
|
||||
|
||||
9.10 Memory thresholds
|
||||
Memory controler implements memory thresholds using cgroups notification
|
||||
API. You can use Documentation/cgroups/cgroup_event_listener.c to test
|
||||
it.
|
||||
|
||||
(Shell-A) Create cgroup and run event listener
|
||||
# mkdir /cgroup/A
|
||||
# ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
|
||||
|
||||
(Shell-B) Add task to cgroup and try to allocate and free memory
|
||||
# echo $$ >/cgroup/A/tasks
|
||||
# a="$(dd if=/dev/zero bs=1M count=10)"
|
||||
# a=
|
||||
|
||||
You will see message from cgroup_event_listener every time you cross
|
||||
the thresholds.
|
||||
|
||||
Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds.
|
||||
|
||||
It's good idea to test root cgroup as well.
|
||||
|
@ -182,6 +182,8 @@ list.
|
||||
NOTE: Reclaim does not work for the root cgroup, since we cannot set any
|
||||
limits on the root cgroup.
|
||||
|
||||
Note2: When panic_on_oom is set to "2", the whole system will panic.
|
||||
|
||||
2. Locking
|
||||
|
||||
The memory controller uses the following hierarchy
|
||||
@ -261,11 +263,13 @@ some of the pages cached in the cgroup (page cache pages).
|
||||
|
||||
4.2 Task migration
|
||||
|
||||
When a task migrates from one cgroup to another, it's charge is not
|
||||
carried forward. The pages allocated from the original cgroup still
|
||||
When a task migrates from one cgroup to another, its charge is not
|
||||
carried forward by default. The pages allocated from the original cgroup still
|
||||
remain charged to it, the charge is dropped when the page is freed or
|
||||
reclaimed.
|
||||
|
||||
Note: You can move charges of a task along with task migration. See 8.
|
||||
|
||||
4.3 Removing a cgroup
|
||||
|
||||
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
|
||||
@ -336,7 +340,7 @@ Note:
|
||||
5.3 swappiness
|
||||
Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only.
|
||||
|
||||
Following cgroups' swapiness can't be changed.
|
||||
Following cgroups' swappiness can't be changed.
|
||||
- root cgroup (uses /proc/sys/vm/swappiness).
|
||||
- a cgroup which uses hierarchy and it has child cgroup.
|
||||
- a cgroup which uses hierarchy and not the root of hierarchy.
|
||||
@ -377,7 +381,8 @@ The feature can be disabled by
|
||||
NOTE1: Enabling/disabling will fail if the cgroup already has other
|
||||
cgroups created below it.
|
||||
|
||||
NOTE2: This feature can be enabled/disabled per subtree.
|
||||
NOTE2: When panic_on_oom is set to "2", the whole system will panic in
|
||||
case of an oom event in any cgroup.
|
||||
|
||||
7. Soft limits
|
||||
|
||||
@ -414,7 +419,76 @@ NOTE1: Soft limits take effect over a long period of time, since they involve
|
||||
NOTE2: It is recommended to set the soft limit always below the hard limit,
|
||||
otherwise the hard limit will take precedence.
|
||||
|
||||
8. TODO
|
||||
8. Move charges at task migration
|
||||
|
||||
Users can move charges associated with a task along with task migration, that
|
||||
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
|
||||
This feature is not supported in !CONFIG_MMU environments because of lack of
|
||||
page tables.
|
||||
|
||||
8.1 Interface
|
||||
|
||||
This feature is disabled by default. It can be enabled(and disabled again) by
|
||||
writing to memory.move_charge_at_immigrate of the destination cgroup.
|
||||
|
||||
If you want to enable it:
|
||||
|
||||
# echo (some positive value) > memory.move_charge_at_immigrate
|
||||
|
||||
Note: Each bits of move_charge_at_immigrate has its own meaning about what type
|
||||
of charges should be moved. See 8.2 for details.
|
||||
Note: Charges are moved only when you move mm->owner, IOW, a leader of a thread
|
||||
group.
|
||||
Note: If we cannot find enough space for the task in the destination cgroup, we
|
||||
try to make space by reclaiming memory. Task migration may fail if we
|
||||
cannot make enough space.
|
||||
Note: It can take several seconds if you move charges in giga bytes order.
|
||||
|
||||
And if you want disable it again:
|
||||
|
||||
# echo 0 > memory.move_charge_at_immigrate
|
||||
|
||||
8.2 Type of charges which can be move
|
||||
|
||||
Each bits of move_charge_at_immigrate has its own meaning about what type of
|
||||
charges should be moved.
|
||||
|
||||
bit | what type of charges would be moved ?
|
||||
-----+------------------------------------------------------------------------
|
||||
0 | A charge of an anonymous page(or swap of it) used by the target task.
|
||||
| Those pages and swaps must be used only by the target task. You must
|
||||
| enable Swap Extension(see 2.4) to enable move of swap charges.
|
||||
|
||||
Note: Those pages and swaps must be charged to the old cgroup.
|
||||
Note: More type of pages(e.g. file cache, shmem,) will be supported by other
|
||||
bits in future.
|
||||
|
||||
8.3 TODO
|
||||
|
||||
- Add support for other types of pages(e.g. file cache, shmem, etc.).
|
||||
- Implement madvise(2) to let users decide the vma to be moved or not to be
|
||||
moved.
|
||||
- All of moving charge operations are done under cgroup_mutex. It's not good
|
||||
behavior to hold the mutex too long, so we may need some trick.
|
||||
|
||||
9. Memory thresholds
|
||||
|
||||
Memory controler implements memory thresholds using cgroups notification
|
||||
API (see cgroups.txt). It allows to register multiple memory and memsw
|
||||
thresholds and gets notifications when it crosses.
|
||||
|
||||
To register a threshold application need:
|
||||
- create an eventfd using eventfd(2);
|
||||
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
|
||||
- write string like "<event_fd> <memory.usage_in_bytes> <threshold>" to
|
||||
cgroup.event_control.
|
||||
|
||||
Application will be notified through eventfd when memory usage crosses
|
||||
threshold in any direction.
|
||||
|
||||
It's applicable for root and non-root cgroup.
|
||||
|
||||
10. TODO
|
||||
|
||||
1. Add support for accounting huge pages (as a separate controller)
|
||||
2. Make per-cgroup scanner reclaim not-shared pages first
|
||||
|
234
Documentation/circular-buffers.txt
Normal file
234
Documentation/circular-buffers.txt
Normal file
@ -0,0 +1,234 @@
|
||||
================
|
||||
CIRCULAR BUFFERS
|
||||
================
|
||||
|
||||
By: David Howells <dhowells@redhat.com>
|
||||
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
||||
|
||||
|
||||
Linux provides a number of features that can be used to implement circular
|
||||
buffering. There are two sets of such features:
|
||||
|
||||
(1) Convenience functions for determining information about power-of-2 sized
|
||||
buffers.
|
||||
|
||||
(2) Memory barriers for when the producer and the consumer of objects in the
|
||||
buffer don't want to share a lock.
|
||||
|
||||
To use these facilities, as discussed below, there needs to be just one
|
||||
producer and just one consumer. It is possible to handle multiple producers by
|
||||
serialising them, and to handle multiple consumers by serialising them.
|
||||
|
||||
|
||||
Contents:
|
||||
|
||||
(*) What is a circular buffer?
|
||||
|
||||
(*) Measuring power-of-2 buffers.
|
||||
|
||||
(*) Using memory barriers with circular buffers.
|
||||
- The producer.
|
||||
- The consumer.
|
||||
|
||||
|
||||
==========================
|
||||
WHAT IS A CIRCULAR BUFFER?
|
||||
==========================
|
||||
|
||||
First of all, what is a circular buffer? A circular buffer is a buffer of
|
||||
fixed, finite size into which there are two indices:
|
||||
|
||||
(1) A 'head' index - the point at which the producer inserts items into the
|
||||
buffer.
|
||||
|
||||
(2) A 'tail' index - the point at which the consumer finds the next item in
|
||||
the buffer.
|
||||
|
||||
Typically when the tail pointer is equal to the head pointer, the buffer is
|
||||
empty; and the buffer is full when the head pointer is one less than the tail
|
||||
pointer.
|
||||
|
||||
The head index is incremented when items are added, and the tail index when
|
||||
items are removed. The tail index should never jump the head index, and both
|
||||
indices should be wrapped to 0 when they reach the end of the buffer, thus
|
||||
allowing an infinite amount of data to flow through the buffer.
|
||||
|
||||
Typically, items will all be of the same unit size, but this isn't strictly
|
||||
required to use the techniques below. The indices can be increased by more
|
||||
than 1 if multiple items or variable-sized items are to be included in the
|
||||
buffer, provided that neither index overtakes the other. The implementer must
|
||||
be careful, however, as a region more than one unit in size may wrap the end of
|
||||
the buffer and be broken into two segments.
|
||||
|
||||
|
||||
============================
|
||||
MEASURING POWER-OF-2 BUFFERS
|
||||
============================
|
||||
|
||||
Calculation of the occupancy or the remaining capacity of an arbitrarily sized
|
||||
circular buffer would normally be a slow operation, requiring the use of a
|
||||
modulus (divide) instruction. However, if the buffer is of a power-of-2 size,
|
||||
then a much quicker bitwise-AND instruction can be used instead.
|
||||
|
||||
Linux provides a set of macros for handling power-of-2 circular buffers. These
|
||||
can be made use of by:
|
||||
|
||||
#include <linux/circ_buf.h>
|
||||
|
||||
The macros are:
|
||||
|
||||
(*) Measure the remaining capacity of a buffer:
|
||||
|
||||
CIRC_SPACE(head_index, tail_index, buffer_size);
|
||||
|
||||
This returns the amount of space left in the buffer[1] into which items
|
||||
can be inserted.
|
||||
|
||||
|
||||
(*) Measure the maximum consecutive immediate space in a buffer:
|
||||
|
||||
CIRC_SPACE_TO_END(head_index, tail_index, buffer_size);
|
||||
|
||||
This returns the amount of consecutive space left in the buffer[1] into
|
||||
which items can be immediately inserted without having to wrap back to the
|
||||
beginning of the buffer.
|
||||
|
||||
|
||||
(*) Measure the occupancy of a buffer:
|
||||
|
||||
CIRC_CNT(head_index, tail_index, buffer_size);
|
||||
|
||||
This returns the number of items currently occupying a buffer[2].
|
||||
|
||||
|
||||
(*) Measure the non-wrapping occupancy of a buffer:
|
||||
|
||||
CIRC_CNT_TO_END(head_index, tail_index, buffer_size);
|
||||
|
||||
This returns the number of consecutive items[2] that can be extracted from
|
||||
the buffer without having to wrap back to the beginning of the buffer.
|
||||
|
||||
|
||||
Each of these macros will nominally return a value between 0 and buffer_size-1,
|
||||
however:
|
||||
|
||||
[1] CIRC_SPACE*() are intended to be used in the producer. To the producer
|
||||
they will return a lower bound as the producer controls the head index,
|
||||
but the consumer may still be depleting the buffer on another CPU and
|
||||
moving the tail index.
|
||||
|
||||
To the consumer it will show an upper bound as the producer may be busy
|
||||
depleting the space.
|
||||
|
||||
[2] CIRC_CNT*() are intended to be used in the consumer. To the consumer they
|
||||
will return a lower bound as the consumer controls the tail index, but the
|
||||
producer may still be filling the buffer on another CPU and moving the
|
||||
head index.
|
||||
|
||||
To the producer it will show an upper bound as the consumer may be busy
|
||||
emptying the buffer.
|
||||
|
||||
[3] To a third party, the order in which the writes to the indices by the
|
||||
producer and consumer become visible cannot be guaranteed as they are
|
||||
independent and may be made on different CPUs - so the result in such a
|
||||
situation will merely be a guess, and may even be negative.
|
||||
|
||||
|
||||
===========================================
|
||||
USING MEMORY BARRIERS WITH CIRCULAR BUFFERS
|
||||
===========================================
|
||||
|
||||
By using memory barriers in conjunction with circular buffers, you can avoid
|
||||
the need to:
|
||||
|
||||
(1) use a single lock to govern access to both ends of the buffer, thus
|
||||
allowing the buffer to be filled and emptied at the same time; and
|
||||
|
||||
(2) use atomic counter operations.
|
||||
|
||||
There are two sides to this: the producer that fills the buffer, and the
|
||||
consumer that empties it. Only one thing should be filling a buffer at any one
|
||||
time, and only one thing should be emptying a buffer at any one time, but the
|
||||
two sides can operate simultaneously.
|
||||
|
||||
|
||||
THE PRODUCER
|
||||
------------
|
||||
|
||||
The producer will look something like this:
|
||||
|
||||
spin_lock(&producer_lock);
|
||||
|
||||
unsigned long head = buffer->head;
|
||||
unsigned long tail = ACCESS_ONCE(buffer->tail);
|
||||
|
||||
if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
|
||||
/* insert one item into the buffer */
|
||||
struct item *item = buffer[head];
|
||||
|
||||
produce_item(item);
|
||||
|
||||
smp_wmb(); /* commit the item before incrementing the head */
|
||||
|
||||
buffer->head = (head + 1) & (buffer->size - 1);
|
||||
|
||||
/* wake_up() will make sure that the head is committed before
|
||||
* waking anyone up */
|
||||
wake_up(consumer);
|
||||
}
|
||||
|
||||
spin_unlock(&producer_lock);
|
||||
|
||||
This will instruct the CPU that the contents of the new item must be written
|
||||
before the head index makes it available to the consumer and then instructs the
|
||||
CPU that the revised head index must be written before the consumer is woken.
|
||||
|
||||
Note that wake_up() doesn't have to be the exact mechanism used, but whatever
|
||||
is used must guarantee a (write) memory barrier between the update of the head
|
||||
index and the change of state of the consumer, if a change of state occurs.
|
||||
|
||||
|
||||
THE CONSUMER
|
||||
------------
|
||||
|
||||
The consumer will look something like this:
|
||||
|
||||
spin_lock(&consumer_lock);
|
||||
|
||||
unsigned long head = ACCESS_ONCE(buffer->head);
|
||||
unsigned long tail = buffer->tail;
|
||||
|
||||
if (CIRC_CNT(head, tail, buffer->size) >= 1) {
|
||||
/* read index before reading contents at that index */
|
||||
smp_read_barrier_depends();
|
||||
|
||||
/* extract one item from the buffer */
|
||||
struct item *item = buffer[tail];
|
||||
|
||||
consume_item(item);
|
||||
|
||||
smp_mb(); /* finish reading descriptor before incrementing tail */
|
||||
|
||||
buffer->tail = (tail + 1) & (buffer->size - 1);
|
||||
}
|
||||
|
||||
spin_unlock(&consumer_lock);
|
||||
|
||||
This will instruct the CPU to make sure the index is up to date before reading
|
||||
the new item, and then it shall make sure the CPU has finished reading the item
|
||||
before it writes the new tail pointer, which will erase the item.
|
||||
|
||||
|
||||
Note the use of ACCESS_ONCE() in both algorithms to read the opposition index.
|
||||
This prevents the compiler from discarding and reloading its cached value -
|
||||
which some compilers will do across smp_read_barrier_depends(). This isn't
|
||||
strictly needed if you can be sure that the opposition index will _only_ be
|
||||
used the once.
|
||||
|
||||
|
||||
===============
|
||||
FURTHER READING
|
||||
===============
|
||||
|
||||
See also Documentation/memory-barriers.txt for a description of Linux's memory
|
||||
barrier facilities.
|
@ -25,6 +25,7 @@
|
||||
#include <linux/module.h>
|
||||
#include <linux/moduleparam.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/timer.h>
|
||||
|
||||
#include <linux/connector.h>
|
||||
|
@ -88,7 +88,7 @@ int cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask);
|
||||
int gfp_mask - GFP mask.
|
||||
|
||||
Note: When registering new callback user, connector core assigns
|
||||
netlink group to the user which is equal to it's id.idx.
|
||||
netlink group to the user which is equal to its id.idx.
|
||||
|
||||
/*****************************************/
|
||||
Protocol description.
|
||||
|
@ -74,7 +74,7 @@ driver takes over the consoles vacated by the driver. Binding, on the other
|
||||
hand, will bind the driver to the consoles that are currently occupied by a
|
||||
system driver.
|
||||
|
||||
NOTE1: Binding and binding must be selected in Kconfig. It's under:
|
||||
NOTE1: Binding and unbinding must be selected in Kconfig. It's under:
|
||||
|
||||
Device Drivers -> Character devices -> Support for binding and unbinding
|
||||
console drivers
|
||||
|
@ -408,9 +408,6 @@ This should be used inside the RCU read lock, as in the following example:
|
||||
...
|
||||
}
|
||||
|
||||
A function need not get RCU read lock to use __task_cred() if it is holding a
|
||||
spinlock at the time as this implicitly holds the RCU read lock.
|
||||
|
||||
Should it be necessary to hold another task's credentials for a long period of
|
||||
time, and possibly to sleep whilst doing so, then the caller should get a
|
||||
reference on them using:
|
||||
@ -426,17 +423,16 @@ credentials, hiding the RCU magic from the caller:
|
||||
uid_t task_uid(task) Task's real UID
|
||||
uid_t task_euid(task) Task's effective UID
|
||||
|
||||
If the caller is holding a spinlock or the RCU read lock at the time anyway,
|
||||
then:
|
||||
If the caller is holding the RCU read lock at the time anyway, then:
|
||||
|
||||
__task_cred(task)->uid
|
||||
__task_cred(task)->euid
|
||||
|
||||
should be used instead. Similarly, if multiple aspects of a task's credentials
|
||||
need to be accessed, RCU read lock or a spinlock should be used, __task_cred()
|
||||
called, the result stored in a temporary pointer and then the credential
|
||||
aspects called from that before dropping the lock. This prevents the
|
||||
potentially expensive RCU magic from being invoked multiple times.
|
||||
need to be accessed, RCU read lock should be used, __task_cred() called, the
|
||||
result stored in a temporary pointer and then the credential aspects called
|
||||
from that before dropping the lock. This prevents the potentially expensive
|
||||
RCU magic from being invoked multiple times.
|
||||
|
||||
Should some other single aspect of another task's credentials need to be
|
||||
accessed, then this can be used:
|
||||
|
@ -192,7 +192,7 @@ command line. This will execute all matching early_param() callbacks.
|
||||
User specified early platform devices will be registered at this point.
|
||||
For the early serial console case the user can specify port on the
|
||||
kernel command line as "earlyprintk=serial.0" where "earlyprintk" is
|
||||
the class string, "serial" is the name of the platfrom driver and
|
||||
the class string, "serial" is the name of the platform driver and
|
||||
0 is the platform device id. If the id is -1 then the dot and the
|
||||
id can be omitted.
|
||||
|
||||
|
@ -41,7 +41,7 @@ This application requires the following to function properly as of now.
|
||||
|
||||
* Cards that fall in this category
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
At present the cards that fall in this category are the Twinhan and it's
|
||||
At present the cards that fall in this category are the Twinhan and its
|
||||
clones, these cards are available as VVMER, Tomato, Hercules, Orange and
|
||||
so on.
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
Thanks go to the following people for patches and contributions:
|
||||
|
||||
Michael Hunold <m.hunold@gmx.de>
|
||||
for the initial saa7146 driver and it's recent overhaul
|
||||
for the initial saa7146 driver and its recent overhaul
|
||||
|
||||
Christian Theiss
|
||||
for his work on the initial Linux DVB driver
|
||||
|
@ -171,7 +171,7 @@ device.
|
||||
virtual_root.force_probe :
|
||||
|
||||
Force the probing code to probe EISA slots even when it cannot find an
|
||||
EISA compliant mainboard (nothing appears on slot 0). Defaultd to 0
|
||||
EISA compliant mainboard (nothing appears on slot 0). Defaults to 0
|
||||
(don't force), and set to 1 (force probing) when either
|
||||
CONFIG_ALPHA_JENSEN or CONFIG_EISA_VLB_PRIMING are set.
|
||||
|
||||
|
@ -216,26 +216,14 @@ Works. Use "Insert file..." or external editor.
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Gmail (Web GUI)
|
||||
|
||||
If you just have to use Gmail to send patches, it CAN be made to work. It
|
||||
requires a bit of external help, though.
|
||||
Does not work for sending patches.
|
||||
|
||||
The first problem is that Gmail converts tabs to spaces. This will
|
||||
totally break your patches. To prevent this, you have to use a different
|
||||
editor. There is a firefox extension called "ViewSourceWith"
|
||||
(https://addons.mozilla.org/en-US/firefox/addon/394) which allows you to
|
||||
edit any text box in the editor of your choice. Configure it to launch
|
||||
your favorite editor. When you want to send a patch, use this technique.
|
||||
Once you have crafted your messsage + patch, save and exit the editor,
|
||||
which should reload the Gmail edit box. GMAIL WILL PRESERVE THE TABS.
|
||||
Hoorah. Apparently you can cut-n-paste literal tabs, but Gmail will
|
||||
convert those to spaces upon sending!
|
||||
Gmail web client converts tabs to spaces automatically.
|
||||
|
||||
The second problem is that Gmail converts tabs to spaces on replies. If
|
||||
you reply to a patch, don't expect to be able to apply it as a patch.
|
||||
At the same time it wraps lines every 78 chars with CRLF style line breaks
|
||||
although tab2space problem can be solved with external editor.
|
||||
|
||||
The last problem is that Gmail will base64-encode any message that has a
|
||||
non-ASCII character. That includes things like European names. Be aware.
|
||||
|
||||
Gmail is not convenient for lkml patches, but CAN be made to work.
|
||||
Another problem is that Gmail will base64-encode any message that has a
|
||||
non-ASCII character. That includes things like European names.
|
||||
|
||||
###
|
||||
|
@ -1,9 +1,9 @@
|
||||
|
||||
What is imacfb?
|
||||
What is efifb?
|
||||
===============
|
||||
|
||||
This is a generic EFI platform driver for Intel based Apple computers.
|
||||
Imacfb is only for EFI booted Intel Macs.
|
||||
efifb is only for EFI booted Intel Macs.
|
||||
|
||||
Supported Hardware
|
||||
==================
|
||||
@ -16,16 +16,16 @@ MacMini
|
||||
How to use it?
|
||||
==============
|
||||
|
||||
Imacfb does not have any kind of autodetection of your machine.
|
||||
efifb does not have any kind of autodetection of your machine.
|
||||
You have to add the following kernel parameters in your elilo.conf:
|
||||
Macbook :
|
||||
video=imacfb:macbook
|
||||
video=efifb:macbook
|
||||
MacMini :
|
||||
video=imacfb:mini
|
||||
video=efifb:mini
|
||||
Macbook Pro 15", iMac 17" :
|
||||
video=imacfb:i17
|
||||
video=efifb:i17
|
||||
Macbook Pro 17", iMac 20" :
|
||||
video=imacfb:i20
|
||||
video=efifb:i20
|
||||
|
||||
--
|
||||
Edgar Hucek <gimli@dark-green.com>
|
@ -241,16 +241,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What (Why):
|
||||
- xt_recent: the old ipt_recent proc dir
|
||||
(superseded by /proc/net/xt_recent)
|
||||
|
||||
When: January 2009 or Linux 2.7.0, whichever comes first
|
||||
Why: Superseded by newer revisions or modules
|
||||
Who: Jan Engelhardt <jengelh@computergmbh.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: GPIO autorequest on gpio_direction_{input,output}() in gpiolib
|
||||
When: February 2010
|
||||
Why: All callers should use explicit gpio_request()/gpio_free().
|
||||
@ -520,26 +510,21 @@ Who: Hans de Goede <hdegoede@redhat.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: corgikbd, spitzkbd, tosakbd driver
|
||||
When: 2.6.35
|
||||
Files: drivers/input/keyboard/{corgi,spitz,tosa}kbd.c
|
||||
Why: We now have a generic GPIO based matrix keyboard driver that
|
||||
are fully capable of handling all the keys on these devices.
|
||||
The original drivers manipulate the GPIO registers directly
|
||||
and so are difficult to maintain.
|
||||
Who: Eric Miao <eric.y.miao@gmail.com>
|
||||
What: sysfs-class-rfkill state file
|
||||
When: Feb 2014
|
||||
Files: net/rfkill/core.c
|
||||
Why: Documented as obsolete since Feb 2010. This file is limited to 3
|
||||
states while the rfkill drivers can have 4 states.
|
||||
Who: anybody or Florian Mickler <florian@mickler.org>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: corgi_ssp and corgi_ts driver
|
||||
When: 2.6.35
|
||||
Files: arch/arm/mach-pxa/corgi_ssp.c, drivers/input/touchscreen/corgi_ts.c
|
||||
Why: The corgi touchscreen is now deprecated in favour of the generic
|
||||
ads7846.c driver. The noise reduction technique used in corgi_ts.c,
|
||||
that's to wait till vsync before ADC sampling, is also integrated into
|
||||
ads7846 driver now. Provided that the original driver is not generic
|
||||
and is difficult to maintain, it will be removed later.
|
||||
Who: Eric Miao <eric.y.miao@gmail.com>
|
||||
What: sysfs-class-rfkill claim file
|
||||
When: Feb 2012
|
||||
Files: net/rfkill/core.c
|
||||
Why: It is not possible to claim an rfkill driver since 2007. This is
|
||||
Documented as obsolete since Feb 2010.
|
||||
Who: anybody or Florian Mickler <florian@mickler.org>
|
||||
|
||||
----------------------------
|
||||
|
||||
@ -564,6 +549,16 @@ Who: Avi Kivity <avi@redhat.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: xtime, wall_to_monotonic
|
||||
When: 2.6.36+
|
||||
Files: kernel/time/timekeeping.c include/linux/time.h
|
||||
Why: Cleaning up timekeeping internal values. Please use
|
||||
existing timekeeping accessor functions to access
|
||||
the equivalent functionality.
|
||||
Who: John Stultz <johnstul@us.ibm.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: KVM kernel-allocated memory slots
|
||||
When: July 2010
|
||||
Why: Since 2.6.25, kvm supports user-allocated memory slots, which are
|
||||
@ -582,3 +577,72 @@ Why: The paravirt mmu host support is slower than non-paravirt mmu, both
|
||||
Who: Avi Kivity <avi@redhat.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: "acpi=ht" boot option
|
||||
When: 2.6.35
|
||||
Why: Useful in 2003, implementation is a hack.
|
||||
Generally invoked by accident today.
|
||||
Seen as doing more harm than good.
|
||||
Who: Len Brown <len.brown@intel.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: iwlwifi 50XX module parameters
|
||||
When: 2.6.40
|
||||
Why: The "..50" modules parameters were used to configure 5000 series and
|
||||
up devices; different set of module parameters also available for 4965
|
||||
with same functionalities. Consolidate both set into single place
|
||||
in drivers/net/wireless/iwlwifi/iwl-agn.c
|
||||
|
||||
Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: iwl4965 alias support
|
||||
When: 2.6.40
|
||||
Why: Internal alias support has been present in module-init-tools for some
|
||||
time, the MODULE_ALIAS("iwl4965") boilerplate aliases can be removed
|
||||
with no impact.
|
||||
|
||||
Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: xt_NOTRACK
|
||||
Files: net/netfilter/xt_NOTRACK.c
|
||||
When: April 2011
|
||||
Why: Superseded by xt_CT
|
||||
Who: Netfilter developer team <netfilter-devel@vger.kernel.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: video4linux /dev/vtx teletext API support
|
||||
When: 2.6.35
|
||||
Files: drivers/media/video/saa5246a.c drivers/media/video/saa5249.c
|
||||
include/linux/videotext.h
|
||||
Why: The vtx device nodes have been superseded by vbi device nodes
|
||||
for many years. No applications exist that use the vtx support.
|
||||
Of the two i2c drivers that actually support this API the saa5249
|
||||
has been impossible to use for a year now and no known hardware
|
||||
that supports this device exists. The saa5246a is theoretically
|
||||
supported by the old mxb boards, but it never actually worked.
|
||||
|
||||
In summary: there is no hardware that can use this API and there
|
||||
are no applications actually implementing this API.
|
||||
|
||||
The vtx support still reserves minors 192-223 and we would really
|
||||
like to reuse those for upcoming new functionality. In the unlikely
|
||||
event that new hardware appears that wants to use the functionality
|
||||
provided by the vtx API, then that functionality should be build
|
||||
around the sliced VBI API instead.
|
||||
Who: Hans Verkuil <hverkuil@xs4all.nl>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: IRQF_DISABLED
|
||||
When: 2.6.36
|
||||
Why: The flag is a NOOP as we run interrupt handlers with interrupts disabled
|
||||
Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
||||
----------------------------
|
||||
|
||||
|
@ -16,6 +16,8 @@ befs.txt
|
||||
- information about the BeOS filesystem for Linux.
|
||||
bfs.txt
|
||||
- info for the SCO UnixWare Boot Filesystem (BFS).
|
||||
ceph.txt
|
||||
- info for the Ceph Distributed File System
|
||||
cifs.txt
|
||||
- description of the CIFS filesystem.
|
||||
coda.txt
|
||||
@ -32,6 +34,8 @@ dlmfs.txt
|
||||
- info on the userspace interface to the OCFS2 DLM.
|
||||
dnotify.txt
|
||||
- info about directory notification in Linux.
|
||||
dnotify_test.c
|
||||
- example program for dnotify
|
||||
ecryptfs.txt
|
||||
- docs on eCryptfs: stacked cryptographic filesystem for Linux.
|
||||
exofs.txt
|
||||
|
@ -37,6 +37,15 @@ For Plan 9 From User Space applications (http://swtch.com/plan9)
|
||||
|
||||
mount -t 9p `namespace`/acme /mnt/9 -o trans=unix,uname=$USER
|
||||
|
||||
For server running on QEMU host with virtio transport:
|
||||
|
||||
mount -t 9p -o trans=virtio <mount_tag> /mnt/9
|
||||
|
||||
where mount_tag is the tag associated by the server to each of the exported
|
||||
mount points. Each 9P export is seen by the client as a virtio device with an
|
||||
associated "mount_tag" property. Available mount tags can be
|
||||
seen by reading /sys/bus/virtio/drivers/9pnet_virtio/virtio<n>/mount_tag files.
|
||||
|
||||
OPTIONS
|
||||
=======
|
||||
|
||||
@ -47,7 +56,7 @@ OPTIONS
|
||||
fd - used passed file descriptors for connection
|
||||
(see rfdno and wfdno)
|
||||
virtio - connect to the next virtio channel available
|
||||
(from lguest or KVM with trans_virtio module)
|
||||
(from QEMU with trans_virtio module)
|
||||
rdma - connect to a specified RDMA channel
|
||||
|
||||
uname=name user name to attempt mount as on the remote server. The
|
||||
@ -85,7 +94,12 @@ OPTIONS
|
||||
|
||||
port=n port to connect to on the remote server
|
||||
|
||||
noextend force legacy mode (no 9p2000.u semantics)
|
||||
noextend force legacy mode (no 9p2000.u or 9p2000.L semantics)
|
||||
|
||||
version=name Select 9P protocol version. Valid options are:
|
||||
9p2000 - Legacy mode (same as noextend)
|
||||
9p2000.u - Use 9P2000.u protocol
|
||||
9p2000.L - Use 9P2000.L protocol
|
||||
|
||||
dfltuid attempt to mount as a particular uid
|
||||
|
||||
|
@ -178,7 +178,7 @@ prototypes:
|
||||
locking rules:
|
||||
All except set_page_dirty may block
|
||||
|
||||
BKL PageLocked(page) i_sem
|
||||
BKL PageLocked(page) i_mutex
|
||||
writepage: no yes, unlocks (see below)
|
||||
readpage: no yes, unlocks
|
||||
sync_page: no maybe
|
||||
@ -429,7 +429,7 @@ check_flags: no
|
||||
implementations. If your fs is not using generic_file_llseek, you
|
||||
need to acquire and release the appropriate locks in your ->llseek().
|
||||
For many filesystems, it is probably safe to acquire the inode
|
||||
semaphore. Note some filesystems (i.e. remote ones) provide no
|
||||
mutex. Note some filesystems (i.e. remote ones) provide no
|
||||
protection for i_size so you will need to use the BKL.
|
||||
|
||||
Note: ext2_release() was *the* source of contention on fs-intensive
|
||||
|
8
Documentation/filesystems/Makefile
Normal file
8
Documentation/filesystems/Makefile
Normal file
@ -0,0 +1,8 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := dnotify_test
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
@ -146,7 +146,7 @@ found to be inadequate, in this case. The Generic Netlink system was
|
||||
used for this as raw Netlink would lead to a significant increase in
|
||||
complexity. There's no question that the Generic Netlink system is an
|
||||
elegant solution for common case ioctl functions but it's not a complete
|
||||
replacement probably because it's primary purpose in life is to be a
|
||||
replacement probably because its primary purpose in life is to be a
|
||||
message bus implementation rather than specifically an ioctl replacement.
|
||||
While it would be possible to work around this there is one concern
|
||||
that lead to the decision to not use it. This is that the autofs
|
||||
|
140
Documentation/filesystems/ceph.txt
Normal file
140
Documentation/filesystems/ceph.txt
Normal file
@ -0,0 +1,140 @@
|
||||
Ceph Distributed File System
|
||||
============================
|
||||
|
||||
Ceph is a distributed network file system designed to provide good
|
||||
performance, reliability, and scalability.
|
||||
|
||||
Basic features include:
|
||||
|
||||
* POSIX semantics
|
||||
* Seamless scaling from 1 to many thousands of nodes
|
||||
* High availability and reliability. No single point of failure.
|
||||
* N-way replication of data across storage nodes
|
||||
* Fast recovery from node failures
|
||||
* Automatic rebalancing of data on node addition/removal
|
||||
* Easy deployment: most FS components are userspace daemons
|
||||
|
||||
Also,
|
||||
* Flexible snapshots (on any directory)
|
||||
* Recursive accounting (nested files, directories, bytes)
|
||||
|
||||
In contrast to cluster filesystems like GFS, OCFS2, and GPFS that rely
|
||||
on symmetric access by all clients to shared block devices, Ceph
|
||||
separates data and metadata management into independent server
|
||||
clusters, similar to Lustre. Unlike Lustre, however, metadata and
|
||||
storage nodes run entirely as user space daemons. Storage nodes
|
||||
utilize btrfs to store data objects, leveraging its advanced features
|
||||
(checksumming, metadata replication, etc.). File data is striped
|
||||
across storage nodes in large chunks to distribute workload and
|
||||
facilitate high throughputs. When storage nodes fail, data is
|
||||
re-replicated in a distributed fashion by the storage nodes themselves
|
||||
(with some minimal coordination from a cluster monitor), making the
|
||||
system extremely efficient and scalable.
|
||||
|
||||
Metadata servers effectively form a large, consistent, distributed
|
||||
in-memory cache above the file namespace that is extremely scalable,
|
||||
dynamically redistributes metadata in response to workload changes,
|
||||
and can tolerate arbitrary (well, non-Byzantine) node failures. The
|
||||
metadata server takes a somewhat unconventional approach to metadata
|
||||
storage to significantly improve performance for common workloads. In
|
||||
particular, inodes with only a single link are embedded in
|
||||
directories, allowing entire directories of dentries and inodes to be
|
||||
loaded into its cache with a single I/O operation. The contents of
|
||||
extremely large directories can be fragmented and managed by
|
||||
independent metadata servers, allowing scalable concurrent access.
|
||||
|
||||
The system offers automatic data rebalancing/migration when scaling
|
||||
from a small cluster of just a few nodes to many hundreds, without
|
||||
requiring an administrator carve the data set into static volumes or
|
||||
go through the tedious process of migrating data between servers.
|
||||
When the file system approaches full, new nodes can be easily added
|
||||
and things will "just work."
|
||||
|
||||
Ceph includes flexible snapshot mechanism that allows a user to create
|
||||
a snapshot on any subdirectory (and its nested contents) in the
|
||||
system. Snapshot creation and deletion are as simple as 'mkdir
|
||||
.snap/foo' and 'rmdir .snap/foo'.
|
||||
|
||||
Ceph also provides some recursive accounting on directories for nested
|
||||
files and bytes. That is, a 'getfattr -d foo' on any directory in the
|
||||
system will reveal the total number of nested regular files and
|
||||
subdirectories, and a summation of all nested file sizes. This makes
|
||||
the identification of large disk space consumers relatively quick, as
|
||||
no 'du' or similar recursive scan of the file system is required.
|
||||
|
||||
|
||||
Mount Syntax
|
||||
============
|
||||
|
||||
The basic mount syntax is:
|
||||
|
||||
# mount -t ceph monip[:port][,monip2[:port]...]:/[subdir] mnt
|
||||
|
||||
You only need to specify a single monitor, as the client will get the
|
||||
full list when it connects. (However, if the monitor you specify
|
||||
happens to be down, the mount won't succeed.) The port can be left
|
||||
off if the monitor is using the default. So if the monitor is at
|
||||
1.2.3.4,
|
||||
|
||||
# mount -t ceph 1.2.3.4:/ /mnt/ceph
|
||||
|
||||
is sufficient. If /sbin/mount.ceph is installed, a hostname can be
|
||||
used instead of an IP address.
|
||||
|
||||
|
||||
|
||||
Mount Options
|
||||
=============
|
||||
|
||||
ip=A.B.C.D[:N]
|
||||
Specify the IP and/or port the client should bind to locally.
|
||||
There is normally not much reason to do this. If the IP is not
|
||||
specified, the client's IP address is determined by looking at the
|
||||
address its connection to the monitor originates from.
|
||||
|
||||
wsize=X
|
||||
Specify the maximum write size in bytes. By default there is no
|
||||
maximum. Ceph will normally size writes based on the file stripe
|
||||
size.
|
||||
|
||||
rsize=X
|
||||
Specify the maximum readahead.
|
||||
|
||||
mount_timeout=X
|
||||
Specify the timeout value for mount (in seconds), in the case
|
||||
of a non-responsive Ceph file system. The default is 30
|
||||
seconds.
|
||||
|
||||
rbytes
|
||||
When stat() is called on a directory, set st_size to 'rbytes',
|
||||
the summation of file sizes over all files nested beneath that
|
||||
directory. This is the default.
|
||||
|
||||
norbytes
|
||||
When stat() is called on a directory, set st_size to the
|
||||
number of entries in that directory.
|
||||
|
||||
nocrc
|
||||
Disable CRC32C calculation for data writes. If set, the storage node
|
||||
must rely on TCP's error correction to detect data corruption
|
||||
in the data payload.
|
||||
|
||||
noasyncreaddir
|
||||
Disable client's use its local cache to satisfy readdir
|
||||
requests. (This does not change correctness; the client uses
|
||||
cached metadata only when a lease or capability ensures it is
|
||||
valid.)
|
||||
|
||||
|
||||
More Information
|
||||
================
|
||||
|
||||
For more information on Ceph, see the home page at
|
||||
http://ceph.newdream.net/
|
||||
|
||||
The Linux kernel client source tree is available at
|
||||
git://ceph.newdream.net/git/ceph-client.git
|
||||
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git
|
||||
|
||||
and the source for the full system is at
|
||||
git://ceph.newdream.net/git/ceph.git
|
@ -47,7 +47,7 @@ You'll want to start heartbeating on a volume which all the nodes in
|
||||
your lockspace can access. The easiest way to do this is via
|
||||
ocfs2_hb_ctl (distributed with ocfs2-tools). Right now it requires
|
||||
that an OCFS2 file system be in place so that it can automatically
|
||||
find it's heartbeat area, though it will eventually support heartbeat
|
||||
find its heartbeat area, though it will eventually support heartbeat
|
||||
against raw disks.
|
||||
|
||||
Please see the ocfs2_hb_ctl and mkfs.ocfs2 manual pages distributed
|
||||
|
@ -62,38 +62,9 @@ disabled, fcntl(fd, F_NOTIFY, ...) will return -EINVAL.
|
||||
|
||||
Example
|
||||
-------
|
||||
See Documentation/filesystems/dnotify_test.c for an example.
|
||||
|
||||
#define _GNU_SOURCE /* needed to get the defines */
|
||||
#include <fcntl.h> /* in glibc 2.2 this has the needed
|
||||
values defined */
|
||||
#include <signal.h>
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
|
||||
static volatile int event_fd;
|
||||
|
||||
static void handler(int sig, siginfo_t *si, void *data)
|
||||
{
|
||||
event_fd = si->si_fd;
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
struct sigaction act;
|
||||
int fd;
|
||||
|
||||
act.sa_sigaction = handler;
|
||||
sigemptyset(&act.sa_mask);
|
||||
act.sa_flags = SA_SIGINFO;
|
||||
sigaction(SIGRTMIN + 1, &act, NULL);
|
||||
|
||||
fd = open(".", O_RDONLY);
|
||||
fcntl(fd, F_SETSIG, SIGRTMIN + 1);
|
||||
fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
|
||||
/* we will now be notified if any of the files
|
||||
in "." is modified or new files are created */
|
||||
while (1) {
|
||||
pause();
|
||||
printf("Got event on fd=%d\n", event_fd);
|
||||
}
|
||||
}
|
||||
NOTE
|
||||
----
|
||||
Beginning with Linux 2.6.13, dnotify has been replaced by inotify.
|
||||
See Documentation/filesystems/inotify.txt for more information on it.
|
||||
|
34
Documentation/filesystems/dnotify_test.c
Normal file
34
Documentation/filesystems/dnotify_test.c
Normal file
@ -0,0 +1,34 @@
|
||||
#define _GNU_SOURCE /* needed to get the defines */
|
||||
#include <fcntl.h> /* in glibc 2.2 this has the needed
|
||||
values defined */
|
||||
#include <signal.h>
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
|
||||
static volatile int event_fd;
|
||||
|
||||
static void handler(int sig, siginfo_t *si, void *data)
|
||||
{
|
||||
event_fd = si->si_fd;
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
struct sigaction act;
|
||||
int fd;
|
||||
|
||||
act.sa_sigaction = handler;
|
||||
sigemptyset(&act.sa_mask);
|
||||
act.sa_flags = SA_SIGINFO;
|
||||
sigaction(SIGRTMIN + 1, &act, NULL);
|
||||
|
||||
fd = open(".", O_RDONLY);
|
||||
fcntl(fd, F_SETSIG, SIGRTMIN + 1);
|
||||
fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
|
||||
/* we will now be notified if any of the files
|
||||
in "." is modified or new files are created */
|
||||
while (1) {
|
||||
pause();
|
||||
printf("Got event on fd=%d\n", event_fd);
|
||||
}
|
||||
}
|
@ -38,7 +38,7 @@ flags, it will return EBADR and the contents of fm_flags will contain
|
||||
the set of flags which caused the error. If the kernel is compatible
|
||||
with all flags passed, the contents of fm_flags will be unmodified.
|
||||
It is up to userspace to determine whether rejection of a particular
|
||||
flag is fatal to it's operation. This scheme is intended to allow the
|
||||
flag is fatal to its operation. This scheme is intended to allow the
|
||||
fiemap interface to grow in the future but without losing
|
||||
compatibility with old software.
|
||||
|
||||
@ -56,7 +56,7 @@ If this flag is set, the kernel will sync the file before mapping extents.
|
||||
|
||||
* FIEMAP_FLAG_XATTR
|
||||
If this flag is set, the extents returned will describe the inodes
|
||||
extended attribute lookup tree, instead of it's data tree.
|
||||
extended attribute lookup tree, instead of its data tree.
|
||||
|
||||
|
||||
Extent Mapping
|
||||
@ -89,7 +89,7 @@ struct fiemap_extent {
|
||||
};
|
||||
|
||||
All offsets and lengths are in bytes and mirror those on disk. It is valid
|
||||
for an extents logical offset to start before the request or it's logical
|
||||
for an extents logical offset to start before the request or its logical
|
||||
length to extend past the request. Unless FIEMAP_EXTENT_NOT_ALIGNED is
|
||||
returned, fe_logical, fe_physical, and fe_length will be aligned to the
|
||||
block size of the file system. With the exception of extents flagged as
|
||||
@ -125,7 +125,7 @@ been allocated for the file yet.
|
||||
|
||||
* FIEMAP_EXTENT_DELALLOC
|
||||
- This will also set FIEMAP_EXTENT_UNKNOWN.
|
||||
Delayed allocation - while there is data for this extent, it's
|
||||
Delayed allocation - while there is data for this extent, its
|
||||
physical location has not been allocated yet.
|
||||
|
||||
* FIEMAP_EXTENT_ENCODED
|
||||
@ -159,7 +159,7 @@ Data is located within a meta data block.
|
||||
Data is packed into a block with data from other files.
|
||||
|
||||
* FIEMAP_EXTENT_UNWRITTEN
|
||||
Unwritten extent - the extent is allocated but it's data has not been
|
||||
Unwritten extent - the extent is allocated but its data has not been
|
||||
initialized. This indicates the extent's data will be all zero if read
|
||||
through the filesystem but the contents are undefined if read directly from
|
||||
the device.
|
||||
@ -176,7 +176,7 @@ VFS -> File System Implementation
|
||||
|
||||
File systems wishing to support fiemap must implement a ->fiemap callback on
|
||||
their inode_operations structure. The fs ->fiemap call is responsible for
|
||||
defining it's set of supported fiemap flags, and calling a helper function on
|
||||
defining its set of supported fiemap flags, and calling a helper function on
|
||||
each discovered extent:
|
||||
|
||||
struct inode_operations {
|
||||
|
@ -91,7 +91,7 @@ Mount options
|
||||
'default_permissions'
|
||||
|
||||
By default FUSE doesn't check file access permissions, the
|
||||
filesystem is free to implement it's access policy or leave it to
|
||||
filesystem is free to implement its access policy or leave it to
|
||||
the underlying file access mechanism (e.g. in case of network
|
||||
filesystems). This option enables permission checking, restricting
|
||||
access based on file mode. It is usually useful together with the
|
||||
@ -171,7 +171,7 @@ or may honor them by sending a reply to the _original_ request, with
|
||||
the error set to EINTR.
|
||||
|
||||
It is also possible that there's a race between processing the
|
||||
original request and it's INTERRUPT request. There are two possibilities:
|
||||
original request and its INTERRUPT request. There are two possibilities:
|
||||
|
||||
1) The INTERRUPT request is processed before the original request is
|
||||
processed
|
||||
|
@ -1,7 +1,7 @@
|
||||
Global File System
|
||||
------------------
|
||||
|
||||
http://sources.redhat.com/cluster/
|
||||
http://sources.redhat.com/cluster/wiki/
|
||||
|
||||
GFS is a cluster file system. It allows a cluster of computers to
|
||||
simultaneously use a block device that is shared between them (with FC,
|
||||
@ -36,11 +36,11 @@ GFS2 is not on-disk compatible with previous versions of GFS, but it
|
||||
is pretty close.
|
||||
|
||||
The following man pages can be found at the URL above:
|
||||
fsck.gfs2 to repair a filesystem
|
||||
gfs2_grow to expand a filesystem online
|
||||
gfs2_jadd to add journals to a filesystem online
|
||||
gfs2_tool to manipulate, examine and tune a filesystem
|
||||
fsck.gfs2 to repair a filesystem
|
||||
gfs2_grow to expand a filesystem online
|
||||
gfs2_jadd to add journals to a filesystem online
|
||||
gfs2_tool to manipulate, examine and tune a filesystem
|
||||
gfs2_quota to examine and change quota values in a filesystem
|
||||
gfs2_convert to convert a gfs filesystem to gfs2 in-place
|
||||
mount.gfs2 to help mount(8) mount a filesystem
|
||||
mkfs.gfs2 to make a filesystem
|
||||
mkfs.gfs2 to make a filesystem
|
||||
|
@ -103,7 +103,7 @@ to analyze or change OS2SYS.INI.
|
||||
Codepages
|
||||
|
||||
HPFS can contain several uppercasing tables for several codepages and each
|
||||
file has a pointer to codepage it's name is in. However OS/2 was created in
|
||||
file has a pointer to codepage its name is in. However OS/2 was created in
|
||||
America where people don't care much about codepages and so multiple codepages
|
||||
support is quite buggy. I have Czech OS/2 working in codepage 852 on my disk.
|
||||
Once I booted English OS/2 working in cp 850 and I created a file on my 852
|
||||
|
@ -59,7 +59,7 @@ Levels
|
||||
------
|
||||
|
||||
Garbage collection (GC) may fail if all data is written
|
||||
indiscriminately. One requirement of GC is that data is seperated
|
||||
indiscriminately. One requirement of GC is that data is separated
|
||||
roughly according to the distance between the tree root and the data.
|
||||
Effectively that means all file data is on level 0, indirect blocks
|
||||
are on levels 1, 2, 3 4 or 5 for 1x, 2x, 3x, 4x or 5x indirect blocks,
|
||||
@ -67,7 +67,7 @@ respectively. Inode file data is on level 6 for the inodes and 7-11
|
||||
for indirect blocks.
|
||||
|
||||
Each segment contains objects of a single level only. As a result,
|
||||
each level requires its own seperate segment to be open for writing.
|
||||
each level requires its own separate segment to be open for writing.
|
||||
|
||||
Inode File
|
||||
----------
|
||||
@ -106,9 +106,9 @@ Vim
|
||||
---
|
||||
|
||||
By cleverly predicting the life time of data, it is possible to
|
||||
seperate long-living data from short-living data and thereby reduce
|
||||
separate long-living data from short-living data and thereby reduce
|
||||
the GC overhead later. Each type of distinc life expectency (vim) can
|
||||
have a seperate segment open for writing. Each (level, vim) tupel can
|
||||
have a separate segment open for writing. Each (level, vim) tupel can
|
||||
be open just once. If an open segment with unknown vim is encountered
|
||||
at mount time, it is closed and ignored henceforth.
|
||||
|
||||
|
@ -137,7 +137,7 @@ NS*| OPENATTR | OPT | | Section 18.17 |
|
||||
| READ | REQ | | Section 18.22 |
|
||||
| READDIR | REQ | | Section 18.23 |
|
||||
| READLINK | OPT | | Section 18.24 |
|
||||
NS | RECLAIM_COMPLETE | REQ | | Section 18.51 |
|
||||
| RECLAIM_COMPLETE | REQ | | Section 18.51 |
|
||||
| RELEASE_LOCKOWNER | MNI | | N/A |
|
||||
| REMOVE | REQ | | Section 18.25 |
|
||||
| RENAME | REQ | | Section 18.26 |
|
||||
|
@ -185,7 +185,7 @@ failed lookup meant a definite 'no'.
|
||||
request/response format
|
||||
-----------------------
|
||||
|
||||
While each cache is free to use it's own format for requests
|
||||
While each cache is free to use its own format for requests
|
||||
and responses over channel, the following is recommended as
|
||||
appropriate and support routines are available to help:
|
||||
Each request or response record should be printable ASCII
|
||||
|
@ -50,8 +50,8 @@ NILFS2 supports the following mount options:
|
||||
(*) == default
|
||||
|
||||
nobarrier Disables barriers.
|
||||
errors=continue(*) Keep going on a filesystem error.
|
||||
errors=remount-ro Remount the filesystem read-only on an error.
|
||||
errors=continue Keep going on a filesystem error.
|
||||
errors=remount-ro(*) Remount the filesystem read-only on an error.
|
||||
errors=panic Panic and halt the machine if an error occurs.
|
||||
cp=n Specify the checkpoint-number of the snapshot to be
|
||||
mounted. Checkpoints and snapshots are listed by lscp
|
||||
|
@ -80,3 +80,10 @@ user_xattr (*) Enables Extended User Attributes.
|
||||
nouser_xattr Disables Extended User Attributes.
|
||||
acl Enables POSIX Access Control Lists support.
|
||||
noacl (*) Disables POSIX Access Control Lists support.
|
||||
resv_level=2 (*) Set how agressive allocation reservations will be.
|
||||
Valid values are between 0 (reservations off) to 8
|
||||
(maximum space for reservations).
|
||||
dir_resv_level= (*) By default, directory reservations will scale with file
|
||||
reservations - users should rarely need to change this
|
||||
value. If allocation reservations are turned off, this
|
||||
option will have no effect.
|
||||
|
@ -195,7 +195,7 @@ asynchronous manner and the vaule may not be very precise. To see a precise
|
||||
snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
|
||||
It's slow but very precise.
|
||||
|
||||
Table 1-2: Contents of the statm files (as of 2.6.30-rc7)
|
||||
Table 1-2: Contents of the status files (as of 2.6.30-rc7)
|
||||
..............................................................................
|
||||
Field Content
|
||||
Name filename of the executable
|
||||
@ -305,7 +305,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
|
||||
cgtime guest time of the task children in jiffies
|
||||
..............................................................................
|
||||
|
||||
The /proc/PID/map file containing the currently mapped memory regions and
|
||||
The /proc/PID/maps file containing the currently mapped memory regions and
|
||||
their access permissions.
|
||||
|
||||
The format is:
|
||||
@ -316,7 +316,7 @@ address perms offset dev inode pathname
|
||||
08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
|
||||
0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
|
||||
a7cb1000-a7cb2000 ---p 00000000 00:00 0
|
||||
a7cb2000-a7eb2000 rw-p 00000000 00:00 0 [threadstack:001ff4b4]
|
||||
a7cb2000-a7eb2000 rw-p 00000000 00:00 0
|
||||
a7eb2000-a7eb3000 ---p 00000000 00:00 0
|
||||
a7eb3000-a7ed5000 rw-p 00000000 00:00 0
|
||||
a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
|
||||
@ -352,7 +352,6 @@ is not associated with a file:
|
||||
[stack] = the stack of the main process
|
||||
[vdso] = the "virtual dynamic shared object",
|
||||
the kernel system call handler
|
||||
[threadstack:xxxxxxxx] = the stack of the thread, xxxxxxxx is the stack size
|
||||
|
||||
or if empty, the mapping is anonymous.
|
||||
|
||||
@ -566,6 +565,10 @@ The default_smp_affinity mask applies to all non-active IRQs, which are the
|
||||
IRQs which have not yet been allocated/activated, and hence which lack a
|
||||
/proc/irq/[0-9]* directory.
|
||||
|
||||
The node file on an SMP system shows the node to which the device using the IRQ
|
||||
reports itself as being attached. This hardware locality information does not
|
||||
include information about any possible driver locality preference.
|
||||
|
||||
prof_cpu_mask specifies which CPUs are to be profiled by the system wide
|
||||
profiler. Default value is ffffffff (all cpus).
|
||||
|
||||
@ -965,7 +968,7 @@ your system and how much traffic was routed over those devices:
|
||||
...] 1375103 17405 0 0 0 0 0 0
|
||||
...] 1703981 5535 0 0 0 3 0 0
|
||||
|
||||
In addition, each Channel Bond interface has it's own directory. For
|
||||
In addition, each Channel Bond interface has its own directory. For
|
||||
example, the bond0 device will have a directory called /proc/net/bond0/.
|
||||
It will contain information that is specific to that bond, such as the
|
||||
current slaves of the bond, the link status of the slaves, and how
|
||||
@ -1362,7 +1365,7 @@ been accounted as having caused 1MB of write.
|
||||
In other words: The number of bytes which this process caused to not happen,
|
||||
by truncating pagecache. A task can cause "negative" IO too. If this task
|
||||
truncates some dirty pagecache, some IO which another task has been accounted
|
||||
for (in it's write_bytes) will not be happening. We _could_ just subtract that
|
||||
for (in its write_bytes) will not be happening. We _could_ just subtract that
|
||||
from the truncating task's write_bytes, but there is information loss in doing
|
||||
that.
|
||||
|
||||
|
@ -3,6 +3,6 @@ protocol used by Windows for Workgroups, Windows 95 and Windows NT.
|
||||
Smbfs was inspired by Samba, the program written by Andrew Tridgell
|
||||
that turns any Unix host into a file server for DOS or Windows clients.
|
||||
|
||||
Smbfs is a SMB client, but uses parts of samba for it's operation. For
|
||||
Smbfs is a SMB client, but uses parts of samba for its operation. For
|
||||
more info on samba, including documentation, please go to
|
||||
http://www.samba.org/ and then on to your nearest mirror.
|
||||
|
@ -82,11 +82,13 @@ tmpfs has a mount option to set the NUMA memory allocation policy for
|
||||
all files in that instance (if CONFIG_NUMA is enabled) - which can be
|
||||
adjusted on the fly via 'mount -o remount ...'
|
||||
|
||||
mpol=default prefers to allocate memory from the local node
|
||||
mpol=default use the process allocation policy
|
||||
(see set_mempolicy(2))
|
||||
mpol=prefer:Node prefers to allocate memory from the given Node
|
||||
mpol=bind:NodeList allocates memory only from nodes in NodeList
|
||||
mpol=interleave prefers to allocate from each node in turn
|
||||
mpol=interleave:NodeList allocates from each node of NodeList in turn
|
||||
mpol=local prefers to allocate memory from the local node
|
||||
|
||||
NodeList format is a comma-separated list of decimal numbers and ranges,
|
||||
a range being two hyphen-separated decimal numbers, the smallest and
|
||||
@ -134,3 +136,5 @@ Author:
|
||||
Christoph Rohland <cr@sap.com>, 1.12.01
|
||||
Updated:
|
||||
Hugh Dickins, 4 June 2007
|
||||
Updated:
|
||||
KOSAKI Motohiro, 16 Mar 2010
|
||||
|
@ -72,7 +72,7 @@ structure (this is the kernel-side implementation of file
|
||||
descriptors). The freshly allocated file structure is initialized with
|
||||
a pointer to the dentry and a set of file operation member functions.
|
||||
These are taken from the inode data. The open() file method is then
|
||||
called so the specific filesystem implementation can do it's work. You
|
||||
called so the specific filesystem implementation can do its work. You
|
||||
can see that this is another switch performed by the VFS. The file
|
||||
structure is placed into the file descriptor table for the process.
|
||||
|
||||
|
@ -30,7 +30,7 @@ Supported chips:
|
||||
bank1_types=1,1,0,0,0,0,0,2,0,0,0,0,2,0,0,1
|
||||
You may also need to specify the fan_sensors option for these boards
|
||||
fan_sensors=5
|
||||
2) There is a seperate abituguru3 driver for these motherboards,
|
||||
2) There is a separate abituguru3 driver for these motherboards,
|
||||
the abituguru (without the 3 !) driver will not work on these
|
||||
motherboards (and visa versa)!
|
||||
|
||||
|
@ -157,7 +157,7 @@ temperature configuration points:
|
||||
|
||||
There are three PWM outputs. The LM85 datasheet suggests that the
|
||||
pwm3 output control both fan3 and fan4. Each PWM can be individually
|
||||
configured and assigned to a zone for it's control value. Each PWM can be
|
||||
configured and assigned to a zone for its control value. Each PWM can be
|
||||
configured individually according to the following options.
|
||||
|
||||
* pwm#_auto_pwm_min - this specifies the PWM value for temp#_auto_temp_off
|
||||
|
@ -74,6 +74,11 @@ structure at all. You should use this to keep device-specific data.
|
||||
/* retrieve the value */
|
||||
void *i2c_get_clientdata(const struct i2c_client *client);
|
||||
|
||||
Note that starting with kernel 2.6.34, you don't have to set the `data' field
|
||||
to NULL in remove() or if probe() failed anymore. The i2c-core does this
|
||||
automatically on these occasions. Those are also the only times the core will
|
||||
touch this field.
|
||||
|
||||
|
||||
Accessing the client
|
||||
====================
|
||||
|
@ -333,14 +333,14 @@ byte 0:
|
||||
byte 1:
|
||||
|
||||
bit 7 6 5 4 3 2 1 0
|
||||
x15 x14 x13 x12 x11 x10 x9 x8
|
||||
. . . . . x10 x9 x8
|
||||
|
||||
byte 2:
|
||||
|
||||
bit 7 6 5 4 3 2 1 0
|
||||
x7 x6 x5 x4 x4 x2 x1 x0
|
||||
|
||||
x15..x0 = absolute x value (horizontal)
|
||||
x10..x0 = absolute x value (horizontal)
|
||||
|
||||
byte 3:
|
||||
|
||||
@ -350,14 +350,14 @@ byte 3:
|
||||
byte 4:
|
||||
|
||||
bit 7 6 5 4 3 2 1 0
|
||||
y15 y14 y13 y12 y11 y10 y8 y8
|
||||
. . . . . . y9 y8
|
||||
|
||||
byte 5:
|
||||
|
||||
bit 7 6 5 4 3 2 1 0
|
||||
y7 y6 y5 y4 y3 y2 y1 y0
|
||||
|
||||
y15..y0 = absolute y value (vertical)
|
||||
y9..y0 = absolute y value (vertical)
|
||||
|
||||
|
||||
4.2.2 Two finger touch
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user