Merge branch 'akpm' (patches from Andrew)

Merge yet more updates from Andrew Morton:
 "This is the material which was staged after willystuff in linux-next.

  Subsystems affected by this patch series: mm (debug, selftests,
  pagecache, thp, rmap, migration, kasan, hugetlb, pagemap, madvise),
  and selftests"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (113 commits)
  selftests: kselftest framework: provide "finished" helper
  mm: madvise: MADV_DONTNEED_LOCKED
  mm: fix race between MADV_FREE reclaim and blkdev direct IO read
  mm: generalize ARCH_HAS_FILTER_PGPROT
  mm: unmap_mapping_range_tree() with i_mmap_rwsem shared
  mm: warn on deleting redirtied only if accounted
  mm/huge_memory: remove stale locking logic from __split_huge_pmd()
  mm/huge_memory: remove stale page_trans_huge_mapcount()
  mm/swapfile: remove stale reuse_swap_page()
  mm/khugepaged: remove reuse_swap_page() usage
  mm/huge_memory: streamline COW logic in do_huge_pmd_wp_page()
  mm: streamline COW logic in do_swap_page()
  mm: slightly clarify KSM logic in do_swap_page()
  mm: optimize do_wp_page() for fresh pages in local LRU pagevecs
  mm: optimize do_wp_page() for exclusive pages in the swapcache
  mm/huge_memory: make is_transparent_hugepage() static
  userfaultfd/selftests: enable hugetlb remap and remove event testing
  selftests/vm: add hugetlb madvise MADV_DONTNEED MADV_REMOVE test
  mm: enable MADV_DONTNEED for hugetlb mappings
  kasan: disable LOCKDEP when printing reports
  ...
This commit is contained in:
Linus Torvalds 2022-03-25 10:21:20 -07:00
commit 29c8c18363
73 changed files with 2473 additions and 971 deletions

View File

@ -30,7 +30,7 @@ Software tag-based KASAN mode is only supported in Clang.
The hardware KASAN mode (#3) relies on hardware to perform the checks but
still requires a compiler version that supports memory tagging instructions.
This mode is supported in GCC 10+ and Clang 11+.
This mode is supported in GCC 10+ and Clang 12+.
Both software KASAN modes work with SLUB and SLAB memory allocators,
while the hardware tag-based KASAN currently only supports SLUB.
@ -206,6 +206,9 @@ additional boot parameters that allow disabling KASAN or controlling features:
Asymmetric mode: a bad access is detected synchronously on reads and
asynchronously on writes.
- ``kasan.vmalloc=off`` or ``=on`` disables or enables tagging of vmalloc
allocations (default: ``on``).
- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
traces collection (default: ``on``).
@ -279,8 +282,8 @@ Software tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Software tag-based KASAN currently only supports tagging of slab and page_alloc
memory.
Software tag-based KASAN currently only supports tagging of slab, page_alloc,
and vmalloc memory.
Hardware tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
@ -303,8 +306,8 @@ Hardware tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Hardware tag-based KASAN currently only supports tagging of slab and page_alloc
memory.
Hardware tag-based KASAN currently only supports tagging of slab, page_alloc,
and VM_ALLOC-based vmalloc memory.
If the hardware does not support MTE (pre ARMv8.5), hardware tag-based KASAN
will not be enabled. In this case, all KASAN boot parameters are ignored.
@ -319,6 +322,8 @@ checking gets disabled.
Shadow memory
-------------
The contents of this section are only applicable to software KASAN modes.
The kernel maps memory in several different parts of the address space.
The range of kernel virtual addresses is large: there is not enough real
memory to support a real shadow region for every address that could be
@ -349,7 +354,7 @@ CONFIG_KASAN_VMALLOC
With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
cost of greater memory usage. Currently, this is supported on x86,
riscv, s390, and powerpc.
arm64, riscv, s390, and powerpc.
This works by hooking into vmalloc and vmap and dynamically
allocating real shadow memory to back the mappings.

View File

@ -78,7 +78,7 @@ Usage
2) Enable page owner: add "page_owner=on" to boot cmdline.
3) Do the job what you want to debug
3) Do the job that you want to debug.
4) Analyze information from page owner::
@ -89,22 +89,75 @@ Usage
Page allocated via order XXX, ...
PFN XXX ...
// Detailed stack
// Detailed stack
Page allocated via order XXX, ...
PFN XXX ...
// Detailed stack
// Detailed stack
The ``page_owner_sort`` tool ignores ``PFN`` rows, puts the remaining rows
in buf, uses regexp to extract the page order value, counts the times
and pages of buf, and finally sorts them according to the times.
and pages of buf, and finally sorts them according to the parameter(s).
See the result about who allocated each page
in the ``sorted_page_owner.txt``. General output::
XXX times, XXX pages:
Page allocated via order XXX, ...
// Detailed stack
// Detailed stack
By default, ``page_owner_sort`` is sorted according to the times of buf.
If you want to sort by the pages nums of buf, use the ``-m`` parameter.
If you want to sort by the page nums of buf, use the ``-m`` parameter.
The detailed parameters are:
fundamental function:
Sort:
-a Sort by memory allocation time.
-m Sort by total memory.
-p Sort by pid.
-P Sort by tgid.
-n Sort by task command name.
-r Sort by memory release time.
-s Sort by stack trace.
-t Sort by times (default).
additional function:
Cull:
-c Cull by comparing stacktrace instead of total block.
--cull <rules>
Specify culling rules.Culling syntax is key[,key[,...]].Choose a
multi-letter key from the **STANDARD FORMAT SPECIFIERS** section.
<rules> is a single argument in the form of a comma-separated list,
which offers a way to specify individual culling rules. The recognized
keywords are described in the **STANDARD FORMAT SPECIFIERS** section below.
<rules> can be specified by the sequence of keys k1,k2, ..., as described in
the STANDARD SORT KEYS section below. Mixed use of abbreviated and
complete-form of keys is allowed.
Examples:
./page_owner_sort <input> <output> --cull=stacktrace
./page_owner_sort <input> <output> --cull=st,pid,name
./page_owner_sort <input> <output> --cull=n,f
Filter:
-f Filter out the information of blocks whose memory has been released.
Select:
--pid <PID> Select by pid.
--tgid <TGID> Select by tgid.
--name <command> Select by task command name.
STANDARD FORMAT SPECIFIERS
==========================
KEY LONG DESCRIPTION
p pid process ID
tg tgid thread group ID
n name task command name
f free whether the page has been released or not
st stacktrace stace trace of the page allocation

View File

@ -74,6 +74,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -208,7 +208,7 @@ config ARM64
select IOMMU_DMA if IOMMU_SUPPORT
select IRQ_DOMAIN
select IRQ_FORCED_THREADING
select KASAN_VMALLOC if KASAN_GENERIC
select KASAN_VMALLOC if KASAN
select MODULES_USE_ELF_RELA
select NEED_DMA_MAP_STATE
select NEED_SG_DMA_LENGTH

View File

@ -25,4 +25,10 @@ static inline bool arch_vmap_pmd_supported(pgprot_t prot)
#endif
#define arch_vmap_pgprot_tagged arch_vmap_pgprot_tagged
static inline pgprot_t arch_vmap_pgprot_tagged(pgprot_t prot)
{
return pgprot_tagged(prot);
}
#endif /* _ASM_ARM64_VMALLOC_H */

View File

@ -17,10 +17,13 @@
*/
static inline unsigned long *arch_alloc_vmap_stack(size_t stack_size, int node)
{
void *p;
BUILD_BUG_ON(!IS_ENABLED(CONFIG_VMAP_STACK));
return __vmalloc_node(stack_size, THREAD_ALIGN, THREADINFO_GFP, node,
p = __vmalloc_node(stack_size, THREAD_ALIGN, THREADINFO_GFP, node,
__builtin_return_address(0));
return kasan_reset_tag(p);
}
#endif /* __ASM_VMAP_STACK_H */

View File

@ -58,12 +58,13 @@ void *module_alloc(unsigned long size)
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
if (p && (kasan_module_alloc(p, size, gfp_mask) < 0)) {
if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
vfree(p);
return NULL;
}
return p;
/* Memory is intended to be executable, reset the pointer tag. */
return kasan_reset_tag(p);
}
enum aarch64_reloc_op {

View File

@ -85,7 +85,7 @@ static int change_memory_common(unsigned long addr, int numpages,
*/
area = find_vm_area((void *)addr);
if (!area ||
end > (unsigned long)area->addr + area->size ||
end > (unsigned long)kasan_reset_tag(area->addr) + area->size ||
!(area->flags & VM_ALLOC))
return -EINVAL;

View File

@ -1304,7 +1304,8 @@ u64 bpf_jit_alloc_exec_limit(void)
void *bpf_jit_alloc_exec(unsigned long size)
{
return vmalloc(size);
/* Memory is intended to be executable, reset the pointer tag. */
return kasan_reset_tag(vmalloc(size));
}
void bpf_jit_free_exec(void *addr)

View File

@ -101,6 +101,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -55,6 +55,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
#define MADV_MERGEABLE 65 /* KSM may merge identical pages */
#define MADV_UNMERGEABLE 66 /* KSM may not merge identical pages */

View File

@ -3,6 +3,5 @@
* This file is for defining trace points and trace related helpers.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>
#endif

View File

@ -45,7 +45,7 @@ void *module_alloc(unsigned long size)
p = __vmalloc_node_range(size, MODULE_ALIGN, MODULES_VADDR, MODULES_END,
gfp_mask, PAGE_KERNEL_EXEC, VM_DEFER_KMEMLEAK, NUMA_NO_NODE,
__builtin_return_address(0));
if (p && (kasan_module_alloc(p, size, gfp_mask) < 0)) {
if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
vfree(p);
return NULL;
}

View File

@ -337,9 +337,6 @@ config GENERIC_CALIBRATE_DELAY
config ARCH_HAS_CPU_RELAX
def_bool y
config ARCH_HAS_FILTER_PGPROT
def_bool y
config ARCH_HIBERNATION_POSSIBLE
def_bool y

View File

@ -78,7 +78,7 @@ void *module_alloc(unsigned long size)
MODULES_END, gfp_mask,
PAGE_KERNEL, VM_DEFER_KMEMLEAK, NUMA_NO_NODE,
__builtin_return_address(0));
if (p && (kasan_module_alloc(p, size, gfp_mask) < 0)) {
if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
vfree(p);
return NULL;
}

View File

@ -31,7 +31,6 @@
* We need to define the tracepoints somewhere, and tlb.c
* is only compiled when SMP=y.
*/
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>
#include "mm_internal.h"

View File

@ -109,6 +109,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -54,9 +54,17 @@ struct vm_area_struct;
#define ___GFP_THISNODE 0x200000u
#define ___GFP_ACCOUNT 0x400000u
#define ___GFP_ZEROTAGS 0x800000u
#define ___GFP_SKIP_KASAN_POISON 0x1000000u
#ifdef CONFIG_KASAN_HW_TAGS
#define ___GFP_SKIP_ZERO 0x1000000u
#define ___GFP_SKIP_KASAN_UNPOISON 0x2000000u
#define ___GFP_SKIP_KASAN_POISON 0x4000000u
#else
#define ___GFP_SKIP_ZERO 0
#define ___GFP_SKIP_KASAN_UNPOISON 0
#define ___GFP_SKIP_KASAN_POISON 0
#endif
#ifdef CONFIG_LOCKDEP
#define ___GFP_NOLOCKDEP 0x2000000u
#define ___GFP_NOLOCKDEP 0x8000000u
#else
#define ___GFP_NOLOCKDEP 0
#endif
@ -232,24 +240,33 @@ struct vm_area_struct;
*
* %__GFP_ZERO returns a zeroed page on success.
*
* %__GFP_ZEROTAGS returns a page with zeroed memory tags on success, if
* __GFP_ZERO is set.
* %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
* is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
* __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
* memory tags at the same time as zeroing memory has minimal additional
* performace impact.
*
* %__GFP_SKIP_KASAN_POISON returns a page which does not need to be poisoned
* on deallocation. Typically used for userspace pages. Currently only has an
* effect in HW tags mode.
* %__GFP_SKIP_KASAN_UNPOISON makes KASAN skip unpoisoning on page allocation.
* Only effective in HW_TAGS mode.
*
* %__GFP_SKIP_KASAN_POISON makes KASAN skip poisoning on page deallocation.
* Typically, used for userspace pages. Only effective in HW_TAGS mode.
*/
#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
#define __GFP_ZEROTAGS ((__force gfp_t)___GFP_ZEROTAGS)
#define __GFP_SKIP_KASAN_POISON ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
#define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
#define __GFP_SKIP_KASAN_UNPOISON ((__force gfp_t)___GFP_SKIP_KASAN_UNPOISON)
#define __GFP_SKIP_KASAN_POISON ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
/* Disable lockdep for GFP context tracking */
#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
/* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT (25 + IS_ENABLED(CONFIG_LOCKDEP))
#define __GFP_BITS_SHIFT (24 + \
3 * IS_ENABLED(CONFIG_KASAN_HW_TAGS) + \
IS_ENABLED(CONFIG_LOCKDEP))
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
/**

View File

@ -183,7 +183,6 @@ unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
void prep_transhuge_page(struct page *page);
void free_transhuge_page(struct page *page);
bool is_transparent_hugepage(struct page *page);
bool can_split_folio(struct folio *folio, int *pextra_pins);
int split_huge_page_to_list(struct page *page, struct list_head *list);
@ -341,11 +340,6 @@ static inline bool transhuge_vma_enabled(struct vm_area_struct *vma,
static inline void prep_transhuge_page(struct page *page) {}
static inline bool is_transparent_hugepage(struct page *page)
{
return false;
}
#define transparent_hugepage_flags 0UL
#define thp_get_unmapped_area NULL

View File

@ -19,13 +19,15 @@ struct task_struct;
#include <linux/linkage.h>
#include <asm/kasan.h>
/* kasan_data struct is used in KUnit tests for KASAN expected failures */
struct kunit_kasan_expectation {
bool report_found;
};
#endif
typedef unsigned int __bitwise kasan_vmalloc_flags_t;
#define KASAN_VMALLOC_NONE 0x00u
#define KASAN_VMALLOC_INIT 0x01u
#define KASAN_VMALLOC_VM_ALLOC 0x02u
#define KASAN_VMALLOC_PROT_NORMAL 0x04u
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
#include <linux/pgtable.h>
@ -84,25 +86,8 @@ static inline void kasan_disable_current(void) {}
#ifdef CONFIG_KASAN_HW_TAGS
void kasan_alloc_pages(struct page *page, unsigned int order, gfp_t flags);
void kasan_free_pages(struct page *page, unsigned int order);
#else /* CONFIG_KASAN_HW_TAGS */
static __always_inline void kasan_alloc_pages(struct page *page,
unsigned int order, gfp_t flags)
{
/* Only available for integrated init. */
BUILD_BUG();
}
static __always_inline void kasan_free_pages(struct page *page,
unsigned int order)
{
/* Only available for integrated init. */
BUILD_BUG();
}
#endif /* CONFIG_KASAN_HW_TAGS */
static inline bool kasan_has_integrated_init(void)
@ -282,10 +267,6 @@ static __always_inline bool kasan_check_byte(const void *addr)
return true;
}
bool kasan_save_enable_multi_shot(void);
void kasan_restore_multi_shot(bool enabled);
#else /* CONFIG_KASAN */
static inline slab_flags_t kasan_never_merge(void)
@ -414,34 +395,71 @@ static inline void kasan_init_hw_tags(void) { }
#ifdef CONFIG_KASAN_VMALLOC
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
void kasan_populate_early_vm_area_shadow(void *start, unsigned long size);
int kasan_populate_vmalloc(unsigned long addr, unsigned long size);
void kasan_poison_vmalloc(const void *start, unsigned long size);
void kasan_unpoison_vmalloc(const void *start, unsigned long size);
void kasan_release_vmalloc(unsigned long start, unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end);
void kasan_populate_early_vm_area_shadow(void *start, unsigned long size);
#else /* CONFIG_KASAN_VMALLOC */
#else /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
static inline void kasan_populate_early_vm_area_shadow(void *start,
unsigned long size)
{ }
static inline int kasan_populate_vmalloc(unsigned long start,
unsigned long size)
{
return 0;
}
static inline void kasan_poison_vmalloc(const void *start, unsigned long size)
{ }
static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size)
{ }
static inline void kasan_release_vmalloc(unsigned long start,
unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end) {}
unsigned long free_region_end) { }
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
kasan_vmalloc_flags_t flags);
static __always_inline void *kasan_unpoison_vmalloc(const void *start,
unsigned long size,
kasan_vmalloc_flags_t flags)
{
if (kasan_enabled())
return __kasan_unpoison_vmalloc(start, size, flags);
return (void *)start;
}
void __kasan_poison_vmalloc(const void *start, unsigned long size);
static __always_inline void kasan_poison_vmalloc(const void *start,
unsigned long size)
{
if (kasan_enabled())
__kasan_poison_vmalloc(start, size);
}
#else /* CONFIG_KASAN_VMALLOC */
static inline void kasan_populate_early_vm_area_shadow(void *start,
unsigned long size)
unsigned long size) { }
static inline int kasan_populate_vmalloc(unsigned long start,
unsigned long size)
{
return 0;
}
static inline void kasan_release_vmalloc(unsigned long start,
unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end) { }
static inline void *kasan_unpoison_vmalloc(const void *start,
unsigned long size,
kasan_vmalloc_flags_t flags)
{
return (void *)start;
}
static inline void kasan_poison_vmalloc(const void *start, unsigned long size)
{ }
#endif /* CONFIG_KASAN_VMALLOC */
@ -450,17 +468,17 @@ static inline void kasan_populate_early_vm_area_shadow(void *start,
!defined(CONFIG_KASAN_VMALLOC)
/*
* These functions provide a special case to support backing module
* allocations with real shadow memory. With KASAN vmalloc, the special
* case is unnecessary, as the work is handled in the generic case.
* These functions allocate and free shadow memory for kernel modules.
* They are only required when KASAN_VMALLOC is not supported, as otherwise
* shadow memory is allocated by the generic vmalloc handlers.
*/
int kasan_module_alloc(void *addr, size_t size, gfp_t gfp_mask);
void kasan_free_shadow(const struct vm_struct *vm);
int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask);
void kasan_free_module_shadow(const struct vm_struct *vm);
#else /* (CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS) && !CONFIG_KASAN_VMALLOC */
static inline int kasan_module_alloc(void *addr, size_t size, gfp_t gfp_mask) { return 0; }
static inline void kasan_free_shadow(const struct vm_struct *vm) {}
static inline int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask) { return 0; }
static inline void kasan_free_module_shadow(const struct vm_struct *vm) {}
#endif /* (CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS) && !CONFIG_KASAN_VMALLOC */

View File

@ -834,16 +834,11 @@ static inline int total_mapcount(struct page *page)
return folio_mapcount(page_folio(page));
}
int page_trans_huge_mapcount(struct page *page);
#else
static inline int total_mapcount(struct page *page)
{
return page_mapcount(page);
}
static inline int page_trans_huge_mapcount(struct page *page)
{
return page_mapcount(page);
}
#endif
static inline struct page *virt_to_head_page(const void *x)

View File

@ -481,7 +481,7 @@ static inline int TestClearPage##uname(struct page *page) { return 0; }
TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
__PAGEFLAG(Locked, locked, PF_NO_TAIL)
PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
PAGEFLAG(Referenced, referenced, PF_HEAD)
TESTCLEARFLAG(Referenced, referenced, PF_HEAD)

View File

@ -1009,8 +1009,7 @@ static inline void __set_page_dirty(struct page *page,
{
__folio_mark_dirty(page_folio(page), mapping, warn);
}
void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
struct bdi_writeback *wb);
void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
void __folio_cancel_dirty(struct folio *folio);
static inline void folio_cancel_dirty(struct folio *folio)
{

View File

@ -515,7 +515,6 @@ extern int __swp_swapcount(swp_entry_t entry);
extern int swp_swapcount(swp_entry_t entry);
extern struct swap_info_struct *page_swap_info(struct page *);
extern struct swap_info_struct *swp_swap_info(swp_entry_t entry);
extern bool reuse_swap_page(struct page *);
extern int try_to_free_swap(struct page *);
struct backing_dev_info;
extern int init_swap_address_space(unsigned int type, unsigned long nr_pages);
@ -681,9 +680,6 @@ static inline int swp_swapcount(swp_entry_t entry)
return 0;
}
#define reuse_swap_page(page) \
(page_trans_huge_mapcount(page) == 1)
static inline int try_to_free_swap(struct page *page)
{
return 0;

View File

@ -35,17 +35,6 @@ struct notifier_block; /* in notifier.h */
#define VM_DEFER_KMEMLEAK 0
#endif
/*
* VM_KASAN is used slightly differently depending on CONFIG_KASAN_VMALLOC.
*
* If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after
* shadow memory has been mapped. It's used to handle allocation errors so that
* we don't try to poison shadow on free if it was never allocated.
*
* Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to
* determine which allocations need the module shadow freed.
*/
/* bits [20..32] reserved for arch specific ioremap internals */
/*
@ -126,6 +115,13 @@ static inline int arch_vmap_pte_supported_shift(unsigned long size)
}
#endif
#ifndef arch_vmap_pgprot_tagged
static inline pgprot_t arch_vmap_pgprot_tagged(pgprot_t prot)
{
return prot;
}
#endif
/*
* Highlevel APIs for driver use
*/

View File

@ -29,7 +29,6 @@
EM( SCAN_VMA_NULL, "vma_null") \
EM( SCAN_VMA_CHECK, "vma_check_failed") \
EM( SCAN_ADDRESS_RANGE, "not_suitable_address_range") \
EM( SCAN_SWAP_CACHE_PAGE, "page_swap_cache") \
EM( SCAN_DEL_PAGE_LRU, "could_not_delete_page_from_lru")\
EM( SCAN_ALLOC_HUGE_PAGE_FAIL, "alloc_huge_page_failed") \
EM( SCAN_CGROUP_CHARGE_FAIL, "ccgroup_charge_failed") \

View File

@ -105,6 +105,37 @@ TRACE_EVENT(mm_migrate_pages_start,
__print_symbolic(__entry->reason, MIGRATE_REASON))
);
DECLARE_EVENT_CLASS(migration_pte,
TP_PROTO(unsigned long addr, unsigned long pte, int order),
TP_ARGS(addr, pte, order),
TP_STRUCT__entry(
__field(unsigned long, addr)
__field(unsigned long, pte)
__field(int, order)
),
TP_fast_assign(
__entry->addr = addr;
__entry->pte = pte;
__entry->order = order;
),
TP_printk("addr=%lx, pte=%lx order=%d", __entry->addr, __entry->pte, __entry->order)
);
DEFINE_EVENT(migration_pte, set_migration_pte,
TP_PROTO(unsigned long addr, unsigned long pte, int order),
TP_ARGS(addr, pte, order)
);
DEFINE_EVENT(migration_pte, remove_migration_pte,
TP_PROTO(unsigned long addr, unsigned long pte, int order),
TP_ARGS(addr, pte, order)
);
#endif /* _TRACE_MIGRATE_H */
/* This part must be outside protection */

View File

@ -49,12 +49,20 @@
{(unsigned long)__GFP_RECLAIM, "__GFP_RECLAIM"}, \
{(unsigned long)__GFP_DIRECT_RECLAIM, "__GFP_DIRECT_RECLAIM"},\
{(unsigned long)__GFP_KSWAPD_RECLAIM, "__GFP_KSWAPD_RECLAIM"},\
{(unsigned long)__GFP_ZEROTAGS, "__GFP_ZEROTAGS"}, \
{(unsigned long)__GFP_SKIP_KASAN_POISON,"__GFP_SKIP_KASAN_POISON"}\
{(unsigned long)__GFP_ZEROTAGS, "__GFP_ZEROTAGS"} \
#ifdef CONFIG_KASAN_HW_TAGS
#define __def_gfpflag_names_kasan , \
{(unsigned long)__GFP_SKIP_ZERO, "__GFP_SKIP_ZERO"}, \
{(unsigned long)__GFP_SKIP_KASAN_POISON, "__GFP_SKIP_KASAN_POISON"}, \
{(unsigned long)__GFP_SKIP_KASAN_UNPOISON, "__GFP_SKIP_KASAN_UNPOISON"}
#else
#define __def_gfpflag_names_kasan
#endif
#define show_gfp_flags(flags) \
(flags) ? __print_flags(flags, "|", \
__def_gfpflag_names \
__def_gfpflag_names __def_gfpflag_names_kasan \
) : "none"
#ifdef CONFIG_MMU

View File

@ -48,6 +48,33 @@ TRACE_EVENT(hugepage_update,
TP_printk("hugepage update at addr 0x%lx and pte = 0x%lx clr = 0x%lx, set = 0x%lx", __entry->addr, __entry->pte, __entry->clr, __entry->set)
);
DECLARE_EVENT_CLASS(migration_pmd,
TP_PROTO(unsigned long addr, unsigned long pmd),
TP_ARGS(addr, pmd),
TP_STRUCT__entry(
__field(unsigned long, addr)
__field(unsigned long, pmd)
),
TP_fast_assign(
__entry->addr = addr;
__entry->pmd = pmd;
),
TP_printk("addr=%lx, pmd=%lx", __entry->addr, __entry->pmd)
);
DEFINE_EVENT(migration_pmd, set_migration_pmd,
TP_PROTO(unsigned long addr, unsigned long pmd),
TP_ARGS(addr, pmd)
);
DEFINE_EVENT(migration_pmd, remove_migration_pmd,
TP_PROTO(unsigned long addr, unsigned long pmd),
TP_ARGS(addr, pmd)
);
#endif /* _TRACE_THP_H */
/* This part must be outside protection */

View File

@ -75,6 +75,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -286,11 +286,13 @@ static int alloc_thread_stack_node(struct task_struct *tsk, int node)
if (!s)
continue;
/* Mark stack accessible for KASAN. */
/* Reset stack metadata. */
kasan_unpoison_range(s->addr, THREAD_SIZE);
stack = kasan_reset_tag(s->addr);
/* Clear stale pointers from reused stack. */
memset(s->addr, 0, THREAD_SIZE);
memset(stack, 0, THREAD_SIZE);
if (memcg_charge_kernel_stack(s)) {
vfree(s->addr);
@ -298,7 +300,7 @@ static int alloc_thread_stack_node(struct task_struct *tsk, int node)
}
tsk->stack_vm_area = s;
tsk->stack = s->addr;
tsk->stack = stack;
return 0;
}
@ -326,6 +328,7 @@ static int alloc_thread_stack_node(struct task_struct *tsk, int node)
* so cache the vm_struct.
*/
tsk->stack_vm_area = vm;
stack = kasan_reset_tag(stack);
tsk->stack = stack;
return 0;
}

View File

@ -32,15 +32,19 @@ static void *__scs_alloc(int node)
for (i = 0; i < NR_CACHED_SCS; i++) {
s = this_cpu_xchg(scs_cache[i], NULL);
if (s) {
kasan_unpoison_vmalloc(s, SCS_SIZE);
s = kasan_unpoison_vmalloc(s, SCS_SIZE,
KASAN_VMALLOC_PROT_NORMAL);
memset(s, 0, SCS_SIZE);
return s;
goto out;
}
}
return __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
s = __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
GFP_SCS, PAGE_KERNEL, 0, node,
__builtin_return_address(0));
out:
return kasan_reset_tag(s);
}
void *scs_alloc(int node)
@ -78,7 +82,7 @@ void scs_free(void *s)
if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL)
return;
kasan_unpoison_vmalloc(s, SCS_SIZE);
kasan_unpoison_vmalloc(s, SCS_SIZE, KASAN_VMALLOC_PROT_NORMAL);
vfree_atomic(s);
}

View File

@ -178,17 +178,17 @@ config KASAN_TAGS_IDENTIFY
memory consumption.
config KASAN_VMALLOC
bool "Back mappings in vmalloc space with real shadow memory"
depends on KASAN_GENERIC && HAVE_ARCH_KASAN_VMALLOC
bool "Check accesses to vmalloc allocations"
depends on HAVE_ARCH_KASAN_VMALLOC
help
By default, the shadow region for vmalloc space is the read-only
zero page. This means that KASAN cannot detect errors involving
vmalloc space.
This mode makes KASAN check accesses to vmalloc allocations for
validity.
Enabling this option will hook in to vmap/vmalloc and back those
mappings with real shadow memory allocated on demand. This allows
for KASAN to detect more sorts of errors (and to support vmapped
stacks), but at the cost of higher memory usage.
With software KASAN modes, checking is done for all types of vmalloc
allocations. Enabling this option leads to higher memory usage.
With hardware tag-based KASAN, only VM_ALLOC mappings are checked.
There is no additional memory usage.
config KASAN_KUNIT_TEST
tristate "KUnit-compatible tests of KASAN bug detection capabilities" if !KUNIT_ALL_TESTS

View File

@ -19,6 +19,7 @@
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <asm/page.h>
@ -36,7 +37,7 @@ void *kasan_ptr_result;
int kasan_int_result;
static struct kunit_resource resource;
static struct kunit_kasan_expectation fail_data;
static struct kunit_kasan_status test_status;
static bool multishot;
/*
@ -53,58 +54,63 @@ static int kasan_test_init(struct kunit *test)
}
multishot = kasan_save_enable_multi_shot();
fail_data.report_found = false;
test_status.report_found = false;
test_status.sync_fault = false;
kunit_add_named_resource(test, NULL, NULL, &resource,
"kasan_data", &fail_data);
"kasan_status", &test_status);
return 0;
}
static void kasan_test_exit(struct kunit *test)
{
kasan_restore_multi_shot(multishot);
KUNIT_EXPECT_FALSE(test, fail_data.report_found);
KUNIT_EXPECT_FALSE(test, test_status.report_found);
}
/**
* KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
* KASAN report; causes a test failure otherwise. This relies on a KUnit
* resource named "kasan_data". Do not use this name for KUnit resources
* resource named "kasan_status". Do not use this name for KUnit resources
* outside of KASAN tests.
*
* For hardware tag-based KASAN in sync mode, when a tag fault happens, tag
* For hardware tag-based KASAN, when a synchronous tag fault happens, tag
* checking is auto-disabled. When this happens, this test handler reenables
* tag checking. As tag checking can be only disabled or enabled per CPU,
* this handler disables migration (preemption).
*
* Since the compiler doesn't see that the expression can change the fail_data
* Since the compiler doesn't see that the expression can change the test_status
* fields, it can reorder or optimize away the accesses to those fields.
* Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
* expression to prevent that.
*
* In between KUNIT_EXPECT_KASAN_FAIL checks, fail_data.report_found is kept as
* false. This allows detecting KASAN reports that happen outside of the checks
* by asserting !fail_data.report_found at the start of KUNIT_EXPECT_KASAN_FAIL
* and in kasan_test_exit.
* In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
* as false. This allows detecting KASAN reports that happen outside of the
* checks by asserting !test_status.report_found at the start of
* KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
*/
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
kasan_sync_fault_possible()) \
migrate_disable(); \
KUNIT_EXPECT_FALSE(test, READ_ONCE(fail_data.report_found)); \
KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \
barrier(); \
expression; \
barrier(); \
if (!READ_ONCE(fail_data.report_found)) { \
if (kasan_async_fault_possible()) \
kasan_force_async_fault(); \
if (!READ_ONCE(test_status.report_found)) { \
KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \
"expected in \"" #expression \
"\", but none occurred"); \
} \
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) { \
if (READ_ONCE(fail_data.report_found)) \
kasan_enable_tagging_sync(); \
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
kasan_sync_fault_possible()) { \
if (READ_ONCE(test_status.report_found) && \
READ_ONCE(test_status.sync_fault)) \
kasan_enable_tagging(); \
migrate_enable(); \
} \
WRITE_ONCE(fail_data.report_found, false); \
WRITE_ONCE(test_status.report_found, false); \
} while (0)
#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \
@ -780,7 +786,7 @@ static void ksize_uaf(struct kunit *test)
static void kasan_stack_oob(struct kunit *test)
{
char stack_array[10];
/* See comment in kasan_global_oob. */
/* See comment in kasan_global_oob_right. */
char *volatile array = stack_array;
char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
@ -793,7 +799,7 @@ static void kasan_alloca_oob_left(struct kunit *test)
{
volatile int i = 10;
char alloca_array[i];
/* See comment in kasan_global_oob. */
/* See comment in kasan_global_oob_right. */
char *volatile array = alloca_array;
char *p = array - 1;
@ -808,7 +814,7 @@ static void kasan_alloca_oob_right(struct kunit *test)
{
volatile int i = 10;
char alloca_array[i];
/* See comment in kasan_global_oob. */
/* See comment in kasan_global_oob_right. */
char *volatile array = alloca_array;
char *p = array + i;
@ -1057,21 +1063,186 @@ static void kmalloc_double_kzfree(struct kunit *test)
KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
}
static void vmalloc_oob(struct kunit *test)
static void vmalloc_helpers_tags(struct kunit *test)
{
void *area;
void *ptr;
/* This test is intended for tag-based modes. */
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
ptr = vmalloc(PAGE_SIZE);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
/* Check that the returned pointer is tagged. */
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
/* Make sure exported vmalloc helpers handle tagged pointers. */
KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
{
int rv;
/* Make sure vmalloc'ed memory permissions can be changed. */
rv = set_memory_ro((unsigned long)ptr, 1);
KUNIT_ASSERT_GE(test, rv, 0);
rv = set_memory_rw((unsigned long)ptr, 1);
KUNIT_ASSERT_GE(test, rv, 0);
}
#endif
vfree(ptr);
}
static void vmalloc_oob(struct kunit *test)
{
char *v_ptr, *p_ptr;
struct page *page;
size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
v_ptr = vmalloc(size);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
OPTIMIZER_HIDE_VAR(v_ptr);
/*
* We have to be careful not to hit the guard page.
* We have to be careful not to hit the guard page in vmalloc tests.
* The MMU will catch that and crash us.
*/
area = vmalloc(3000);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
vfree(area);
/* Make sure in-bounds accesses are valid. */
v_ptr[0] = 0;
v_ptr[size - 1] = 0;
/*
* An unaligned access past the requested vmalloc size.
* Only generic KASAN can precisely detect these.
*/
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
/* An aligned access into the first out-of-bounds granule. */
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
/* Check that in-bounds accesses to the physical page are valid. */
page = vmalloc_to_page(v_ptr);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
p_ptr = page_address(page);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
p_ptr[0] = 0;
vfree(v_ptr);
/*
* We can't check for use-after-unmap bugs in this nor in the following
* vmalloc tests, as the page might be fully unmapped and accessing it
* will crash the kernel.
*/
}
static void vmap_tags(struct kunit *test)
{
char *p_ptr, *v_ptr;
struct page *p_page, *v_page;
/*
* This test is specifically crafted for the software tag-based mode,
* the only tag-based mode that poisons vmap mappings.
*/
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
p_page = alloc_pages(GFP_KERNEL, 1);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
p_ptr = page_address(p_page);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
/*
* We can't check for out-of-bounds bugs in this nor in the following
* vmalloc tests, as allocations have page granularity and accessing
* the guard page will crash the kernel.
*/
KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
/* Make sure that in-bounds accesses through both pointers work. */
*p_ptr = 0;
*v_ptr = 0;
/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
v_page = vmalloc_to_page(v_ptr);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
vunmap(v_ptr);
free_pages((unsigned long)p_ptr, 1);
}
static void vm_map_ram_tags(struct kunit *test)
{
char *p_ptr, *v_ptr;
struct page *page;
/*
* This test is specifically crafted for the software tag-based mode,
* the only tag-based mode that poisons vm_map_ram mappings.
*/
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
page = alloc_pages(GFP_KERNEL, 1);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
p_ptr = page_address(page);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
v_ptr = vm_map_ram(&page, 1, -1);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
/* Make sure that in-bounds accesses through both pointers work. */
*p_ptr = 0;
*v_ptr = 0;
vm_unmap_ram(v_ptr, 1);
free_pages((unsigned long)p_ptr, 1);
}
static void vmalloc_percpu(struct kunit *test)
{
char __percpu *ptr;
int cpu;
/*
* This test is specifically crafted for the software tag-based mode,
* the only tag-based mode that poisons percpu mappings.
*/
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
for_each_possible_cpu(cpu) {
char *c_ptr = per_cpu_ptr(ptr, cpu);
KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
/* Make sure that in-bounds accesses don't crash the kernel. */
*c_ptr = 0;
}
free_percpu(ptr);
}
/*
@ -1105,6 +1276,18 @@ static void match_all_not_assigned(struct kunit *test)
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
free_pages((unsigned long)ptr, order);
}
if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
return;
for (i = 0; i < 256; i++) {
size = (get_random_int() % 1024) + 1;
ptr = vmalloc(size);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
vfree(ptr);
}
}
/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
@ -1210,7 +1393,11 @@ static struct kunit_case kasan_kunit_test_cases[] = {
KUNIT_CASE(kasan_bitops_generic),
KUNIT_CASE(kasan_bitops_tags),
KUNIT_CASE(kmalloc_double_kzfree),
KUNIT_CASE(vmalloc_helpers_tags),
KUNIT_CASE(vmalloc_oob),
KUNIT_CASE(vmap_tags),
KUNIT_CASE(vm_map_ram_tags),
KUNIT_CASE(vmalloc_percpu),
KUNIT_CASE(match_all_not_assigned),
KUNIT_CASE(match_all_ptr_tag),
KUNIT_CASE(match_all_mem_tag),

View File

@ -2906,13 +2906,15 @@ int vscnprintf(char *buf, size_t size, const char *fmt, va_list args)
{
int i;
if (unlikely(!size))
return 0;
i = vsnprintf(buf, size, fmt, args);
if (likely(i < size))
return i;
if (size != 0)
return size - 1;
return 0;
return size - 1;
}
EXPORT_SYMBOL(vscnprintf);

View File

@ -762,6 +762,9 @@ config ARCH_HAS_CURRENT_STACK_POINTER
register alias named "current_stack_pointer", this config can be
selected.
config ARCH_HAS_FILTER_PGPROT
bool
config ARCH_HAS_PTE_DEVMAP
bool

View File

@ -261,5 +261,4 @@ void page_init_poison(struct page *page, size_t size)
if (page_init_poisoning)
memset(page, PAGE_POISON_PATTERN, size);
}
EXPORT_SYMBOL_GPL(page_init_poison);
#endif /* CONFIG_DEBUG_VM */

View File

@ -152,25 +152,25 @@ static void filemap_unaccount_folio(struct address_space *mapping,
VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
int mapcount;
pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
current->comm, folio_pfn(folio));
dump_page(&folio->page, "still mapped when deleted");
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
mapcount = page_mapcount(&folio->page);
if (mapping_exiting(mapping) &&
folio_ref_count(folio) >= mapcount + 2) {
/*
* All vmas have already been torn down, so it's
* a good bet that actually the folio is unmapped,
* and we'd prefer not to leak it: if we're wrong,
* some other bad page check should catch it later.
*/
page_mapcount_reset(&folio->page);
folio_ref_sub(folio, mapcount);
if (mapping_exiting(mapping) && !folio_test_large(folio)) {
int mapcount = page_mapcount(&folio->page);
if (folio_ref_count(folio) >= mapcount + 2) {
/*
* All vmas have already been torn down, so it's
* a good bet that actually the page is unmapped
* and we'd rather not leak it: if we're wrong,
* another bad page check should catch it later.
*/
page_mapcount_reset(&folio->page);
folio_ref_sub(folio, mapcount);
}
}
}
@ -193,16 +193,20 @@ static void filemap_unaccount_folio(struct address_space *mapping,
/*
* At this point folio must be either written or cleaned by
* truncate. Dirty folio here signals a bug and loss of
* unwritten data.
* unwritten data - on ordinary filesystems.
*
* This fixes dirty accounting after removing the folio entirely
* But it's harmless on in-memory filesystems like tmpfs; and can
* occur when a driver which did get_user_pages() sets page dirty
* before putting it, while the inode is being finally evicted.
*
* Below fixes dirty accounting after removing the folio entirely
* but leaves the dirty flag set: it has no effect for truncated
* folio and anyway will be cleared before returning folio to
* buddy allocator.
*/
if (WARN_ON_ONCE(folio_test_dirty(folio)))
folio_account_cleaned(folio, mapping,
inode_to_wb(mapping->host));
if (WARN_ON_ONCE(folio_test_dirty(folio) &&
mapping_can_writeback(mapping)))
folio_account_cleaned(folio, inode_to_wb(mapping->host));
}
/*
@ -1185,24 +1189,17 @@ static void folio_wake_bit(struct folio *folio, int bit_nr)
}
/*
* It is possible for other pages to have collided on the waitqueue
* hash, so in that case check for a page match. That prevents a long-
* term waiter
* It's possible to miss clearing waiters here, when we woke our page
* waiters, but the hashed waitqueue has waiters for other pages on it.
* That's okay, it's a rare case. The next waker will clear it.
*
* It is still possible to miss a case here, when we woke page waiters
* and removed them from the waitqueue, but there are still other
* page waiters.
* Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
* other), the flag may be cleared in the course of freeing the page;
* but that is not required for correctness.
*/
if (!waitqueue_active(q) || !key.page_match) {
if (!waitqueue_active(q) || !key.page_match)
folio_clear_waiters(folio);
/*
* It's possible to miss clearing Waiters here, when we woke
* our page waiters, but the hashed waitqueue has waiters for
* other pages on it.
*
* That's okay, it's a rare case. The next waker will clear it.
*/
}
spin_unlock_irqrestore(&q->lock, flags);
}

View File

@ -40,6 +40,9 @@
#include <asm/pgalloc.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>
/*
* By default, transparent hugepage support is disabled in order to avoid
* risking an increased memory footprint for applications that are not
@ -530,7 +533,7 @@ void prep_transhuge_page(struct page *page)
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}
bool is_transparent_hugepage(struct page *page)
static inline bool is_transparent_hugepage(struct page *page)
{
if (!PageCompound(page))
return false;
@ -539,7 +542,6 @@ bool is_transparent_hugepage(struct page *page)
return is_huge_zero_page(page) ||
page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);
static unsigned long __thp_get_unmapped_area(struct file *filp,
unsigned long addr, unsigned long len,
@ -1301,7 +1303,6 @@ vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
page = pmd_page(orig_pmd);
VM_BUG_ON_PAGE(!PageHead(page), page);
/* Lock page for reuse_swap_page() */
if (!trylock_page(page)) {
get_page(page);
spin_unlock(vmf->ptl);
@ -1317,10 +1318,15 @@ vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
}
/*
* We can only reuse the page if nobody else maps the huge page or it's
* part.
* See do_wp_page(): we can only map the page writable if there are
* no additional references. Note that we always drain the LRU
* pagevecs immediately after adding a THP.
*/
if (reuse_swap_page(page)) {
if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
goto unlock_fallback;
if (PageSwapCache(page))
try_to_free_swap(page);
if (page_count(page) == 1) {
pmd_t entry;
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
@ -1331,6 +1337,7 @@ vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
return VM_FAULT_WRITE;
}
unlock_fallback:
unlock_page(page);
spin_unlock(vmf->ptl);
fallback:
@ -2126,8 +2133,6 @@ void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
{
spinlock_t *ptl;
struct mmu_notifier_range range;
bool do_unlock_folio = false;
pmd_t _pmd;
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
address & HPAGE_PMD_MASK,
@ -2146,42 +2151,12 @@ void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
goto out;
}
repeat:
if (pmd_trans_huge(*pmd)) {
if (!folio) {
folio = page_folio(pmd_page(*pmd));
/*
* An anonymous page must be locked, to ensure that a
* concurrent reuse_swap_page() sees stable mapcount;
* but reuse_swap_page() is not used on shmem or file,
* and page lock must not be taken when zap_pmd_range()
* calls __split_huge_pmd() while i_mmap_lock is held.
*/
if (folio_test_anon(folio)) {
if (unlikely(!folio_trylock(folio))) {
folio_get(folio);
_pmd = *pmd;
spin_unlock(ptl);
folio_lock(folio);
spin_lock(ptl);
if (unlikely(!pmd_same(*pmd, _pmd))) {
folio_unlock(folio);
folio_put(folio);
folio = NULL;
goto repeat;
}
folio_put(folio);
}
do_unlock_folio = true;
}
}
} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
goto out;
__split_huge_pmd_locked(vma, pmd, range.start, freeze);
if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
is_pmd_migration_entry(*pmd))
__split_huge_pmd_locked(vma, pmd, range.start, freeze);
out:
spin_unlock(ptl);
if (do_unlock_folio)
folio_unlock(folio);
/*
* No need to double call mmu_notifier->invalidate_range() callback.
* They are 3 cases to consider inside __split_huge_pmd_locked():
@ -2476,54 +2451,6 @@ static void __split_huge_page(struct page *page, struct list_head *list,
}
}
/*
* This calculates accurately how many mappings a transparent hugepage
* has (unlike page_mapcount() which isn't fully accurate). This full
* accuracy is primarily needed to know if copy-on-write faults can
* reuse the page and change the mapping to read-write instead of
* copying them. At the same time this returns the total_mapcount too.
*
* The function returns the highest mapcount any one of the subpages
* has. If the return value is one, even if different processes are
* mapping different subpages of the transparent hugepage, they can
* all reuse it, because each process is reusing a different subpage.
*
* The total_mapcount is instead counting all virtual mappings of the
* subpages. If the total_mapcount is equal to "one", it tells the
* caller all mappings belong to the same "mm" and in turn the
* anon_vma of the transparent hugepage can become the vma->anon_vma
* local one as no other process may be mapping any of the subpages.
*
* It would be more accurate to replace page_mapcount() with
* page_trans_huge_mapcount(), however we only use
* page_trans_huge_mapcount() in the copy-on-write faults where we
* need full accuracy to avoid breaking page pinning, because
* page_trans_huge_mapcount() is slower than page_mapcount().
*/
int page_trans_huge_mapcount(struct page *page)
{
int i, ret;
/* hugetlbfs shouldn't call it */
VM_BUG_ON_PAGE(PageHuge(page), page);
if (likely(!PageTransCompound(page)))
return atomic_read(&page->_mapcount) + 1;
page = compound_head(page);
ret = 0;
for (i = 0; i < thp_nr_pages(page); i++) {
int mapcount = atomic_read(&page[i]._mapcount) + 1;
ret = max(ret, mapcount);
}
if (PageDoubleMap(page))
ret -= 1;
return ret + compound_mapcount(page);
}
/* Racy check whether the huge page can be split */
bool can_split_folio(struct folio *folio, int *pextra_pins)
{
@ -3131,6 +3058,7 @@ void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
page_remove_rmap(page, vma, true);
put_page(page);
trace_set_migration_pmd(address, pmd_val(pmdswp));
}
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
@ -3163,5 +3091,6 @@ void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
/* No need to invalidate - it was non-present before */
update_mmu_cache_pmd(vma, address, pvmw->pmd);
trace_remove_migration_pmd(address, pmd_val(pmde));
}
#endif

View File

@ -35,7 +35,7 @@ CFLAGS_shadow.o := $(CC_FLAGS_KASAN_RUNTIME)
CFLAGS_hw_tags.o := $(CC_FLAGS_KASAN_RUNTIME)
CFLAGS_sw_tags.o := $(CC_FLAGS_KASAN_RUNTIME)
obj-$(CONFIG_KASAN) := common.o report.o
obj-y := common.o report.o
obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o report_generic.o shadow.o quarantine.o
obj-$(CONFIG_KASAN_HW_TAGS) += hw_tags.o report_hw_tags.o tags.o report_tags.o
obj-$(CONFIG_KASAN_SW_TAGS) += init.o report_sw_tags.o shadow.o sw_tags.o tags.o report_tags.o

View File

@ -387,7 +387,7 @@ static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
}
/*
* The object will be poisoned by kasan_free_pages() or
* The object will be poisoned by kasan_poison_pages() or
* kasan_slab_free_mempool().
*/
@ -538,7 +538,7 @@ void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
return NULL;
/*
* The object has already been unpoisoned by kasan_alloc_pages() for
* The object has already been unpoisoned by kasan_unpoison_pages() for
* alloc_pages() or by kasan_krealloc() for krealloc().
*/

View File

@ -32,6 +32,12 @@ enum kasan_arg_mode {
KASAN_ARG_MODE_ASYMM,
};
enum kasan_arg_vmalloc {
KASAN_ARG_VMALLOC_DEFAULT,
KASAN_ARG_VMALLOC_OFF,
KASAN_ARG_VMALLOC_ON,
};
enum kasan_arg_stacktrace {
KASAN_ARG_STACKTRACE_DEFAULT,
KASAN_ARG_STACKTRACE_OFF,
@ -40,18 +46,28 @@ enum kasan_arg_stacktrace {
static enum kasan_arg kasan_arg __ro_after_init;
static enum kasan_arg_mode kasan_arg_mode __ro_after_init;
static enum kasan_arg_stacktrace kasan_arg_stacktrace __ro_after_init;
static enum kasan_arg_vmalloc kasan_arg_vmalloc __initdata;
static enum kasan_arg_stacktrace kasan_arg_stacktrace __initdata;
/* Whether KASAN is enabled at all. */
/*
* Whether KASAN is enabled at all.
* The value remains false until KASAN is initialized by kasan_init_hw_tags().
*/
DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled);
EXPORT_SYMBOL(kasan_flag_enabled);
/* Whether the selected mode is synchronous/asynchronous/asymmetric.*/
/*
* Whether the selected mode is synchronous, asynchronous, or asymmetric.
* Defaults to KASAN_MODE_SYNC.
*/
enum kasan_mode kasan_mode __ro_after_init;
EXPORT_SYMBOL_GPL(kasan_mode);
/* Whether to enable vmalloc tagging. */
DEFINE_STATIC_KEY_TRUE(kasan_flag_vmalloc);
/* Whether to collect alloc/free stack traces. */
DEFINE_STATIC_KEY_FALSE(kasan_flag_stacktrace);
DEFINE_STATIC_KEY_TRUE(kasan_flag_stacktrace);
/* kasan=off/on */
static int __init early_kasan_flag(char *arg)
@ -89,6 +105,23 @@ static int __init early_kasan_mode(char *arg)
}
early_param("kasan.mode", early_kasan_mode);
/* kasan.vmalloc=off/on */
static int __init early_kasan_flag_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
if (!strcmp(arg, "off"))
kasan_arg_vmalloc = KASAN_ARG_VMALLOC_OFF;
else if (!strcmp(arg, "on"))
kasan_arg_vmalloc = KASAN_ARG_VMALLOC_ON;
else
return -EINVAL;
return 0;
}
early_param("kasan.vmalloc", early_kasan_flag_vmalloc);
/* kasan.stacktrace=off/on */
static int __init early_kasan_flag_stacktrace(char *arg)
{
@ -116,7 +149,10 @@ static inline const char *kasan_mode_info(void)
return "sync";
}
/* kasan_init_hw_tags_cpu() is called for each CPU. */
/*
* kasan_init_hw_tags_cpu() is called for each CPU.
* Not marked as __init as a CPU can be hot-plugged after boot.
*/
void kasan_init_hw_tags_cpu(void)
{
/*
@ -124,7 +160,11 @@ void kasan_init_hw_tags_cpu(void)
* as this function is only called for MTE-capable hardware.
*/
/* If KASAN is disabled via command line, don't initialize it. */
/*
* If KASAN is disabled via command line, don't initialize it.
* When this function is called, kasan_flag_enabled is not yet
* set by kasan_init_hw_tags(). Thus, check kasan_arg instead.
*/
if (kasan_arg == KASAN_ARG_OFF)
return;
@ -132,12 +172,7 @@ void kasan_init_hw_tags_cpu(void)
* Enable async or asymm modes only when explicitly requested
* through the command line.
*/
if (kasan_arg_mode == KASAN_ARG_MODE_ASYNC)
hw_enable_tagging_async();
else if (kasan_arg_mode == KASAN_ARG_MODE_ASYMM)
hw_enable_tagging_asymm();
else
hw_enable_tagging_sync();
kasan_enable_tagging();
}
/* kasan_init_hw_tags() is called once on boot CPU. */
@ -151,86 +186,168 @@ void __init kasan_init_hw_tags(void)
if (kasan_arg == KASAN_ARG_OFF)
return;
/* Enable KASAN. */
static_branch_enable(&kasan_flag_enabled);
switch (kasan_arg_mode) {
case KASAN_ARG_MODE_DEFAULT:
/*
* Default to sync mode.
*/
fallthrough;
/* Default is specified by kasan_mode definition. */
break;
case KASAN_ARG_MODE_SYNC:
/* Sync mode enabled. */
kasan_mode = KASAN_MODE_SYNC;
break;
case KASAN_ARG_MODE_ASYNC:
/* Async mode enabled. */
kasan_mode = KASAN_MODE_ASYNC;
break;
case KASAN_ARG_MODE_ASYMM:
/* Asymm mode enabled. */
kasan_mode = KASAN_MODE_ASYMM;
break;
}
switch (kasan_arg_vmalloc) {
case KASAN_ARG_VMALLOC_DEFAULT:
/* Default is specified by kasan_flag_vmalloc definition. */
break;
case KASAN_ARG_VMALLOC_OFF:
static_branch_disable(&kasan_flag_vmalloc);
break;
case KASAN_ARG_VMALLOC_ON:
static_branch_enable(&kasan_flag_vmalloc);
break;
}
switch (kasan_arg_stacktrace) {
case KASAN_ARG_STACKTRACE_DEFAULT:
/* Default to enabling stack trace collection. */
static_branch_enable(&kasan_flag_stacktrace);
/* Default is specified by kasan_flag_stacktrace definition. */
break;
case KASAN_ARG_STACKTRACE_OFF:
/* Do nothing, kasan_flag_stacktrace keeps its default value. */
static_branch_disable(&kasan_flag_stacktrace);
break;
case KASAN_ARG_STACKTRACE_ON:
static_branch_enable(&kasan_flag_stacktrace);
break;
}
pr_info("KernelAddressSanitizer initialized (hw-tags, mode=%s, stacktrace=%s)\n",
/* KASAN is now initialized, enable it. */
static_branch_enable(&kasan_flag_enabled);
pr_info("KernelAddressSanitizer initialized (hw-tags, mode=%s, vmalloc=%s, stacktrace=%s)\n",
kasan_mode_info(),
kasan_vmalloc_enabled() ? "on" : "off",
kasan_stack_collection_enabled() ? "on" : "off");
}
void kasan_alloc_pages(struct page *page, unsigned int order, gfp_t flags)
#ifdef CONFIG_KASAN_VMALLOC
static void unpoison_vmalloc_pages(const void *addr, u8 tag)
{
struct vm_struct *area;
int i;
/*
* This condition should match the one in post_alloc_hook() in
* page_alloc.c.
* As hardware tag-based KASAN only tags VM_ALLOC vmalloc allocations
* (see the comment in __kasan_unpoison_vmalloc), all of the pages
* should belong to a single area.
*/
bool init = !want_init_on_free() && want_init_on_alloc(flags);
area = find_vm_area((void *)addr);
if (WARN_ON(!area))
return;
if (flags & __GFP_SKIP_KASAN_POISON)
SetPageSkipKASanPoison(page);
for (i = 0; i < area->nr_pages; i++) {
struct page *page = area->pages[i];
if (flags & __GFP_ZEROTAGS) {
int i;
for (i = 0; i != 1 << order; ++i)
tag_clear_highpage(page + i);
} else {
kasan_unpoison_pages(page, order, init);
page_kasan_tag_set(page, tag);
}
}
void kasan_free_pages(struct page *page, unsigned int order)
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
kasan_vmalloc_flags_t flags)
{
u8 tag;
unsigned long redzone_start, redzone_size;
if (!kasan_vmalloc_enabled())
return (void *)start;
if (!is_vmalloc_or_module_addr(start))
return (void *)start;
/*
* Skip unpoisoning and assigning a pointer tag for non-VM_ALLOC
* mappings as:
*
* 1. Unlike the software KASAN modes, hardware tag-based KASAN only
* supports tagging physical memory. Therefore, it can only tag a
* single mapping of normal physical pages.
* 2. Hardware tag-based KASAN can only tag memory mapped with special
* mapping protection bits, see arch_vmalloc_pgprot_modify().
* As non-VM_ALLOC mappings can be mapped outside of vmalloc code,
* providing these bits would require tracking all non-VM_ALLOC
* mappers.
*
* Thus, for VM_ALLOC mappings, hardware tag-based KASAN only tags
* the first virtual mapping, which is created by vmalloc().
* Tagging the page_alloc memory backing that vmalloc() allocation is
* skipped, see ___GFP_SKIP_KASAN_UNPOISON.
*
* For non-VM_ALLOC allocations, page_alloc memory is tagged as usual.
*/
if (!(flags & KASAN_VMALLOC_VM_ALLOC))
return (void *)start;
/*
* Don't tag executable memory.
* The kernel doesn't tolerate having the PC register tagged.
*/
if (!(flags & KASAN_VMALLOC_PROT_NORMAL))
return (void *)start;
tag = kasan_random_tag();
start = set_tag(start, tag);
/* Unpoison and initialize memory up to size. */
kasan_unpoison(start, size, flags & KASAN_VMALLOC_INIT);
/*
* Explicitly poison and initialize the in-page vmalloc() redzone.
* Unlike software KASAN modes, hardware tag-based KASAN doesn't
* unpoison memory when populating shadow for vmalloc() space.
*/
redzone_start = round_up((unsigned long)start + size,
KASAN_GRANULE_SIZE);
redzone_size = round_up(redzone_start, PAGE_SIZE) - redzone_start;
kasan_poison((void *)redzone_start, redzone_size, KASAN_TAG_INVALID,
flags & KASAN_VMALLOC_INIT);
/*
* Set per-page tag flags to allow accessing physical memory for the
* vmalloc() mapping through page_address(vmalloc_to_page()).
*/
unpoison_vmalloc_pages(start, tag);
return (void *)start;
}
void __kasan_poison_vmalloc(const void *start, unsigned long size)
{
/*
* This condition should match the one in free_pages_prepare() in
* page_alloc.c.
* No tagging here.
* The physical pages backing the vmalloc() allocation are poisoned
* through the usual page_alloc paths.
*/
bool init = want_init_on_free();
kasan_poison_pages(page, order, init);
}
#endif
#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
void kasan_enable_tagging_sync(void)
void kasan_enable_tagging(void)
{
hw_enable_tagging_sync();
if (kasan_arg_mode == KASAN_ARG_MODE_ASYNC)
hw_enable_tagging_async();
else if (kasan_arg_mode == KASAN_ARG_MODE_ASYMM)
hw_enable_tagging_asymm();
else
hw_enable_tagging_sync();
}
EXPORT_SYMBOL_GPL(kasan_enable_tagging_sync);
EXPORT_SYMBOL_GPL(kasan_enable_tagging);
void kasan_force_async_fault(void)
{

View File

@ -12,7 +12,8 @@
#include <linux/static_key.h>
#include "../slab.h"
DECLARE_STATIC_KEY_FALSE(kasan_flag_stacktrace);
DECLARE_STATIC_KEY_TRUE(kasan_flag_vmalloc);
DECLARE_STATIC_KEY_TRUE(kasan_flag_stacktrace);
enum kasan_mode {
KASAN_MODE_SYNC,
@ -22,6 +23,11 @@ enum kasan_mode {
extern enum kasan_mode kasan_mode __ro_after_init;
static inline bool kasan_vmalloc_enabled(void)
{
return static_branch_likely(&kasan_flag_vmalloc);
}
static inline bool kasan_stack_collection_enabled(void)
{
return static_branch_unlikely(&kasan_flag_stacktrace);
@ -71,17 +77,19 @@ static inline bool kasan_sync_fault_possible(void)
#define KASAN_PAGE_REDZONE 0xFE /* redzone for kmalloc_large allocations */
#define KASAN_KMALLOC_REDZONE 0xFC /* redzone inside slub object */
#define KASAN_KMALLOC_FREE 0xFB /* object was freed (kmem_cache_free/kfree) */
#define KASAN_KMALLOC_FREETRACK 0xFA /* object was freed and has free track set */
#define KASAN_VMALLOC_INVALID 0xF8 /* unallocated space in vmapped page */
#else
#define KASAN_FREE_PAGE KASAN_TAG_INVALID
#define KASAN_PAGE_REDZONE KASAN_TAG_INVALID
#define KASAN_KMALLOC_REDZONE KASAN_TAG_INVALID
#define KASAN_KMALLOC_FREE KASAN_TAG_INVALID
#define KASAN_KMALLOC_FREETRACK KASAN_TAG_INVALID
#define KASAN_VMALLOC_INVALID KASAN_TAG_INVALID /* only for SW_TAGS */
#endif
#ifdef CONFIG_KASAN_GENERIC
#define KASAN_KMALLOC_FREETRACK 0xFA /* object was freed and has free track set */
#define KASAN_GLOBAL_REDZONE 0xF9 /* redzone for global variable */
#define KASAN_VMALLOC_INVALID 0xF8 /* unallocated space in vmapped page */
/*
* Stack redzone shadow values
@ -110,6 +118,8 @@ static inline bool kasan_sync_fault_possible(void)
#define KASAN_ABI_VERSION 1
#endif
#endif /* CONFIG_KASAN_GENERIC */
/* Metadata layout customization. */
#define META_BYTES_PER_BLOCK 1
#define META_BLOCKS_PER_ROW 16
@ -117,9 +127,15 @@ static inline bool kasan_sync_fault_possible(void)
#define META_MEM_BYTES_PER_ROW (META_BYTES_PER_ROW * KASAN_GRANULE_SIZE)
#define META_ROWS_AROUND_ADDR 2
struct kasan_access_info {
const void *access_addr;
const void *first_bad_addr;
enum kasan_report_type {
KASAN_REPORT_ACCESS,
KASAN_REPORT_INVALID_FREE,
};
struct kasan_report_info {
enum kasan_report_type type;
void *access_addr;
void *first_bad_addr;
size_t access_size;
bool is_write;
unsigned long ip;
@ -204,6 +220,14 @@ struct kasan_free_meta {
#endif
};
#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
/* Used in KUnit-compatible KASAN tests. */
struct kunit_kasan_status {
bool report_found;
bool sync_fault;
};
#endif
struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
const void *object);
#ifdef CONFIG_KASAN_GENERIC
@ -221,7 +245,8 @@ static inline const void *kasan_shadow_to_mem(const void *shadow_addr)
static inline bool addr_has_metadata(const void *addr)
{
return (addr >= kasan_shadow_to_mem((void *)KASAN_SHADOW_START));
return (kasan_reset_tag(addr) >=
kasan_shadow_to_mem((void *)KASAN_SHADOW_START));
}
/**
@ -251,10 +276,10 @@ static inline void kasan_print_tags(u8 addr_tag, const void *addr) { }
#endif
void *kasan_find_first_bad_addr(void *addr, size_t size);
const char *kasan_get_bug_type(struct kasan_access_info *info);
const char *kasan_get_bug_type(struct kasan_report_info *info);
void kasan_metadata_fetch_row(char *buffer, void *row);
#if defined(CONFIG_KASAN_GENERIC) && defined(CONFIG_KASAN_STACK)
#if defined(CONFIG_KASAN_STACK)
void kasan_print_address_stack_frame(const void *addr);
#else
static inline void kasan_print_address_stack_frame(const void *addr) { }
@ -340,12 +365,12 @@ static inline const void *arch_kasan_set_tag(const void *addr, u8 tag)
#if defined(CONFIG_KASAN_HW_TAGS) && IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
void kasan_enable_tagging_sync(void);
void kasan_enable_tagging(void);
void kasan_force_async_fault(void);
#else /* CONFIG_KASAN_HW_TAGS || CONFIG_KASAN_KUNIT_TEST */
static inline void kasan_enable_tagging_sync(void) { }
static inline void kasan_enable_tagging(void) { }
static inline void kasan_force_async_fault(void) { }
#endif /* CONFIG_KASAN_HW_TAGS || CONFIG_KASAN_KUNIT_TEST */
@ -467,6 +492,13 @@ static inline bool kasan_arch_is_ready(void) { return true; }
#error kasan_arch_is_ready only works in KASAN generic outline mode!
#endif
#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST)
bool kasan_save_enable_multi_shot(void);
void kasan_restore_multi_shot(bool enabled);
#endif
/*
* Exported functions for interfaces called from assembly or from generated
* code. Declarations here to avoid warning about missing declarations.

View File

@ -13,6 +13,7 @@
#include <linux/ftrace.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/sched.h>
@ -64,6 +65,40 @@ static int __init early_kasan_fault(char *arg)
}
early_param("kasan.fault", early_kasan_fault);
static int __init kasan_set_multi_shot(char *str)
{
set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
return 1;
}
__setup("kasan_multi_shot", kasan_set_multi_shot);
/*
* Used to suppress reports within kasan_disable/enable_current() critical
* sections, which are used for marking accesses to slab metadata.
*/
static bool report_suppressed(void)
{
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
if (current->kasan_depth)
return true;
#endif
return false;
}
/*
* Used to avoid reporting more than one KASAN bug unless kasan_multi_shot
* is enabled. Note that KASAN tests effectively enable kasan_multi_shot
* for their duration.
*/
static bool report_enabled(void)
{
if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
return true;
return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
}
#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST)
bool kasan_save_enable_multi_shot(void)
{
return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
@ -77,15 +112,75 @@ void kasan_restore_multi_shot(bool enabled)
}
EXPORT_SYMBOL_GPL(kasan_restore_multi_shot);
static int __init kasan_set_multi_shot(char *str)
{
set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
return 1;
}
__setup("kasan_multi_shot", kasan_set_multi_shot);
#endif
static void print_error_description(struct kasan_access_info *info)
#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
static void update_kunit_status(bool sync)
{
struct kunit *test;
struct kunit_resource *resource;
struct kunit_kasan_status *status;
test = current->kunit_test;
if (!test)
return;
resource = kunit_find_named_resource(test, "kasan_status");
if (!resource) {
kunit_set_failure(test);
return;
}
status = (struct kunit_kasan_status *)resource->data;
WRITE_ONCE(status->report_found, true);
WRITE_ONCE(status->sync_fault, sync);
kunit_put_resource(resource);
}
#else
static void update_kunit_status(bool sync) { }
#endif
static DEFINE_SPINLOCK(report_lock);
static void start_report(unsigned long *flags, bool sync)
{
/* Respect the /proc/sys/kernel/traceoff_on_warning interface. */
disable_trace_on_warning();
/* Update status of the currently running KASAN test. */
update_kunit_status(sync);
/* Do not allow LOCKDEP mangling KASAN reports. */
lockdep_off();
/* Make sure we don't end up in loop. */
kasan_disable_current();
spin_lock_irqsave(&report_lock, *flags);
pr_err("==================================================================\n");
}
static void end_report(unsigned long *flags, void *addr)
{
if (addr)
trace_error_report_end(ERROR_DETECTOR_KASAN,
(unsigned long)addr);
pr_err("==================================================================\n");
spin_unlock_irqrestore(&report_lock, *flags);
if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
panic("panic_on_warn set ...\n");
if (kasan_arg_fault == KASAN_ARG_FAULT_PANIC)
panic("kasan.fault=panic set ...\n");
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
lockdep_on();
kasan_enable_current();
}
static void print_error_description(struct kasan_report_info *info)
{
if (info->type == KASAN_REPORT_INVALID_FREE) {
pr_err("BUG: KASAN: double-free or invalid-free in %pS\n",
(void *)info->ip);
return;
}
pr_err("BUG: KASAN: %s in %pS\n",
kasan_get_bug_type(info), (void *)info->ip);
if (info->access_size)
@ -98,32 +193,6 @@ static void print_error_description(struct kasan_access_info *info)
info->access_addr, current->comm, task_pid_nr(current));
}
static DEFINE_SPINLOCK(report_lock);
static void start_report(unsigned long *flags)
{
/*
* Make sure we don't end up in loop.
*/
kasan_disable_current();
spin_lock_irqsave(&report_lock, *flags);
pr_err("==================================================================\n");
}
static void end_report(unsigned long *flags, unsigned long addr)
{
if (!kasan_async_fault_possible())
trace_error_report_end(ERROR_DETECTOR_KASAN, addr);
pr_err("==================================================================\n");
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
spin_unlock_irqrestore(&report_lock, *flags);
if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
panic("panic_on_warn set ...\n");
if (kasan_arg_fault == KASAN_ARG_FAULT_PANIC)
panic("kasan.fault=panic set ...\n");
kasan_enable_current();
}
static void print_track(struct kasan_track *track, const char *prefix)
{
pr_err("%s by task %u:\n", prefix, track->pid);
@ -162,9 +231,6 @@ static void describe_object_addr(struct kmem_cache *cache, void *object,
" which belongs to the cache %s of size %d\n",
object, cache->name, cache->object_size);
if (!addr)
return;
if (access_addr < object_addr) {
rel_type = "to the left";
rel_bytes = object_addr - access_addr;
@ -253,19 +319,43 @@ static void print_address_description(void *addr, u8 tag)
void *object = nearest_obj(cache, slab, addr);
describe_object(cache, object, addr, tag);
pr_err("\n");
}
if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) {
pr_err("The buggy address belongs to the variable:\n");
pr_err(" %pS\n", addr);
pr_err("\n");
}
if (object_is_on_stack(addr)) {
/*
* Currently, KASAN supports printing frame information only
* for accesses to the task's own stack.
*/
kasan_print_address_stack_frame(addr);
pr_err("\n");
}
if (is_vmalloc_addr(addr)) {
struct vm_struct *va = find_vm_area(addr);
if (va) {
pr_err("The buggy address belongs to the virtual mapping at\n"
" [%px, %px) created by:\n"
" %pS\n",
va->addr, va->addr + va->size, va->caller);
pr_err("\n");
page = vmalloc_to_page(page);
}
}
if (page) {
pr_err("The buggy address belongs to the page:\n");
pr_err("The buggy address belongs to the physical page:\n");
dump_page(page, "kasan: bad access detected");
pr_err("\n");
}
kasan_print_address_stack_frame(addr);
}
static bool meta_row_is_guilty(const void *row, const void *addr)
@ -324,56 +414,88 @@ static void print_memory_metadata(const void *addr)
}
}
static bool report_enabled(void)
static void print_report(struct kasan_report_info *info)
{
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
if (current->kasan_depth)
return false;
#endif
if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
return true;
return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
}
void *tagged_addr = info->access_addr;
void *untagged_addr = kasan_reset_tag(tagged_addr);
u8 tag = get_tag(tagged_addr);
#if IS_ENABLED(CONFIG_KUNIT)
static void kasan_update_kunit_status(struct kunit *cur_test)
{
struct kunit_resource *resource;
struct kunit_kasan_expectation *kasan_data;
print_error_description(info);
if (addr_has_metadata(untagged_addr))
kasan_print_tags(tag, info->first_bad_addr);
pr_err("\n");
resource = kunit_find_named_resource(cur_test, "kasan_data");
if (!resource) {
kunit_set_failure(cur_test);
return;
if (addr_has_metadata(untagged_addr)) {
print_address_description(untagged_addr, tag);
print_memory_metadata(info->first_bad_addr);
} else {
dump_stack_lvl(KERN_ERR);
}
kasan_data = (struct kunit_kasan_expectation *)resource->data;
WRITE_ONCE(kasan_data->report_found, true);
kunit_put_resource(resource);
}
#endif /* IS_ENABLED(CONFIG_KUNIT) */
void kasan_report_invalid_free(void *object, unsigned long ip)
void kasan_report_invalid_free(void *ptr, unsigned long ip)
{
unsigned long flags;
u8 tag = get_tag(object);
struct kasan_report_info info;
object = kasan_reset_tag(object);
/*
* Do not check report_suppressed(), as an invalid-free cannot be
* caused by accessing slab metadata and thus should not be
* suppressed by kasan_disable/enable_current() critical sections.
*/
if (unlikely(!report_enabled()))
return;
#if IS_ENABLED(CONFIG_KUNIT)
if (current->kunit_test)
kasan_update_kunit_status(current->kunit_test);
#endif /* IS_ENABLED(CONFIG_KUNIT) */
start_report(&flags, true);
start_report(&flags);
pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip);
kasan_print_tags(tag, object);
pr_err("\n");
print_address_description(object, tag);
pr_err("\n");
print_memory_metadata(object);
end_report(&flags, (unsigned long)object);
info.type = KASAN_REPORT_INVALID_FREE;
info.access_addr = ptr;
info.first_bad_addr = kasan_reset_tag(ptr);
info.access_size = 0;
info.is_write = false;
info.ip = ip;
print_report(&info);
end_report(&flags, ptr);
}
/*
* kasan_report() is the only reporting function that uses
* user_access_save/restore(): kasan_report_invalid_free() cannot be called
* from a UACCESS region, and kasan_report_async() is not used on x86.
*/
bool kasan_report(unsigned long addr, size_t size, bool is_write,
unsigned long ip)
{
bool ret = true;
void *ptr = (void *)addr;
unsigned long ua_flags = user_access_save();
unsigned long irq_flags;
struct kasan_report_info info;
if (unlikely(report_suppressed()) || unlikely(!report_enabled())) {
ret = false;
goto out;
}
start_report(&irq_flags, true);
info.type = KASAN_REPORT_ACCESS;
info.access_addr = ptr;
info.first_bad_addr = kasan_find_first_bad_addr(ptr, size);
info.access_size = size;
info.is_write = is_write;
info.ip = ip;
print_report(&info);
end_report(&irq_flags, ptr);
out:
user_access_restore(ua_flags);
return ret;
}
#ifdef CONFIG_KASAN_HW_TAGS
@ -381,82 +503,22 @@ void kasan_report_async(void)
{
unsigned long flags;
#if IS_ENABLED(CONFIG_KUNIT)
if (current->kunit_test)
kasan_update_kunit_status(current->kunit_test);
#endif /* IS_ENABLED(CONFIG_KUNIT) */
/*
* Do not check report_suppressed(), as kasan_disable/enable_current()
* critical sections do not affect Hardware Tag-Based KASAN.
*/
if (unlikely(!report_enabled()))
return;
start_report(&flags);
start_report(&flags, false);
pr_err("BUG: KASAN: invalid-access\n");
pr_err("Asynchronous mode enabled: no access details available\n");
pr_err("Asynchronous fault: no details available\n");
pr_err("\n");
dump_stack_lvl(KERN_ERR);
end_report(&flags, 0);
end_report(&flags, NULL);
}
#endif /* CONFIG_KASAN_HW_TAGS */
static void __kasan_report(unsigned long addr, size_t size, bool is_write,
unsigned long ip)
{
struct kasan_access_info info;
void *tagged_addr;
void *untagged_addr;
unsigned long flags;
#if IS_ENABLED(CONFIG_KUNIT)
if (current->kunit_test)
kasan_update_kunit_status(current->kunit_test);
#endif /* IS_ENABLED(CONFIG_KUNIT) */
disable_trace_on_warning();
tagged_addr = (void *)addr;
untagged_addr = kasan_reset_tag(tagged_addr);
info.access_addr = tagged_addr;
if (addr_has_metadata(untagged_addr))
info.first_bad_addr =
kasan_find_first_bad_addr(tagged_addr, size);
else
info.first_bad_addr = untagged_addr;
info.access_size = size;
info.is_write = is_write;
info.ip = ip;
start_report(&flags);
print_error_description(&info);
if (addr_has_metadata(untagged_addr))
kasan_print_tags(get_tag(tagged_addr), info.first_bad_addr);
pr_err("\n");
if (addr_has_metadata(untagged_addr)) {
print_address_description(untagged_addr, get_tag(tagged_addr));
pr_err("\n");
print_memory_metadata(info.first_bad_addr);
} else {
dump_stack_lvl(KERN_ERR);
}
end_report(&flags, addr);
}
bool kasan_report(unsigned long addr, size_t size, bool is_write,
unsigned long ip)
{
unsigned long flags = user_access_save();
bool ret = false;
if (likely(report_enabled())) {
__kasan_report(addr, size, is_write, ip);
ret = true;
}
user_access_restore(flags);
return ret;
}
#ifdef CONFIG_KASAN_INLINE
/*
* With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high

View File

@ -34,12 +34,16 @@ void *kasan_find_first_bad_addr(void *addr, size_t size)
{
void *p = addr;
if (!addr_has_metadata(p))
return p;
while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p)))
p += KASAN_GRANULE_SIZE;
return p;
}
static const char *get_shadow_bug_type(struct kasan_access_info *info)
static const char *get_shadow_bug_type(struct kasan_report_info *info)
{
const char *bug_type = "unknown-crash";
u8 *shadow_addr;
@ -91,7 +95,7 @@ static const char *get_shadow_bug_type(struct kasan_access_info *info)
return bug_type;
}
static const char *get_wild_bug_type(struct kasan_access_info *info)
static const char *get_wild_bug_type(struct kasan_report_info *info)
{
const char *bug_type = "unknown-crash";
@ -105,7 +109,7 @@ static const char *get_wild_bug_type(struct kasan_access_info *info)
return bug_type;
}
const char *kasan_get_bug_type(struct kasan_access_info *info)
const char *kasan_get_bug_type(struct kasan_report_info *info)
{
/*
* If access_size is a negative number, then it has reason to be
@ -180,7 +184,7 @@ static void print_decoded_frame_descr(const char *frame_descr)
return;
pr_err("\n");
pr_err("this frame has %lu %s:\n", num_objects,
pr_err("This frame has %lu %s:\n", num_objects,
num_objects == 1 ? "object" : "objects");
while (num_objects--) {
@ -211,6 +215,7 @@ static void print_decoded_frame_descr(const char *frame_descr)
}
}
/* Returns true only if the address is on the current task's stack. */
static bool __must_check get_address_stack_frame_info(const void *addr,
unsigned long *offset,
const char **frame_descr,
@ -224,13 +229,6 @@ static bool __must_check get_address_stack_frame_info(const void *addr,
BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP));
/*
* NOTE: We currently only support printing frame information for
* accesses to the task's own stack.
*/
if (!object_is_on_stack(addr))
return false;
aligned_addr = round_down((unsigned long)addr, sizeof(long));
mem_ptr = round_down(aligned_addr, KASAN_GRANULE_SIZE);
shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr);
@ -269,17 +267,17 @@ void kasan_print_address_stack_frame(const void *addr)
const char *frame_descr;
const void *frame_pc;
if (WARN_ON(!object_is_on_stack(addr)))
return;
pr_err("The buggy address belongs to stack of task %s/%d\n",
current->comm, task_pid_nr(current));
if (!get_address_stack_frame_info(addr, &offset, &frame_descr,
&frame_pc))
return;
/*
* get_address_stack_frame_info only returns true if the given addr is
* on the current task's stack.
*/
pr_err("\n");
pr_err("addr %px is located in stack of task %s/%d at offset %lu in frame:\n",
addr, current->comm, task_pid_nr(current), offset);
pr_err(" and is located at offset %lu in frame:\n", offset);
pr_err(" %pS\n", frame_pc);
if (!frame_descr)

View File

@ -17,6 +17,7 @@
void *kasan_find_first_bad_addr(void *addr, size_t size)
{
/* Return the same value regardless of whether addr_has_metadata(). */
return kasan_reset_tag(addr);
}

View File

@ -16,6 +16,7 @@
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
@ -35,8 +36,12 @@ void *kasan_find_first_bad_addr(void *addr, size_t size)
void *p = kasan_reset_tag(addr);
void *end = p + size;
if (!addr_has_metadata(p))
return p;
while (p < end && tag == *(u8 *)kasan_mem_to_shadow(p))
p += KASAN_GRANULE_SIZE;
return p;
}
@ -51,3 +56,14 @@ void kasan_print_tags(u8 addr_tag, const void *addr)
pr_err("Pointer tag: [%02x], memory tag: [%02x]\n", addr_tag, *shadow);
}
#ifdef CONFIG_KASAN_STACK
void kasan_print_address_stack_frame(const void *addr)
{
if (WARN_ON(!object_is_on_stack(addr)))
return;
pr_err("The buggy address belongs to stack of task %s/%d\n",
current->comm, task_pid_nr(current));
}
#endif

View File

@ -7,7 +7,7 @@
#include "kasan.h"
#include "../slab.h"
const char *kasan_get_bug_type(struct kasan_access_info *info)
const char *kasan_get_bug_type(struct kasan_report_info *info)
{
#ifdef CONFIG_KASAN_TAGS_IDENTIFY
struct kasan_alloc_meta *alloc_meta;

View File

@ -345,27 +345,6 @@ int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
return 0;
}
/*
* Poison the shadow for a vmalloc region. Called as part of the
* freeing process at the time the region is freed.
*/
void kasan_poison_vmalloc(const void *start, unsigned long size)
{
if (!is_vmalloc_or_module_addr(start))
return;
size = round_up(size, KASAN_GRANULE_SIZE);
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
}
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
{
if (!is_vmalloc_or_module_addr(start))
return;
kasan_unpoison(start, size, false);
}
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
void *unused)
{
@ -496,9 +475,48 @@ void kasan_release_vmalloc(unsigned long start, unsigned long end,
}
}
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
kasan_vmalloc_flags_t flags)
{
/*
* Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
* mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
* Software KASAN modes can't optimize zeroing memory by combining it
* with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
*/
if (!is_vmalloc_or_module_addr(start))
return (void *)start;
/*
* Don't tag executable memory with the tag-based mode.
* The kernel doesn't tolerate having the PC register tagged.
*/
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
!(flags & KASAN_VMALLOC_PROT_NORMAL))
return (void *)start;
start = set_tag(start, kasan_random_tag());
kasan_unpoison(start, size, false);
return (void *)start;
}
/*
* Poison the shadow for a vmalloc region. Called as part of the
* freeing process at the time the region is freed.
*/
void __kasan_poison_vmalloc(const void *start, unsigned long size)
{
if (!is_vmalloc_or_module_addr(start))
return;
size = round_up(size, KASAN_GRANULE_SIZE);
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
}
#else /* CONFIG_KASAN_VMALLOC */
int kasan_module_alloc(void *addr, size_t size, gfp_t gfp_mask)
int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
{
void *ret;
size_t scaled_size;
@ -534,7 +552,7 @@ int kasan_module_alloc(void *addr, size_t size, gfp_t gfp_mask)
return -ENOMEM;
}
void kasan_free_shadow(const struct vm_struct *vm)
void kasan_free_module_shadow(const struct vm_struct *vm)
{
if (vm->flags & VM_KASAN)
vfree(kasan_mem_to_shadow(vm->addr));

View File

@ -46,7 +46,6 @@ enum scan_result {
SCAN_VMA_NULL,
SCAN_VMA_CHECK,
SCAN_ADDRESS_RANGE,
SCAN_SWAP_CACHE_PAGE,
SCAN_DEL_PAGE_LRU,
SCAN_ALLOC_HUGE_PAGE_FAIL,
SCAN_CGROUP_CHARGE_FAIL,
@ -683,16 +682,6 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
result = SCAN_PAGE_COUNT;
goto out;
}
if (!pte_write(pteval) && PageSwapCache(page) &&
!reuse_swap_page(page)) {
/*
* Page is in the swap cache and cannot be re-used.
* It cannot be collapsed into a THP.
*/
unlock_page(page);
result = SCAN_SWAP_CACHE_PAGE;
goto out;
}
/*
* Isolate the page to avoid collapsing an hugepage

View File

@ -52,6 +52,7 @@ static int madvise_need_mmap_write(int behavior)
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
case MADV_COLD:
case MADV_PAGEOUT:
case MADV_FREE:
@ -504,7 +505,7 @@ static void madvise_cold_page_range(struct mmu_gather *tlb,
static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
{
return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
}
static long madvise_cold(struct vm_area_struct *vma,
@ -777,6 +778,29 @@ static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
return 0;
}
static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
unsigned long start,
unsigned long *end,
int behavior)
{
if (!is_vm_hugetlb_page(vma)) {
unsigned int forbidden = VM_PFNMAP;
if (behavior != MADV_DONTNEED_LOCKED)
forbidden |= VM_LOCKED;
return !(vma->vm_flags & forbidden);
}
if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
return false;
if (start & ~huge_page_mask(hstate_vma(vma)))
return false;
*end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
return true;
}
static long madvise_dontneed_free(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end,
@ -785,7 +809,7 @@ static long madvise_dontneed_free(struct vm_area_struct *vma,
struct mm_struct *mm = vma->vm_mm;
*prev = vma;
if (!can_madv_lru_vma(vma))
if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
return -EINVAL;
if (!userfaultfd_remove(vma, start, end)) {
@ -807,7 +831,12 @@ static long madvise_dontneed_free(struct vm_area_struct *vma,
*/
return -ENOMEM;
}
if (!can_madv_lru_vma(vma))
/*
* Potential end adjustment for hugetlb vma is OK as
* the check below keeps end within vma.
*/
if (!madvise_dontneed_free_valid_vma(vma, start, &end,
behavior))
return -EINVAL;
if (end > vma->vm_end) {
/*
@ -827,7 +856,7 @@ static long madvise_dontneed_free(struct vm_area_struct *vma,
VM_WARN_ON(start >= end);
}
if (behavior == MADV_DONTNEED)
if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
return madvise_dontneed_single_vma(vma, start, end);
else if (behavior == MADV_FREE)
return madvise_free_single_vma(vma, start, end);
@ -966,6 +995,7 @@ static int madvise_vma_behavior(struct vm_area_struct *vma,
return madvise_pageout(vma, prev, start, end);
case MADV_FREE:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
return madvise_dontneed_free(vma, prev, start, end, behavior);
case MADV_POPULATE_READ:
case MADV_POPULATE_WRITE:
@ -1096,6 +1126,7 @@ madvise_behavior_valid(int behavior)
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
case MADV_FREE:
case MADV_COLD:
case MADV_PAGEOUT:

View File

@ -3287,19 +3287,35 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf)
if (PageAnon(vmf->page)) {
struct page *page = vmf->page;
/* PageKsm() doesn't necessarily raise the page refcount */
if (PageKsm(page) || page_count(page) != 1)
/*
* We have to verify under page lock: these early checks are
* just an optimization to avoid locking the page and freeing
* the swapcache if there is little hope that we can reuse.
*
* PageKsm() doesn't necessarily raise the page refcount.
*/
if (PageKsm(page) || page_count(page) > 3)
goto copy;
if (!PageLRU(page))
/*
* Note: We cannot easily detect+handle references from
* remote LRU pagevecs or references to PageLRU() pages.
*/
lru_add_drain();
if (page_count(page) > 1 + PageSwapCache(page))
goto copy;
if (!trylock_page(page))
goto copy;
if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
if (PageSwapCache(page))
try_to_free_swap(page);
if (PageKsm(page) || page_count(page) != 1) {
unlock_page(page);
goto copy;
}
/*
* Ok, we've got the only map reference, and the only
* page count reference, and the page is locked,
* it's dark out, and we're wearing sunglasses. Hit it.
* Ok, we've got the only page reference from our mapping
* and the page is locked, it's dark out, and we're wearing
* sunglasses. Hit it.
*/
unlock_page(page);
wp_page_reuse(vmf);
@ -3372,11 +3388,11 @@ void unmap_mapping_folio(struct folio *folio)
details.even_cows = false;
details.single_folio = folio;
i_mmap_lock_write(mapping);
i_mmap_lock_read(mapping);
if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
unmap_mapping_range_tree(&mapping->i_mmap, first_index,
last_index, &details);
i_mmap_unlock_write(mapping);
i_mmap_unlock_read(mapping);
}
/**
@ -3402,11 +3418,11 @@ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
if (last_index < first_index)
last_index = ULONG_MAX;
i_mmap_lock_write(mapping);
i_mmap_lock_read(mapping);
if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
unmap_mapping_range_tree(&mapping->i_mmap, first_index,
last_index, &details);
i_mmap_unlock_write(mapping);
i_mmap_unlock_read(mapping);
}
EXPORT_SYMBOL_GPL(unmap_mapping_pages);
@ -3473,6 +3489,25 @@ static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
return 0;
}
static inline bool should_try_to_free_swap(struct page *page,
struct vm_area_struct *vma,
unsigned int fault_flags)
{
if (!PageSwapCache(page))
return false;
if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
PageMlocked(page))
return true;
/*
* If we want to map a page that's in the swapcache writable, we
* have to detect via the refcount if we're really the exclusive
* user. Try freeing the swapcache to get rid of the swapcache
* reference only in case it's likely that we'll be the exlusive user.
*/
return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
page_count(page) == 2;
}
/*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
@ -3591,21 +3626,39 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
goto out_release;
}
/*
* Make sure try_to_free_swap or reuse_swap_page or swapoff did not
* release the swapcache from under us. The page pin, and pte_same
* test below, are not enough to exclude that. Even if it is still
* swapcache, we need to check that the page's swap has not changed.
*/
if (unlikely((!PageSwapCache(page) ||
page_private(page) != entry.val)) && swapcache)
goto out_page;
if (swapcache) {
/*
* Make sure try_to_free_swap or swapoff did not release the
* swapcache from under us. The page pin, and pte_same test
* below, are not enough to exclude that. Even if it is still
* swapcache, we need to check that the page's swap has not
* changed.
*/
if (unlikely(!PageSwapCache(page) ||
page_private(page) != entry.val))
goto out_page;
page = ksm_might_need_to_copy(page, vma, vmf->address);
if (unlikely(!page)) {
ret = VM_FAULT_OOM;
page = swapcache;
goto out_page;
/*
* KSM sometimes has to copy on read faults, for example, if
* page->index of !PageKSM() pages would be nonlinear inside the
* anon VMA -- PageKSM() is lost on actual swapout.
*/
page = ksm_might_need_to_copy(page, vma, vmf->address);
if (unlikely(!page)) {
ret = VM_FAULT_OOM;
page = swapcache;
goto out_page;
}
/*
* If we want to map a page that's in the swapcache writable, we
* have to detect via the refcount if we're really the exclusive
* owner. Try removing the extra reference from the local LRU
* pagevecs if required.
*/
if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
!PageKsm(page) && !PageLRU(page))
lru_add_drain();
}
cgroup_throttle_swaprate(page, GFP_KERNEL);
@ -3624,19 +3677,25 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
}
/*
* The page isn't present yet, go ahead with the fault.
*
* Be careful about the sequence of operations here.
* To get its accounting right, reuse_swap_page() must be called
* while the page is counted on swap but not yet in mapcount i.e.
* before page_add_anon_rmap() and swap_free(); try_to_free_swap()
* must be called after the swap_free(), or it will never succeed.
* Remove the swap entry and conditionally try to free up the swapcache.
* We're already holding a reference on the page but haven't mapped it
* yet.
*/
swap_free(entry);
if (should_try_to_free_swap(page, vma, vmf->flags))
try_to_free_swap(page);
inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
pte = mk_pte(page, vma->vm_page_prot);
if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
/*
* Same logic as in do_wp_page(); however, optimize for fresh pages
* that are certainly not shared because we just allocated them without
* exposing them to the swapcache.
*/
if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
(page != swapcache || page_count(page) == 1)) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
vmf->flags &= ~FAULT_FLAG_WRITE;
ret |= VM_FAULT_WRITE;
@ -3662,10 +3721,6 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
swap_free(entry);
if (mem_cgroup_swap_full(page) ||
(vma->vm_flags & VM_LOCKED) || PageMlocked(page))
try_to_free_swap(page);
unlock_page(page);
if (page != swapcache && swapcache) {
/*

View File

@ -456,8 +456,6 @@ void free_zone_device_page(struct page *page)
if (WARN_ON_ONCE(!page->pgmap->ops || !page->pgmap->ops->page_free))
return;
__ClearPageWaiters(page);
mem_cgroup_uncharge(page_folio(page));
/*

View File

@ -53,7 +53,6 @@
#include <asm/tlbflush.h>
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>
#include "internal.h"
@ -249,6 +248,9 @@ static bool remove_migration_pte(struct folio *folio,
if (vma->vm_flags & VM_LOCKED)
mlock_page_drain(smp_processor_id());
trace_remove_migration_pte(pvmw.address, pte_val(pte),
compound_order(new));
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, pvmw.address, pvmw.pte);
}

View File

@ -2465,16 +2465,14 @@ static void folio_account_dirtied(struct folio *folio,
*
* Caller must hold lock_page_memcg().
*/
void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
struct bdi_writeback *wb)
void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
{
if (mapping_can_writeback(mapping)) {
long nr = folio_nr_pages(folio);
lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
task_io_account_cancelled_write(nr * PAGE_SIZE);
}
long nr = folio_nr_pages(folio);
lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
task_io_account_cancelled_write(nr * PAGE_SIZE);
}
/*
@ -2683,7 +2681,7 @@ void __folio_cancel_dirty(struct folio *folio)
wb = unlocked_inode_to_wb_begin(inode, &cookie);
if (folio_test_clear_dirty(folio))
folio_account_cleaned(folio, mapping, wb);
folio_account_cleaned(folio, wb);
unlocked_inode_to_wb_end(inode, &cookie);
folio_memcg_unlock(folio);

View File

@ -378,25 +378,9 @@ int page_group_by_mobility_disabled __read_mostly;
*/
static DEFINE_STATIC_KEY_TRUE(deferred_pages);
/*
* Calling kasan_poison_pages() only after deferred memory initialization
* has completed. Poisoning pages during deferred memory init will greatly
* lengthen the process and cause problem in large memory systems as the
* deferred pages initialization is done with interrupt disabled.
*
* Assuming that there will be no reference to those newly initialized
* pages before they are ever allocated, this should have no effect on
* KASAN memory tracking as the poison will be properly inserted at page
* allocation time. The only corner case is when pages are allocated by
* on-demand allocation and then freed again before the deferred pages
* initialization is done, but this is not likely to happen.
*/
static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
static inline bool deferred_pages_enabled(void)
{
return static_branch_unlikely(&deferred_pages) ||
(!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
PageSkipKASanPoison(page);
return static_branch_unlikely(&deferred_pages);
}
/* Returns true if the struct page for the pfn is uninitialised */
@ -447,11 +431,9 @@ defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
return false;
}
#else
static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
static inline bool deferred_pages_enabled(void)
{
return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
PageSkipKASanPoison(page);
return false;
}
static inline bool early_page_uninitialised(unsigned long pfn)
@ -1267,16 +1249,39 @@ static int free_tail_pages_check(struct page *head_page, struct page *page)
return ret;
}
static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
/*
* Skip KASAN memory poisoning when either:
*
* 1. Deferred memory initialization has not yet completed,
* see the explanation below.
* 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
* see the comment next to it.
* 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
* see the comment next to it.
*
* Poisoning pages during deferred memory init will greatly lengthen the
* process and cause problem in large memory systems as the deferred pages
* initialization is done with interrupt disabled.
*
* Assuming that there will be no reference to those newly initialized
* pages before they are ever allocated, this should have no effect on
* KASAN memory tracking as the poison will be properly inserted at page
* allocation time. The only corner case is when pages are allocated by
* on-demand allocation and then freed again before the deferred pages
* initialization is done, but this is not likely to happen.
*/
static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
{
return deferred_pages_enabled() ||
(!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
PageSkipKASanPoison(page);
}
static void kernel_init_free_pages(struct page *page, int numpages)
{
int i;
if (zero_tags) {
for (i = 0; i < numpages; i++)
tag_clear_highpage(page + i);
return;
}
/* s390's use of memset() could override KASAN redzones. */
kasan_disable_current();
for (i = 0; i < numpages; i++) {
@ -1292,7 +1297,7 @@ static __always_inline bool free_pages_prepare(struct page *page,
unsigned int order, bool check_free, fpi_t fpi_flags)
{
int bad = 0;
bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
bool init = want_init_on_free();
VM_BUG_ON_PAGE(PageTail(page), page);
@ -1359,23 +1364,21 @@ static __always_inline bool free_pages_prepare(struct page *page,
/*
* As memory initialization might be integrated into KASAN,
* kasan_free_pages and kernel_init_free_pages must be
* KASAN poisoning and memory initialization code must be
* kept together to avoid discrepancies in behavior.
*
* With hardware tag-based KASAN, memory tags must be set before the
* page becomes unavailable via debug_pagealloc or arch_free_page.
*/
if (kasan_has_integrated_init()) {
if (!skip_kasan_poison)
kasan_free_pages(page, order);
} else {
bool init = want_init_on_free();
if (!should_skip_kasan_poison(page, fpi_flags)) {
kasan_poison_pages(page, order, init);
if (init)
kernel_init_free_pages(page, 1 << order, false);
if (!skip_kasan_poison)
kasan_poison_pages(page, order, init);
/* Memory is already initialized if KASAN did it internally. */
if (kasan_has_integrated_init())
init = false;
}
if (init)
kernel_init_free_pages(page, 1 << order);
/*
* arch_free_page() can make the page's contents inaccessible. s390
@ -2340,9 +2343,43 @@ static inline bool check_new_pcp(struct page *page, unsigned int order)
}
#endif /* CONFIG_DEBUG_VM */
static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
{
/* Don't skip if a software KASAN mode is enabled. */
if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
IS_ENABLED(CONFIG_KASAN_SW_TAGS))
return false;
/* Skip, if hardware tag-based KASAN is not enabled. */
if (!kasan_hw_tags_enabled())
return true;
/*
* With hardware tag-based KASAN enabled, skip if either:
*
* 1. Memory tags have already been cleared via tag_clear_highpage().
* 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
*/
return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
}
static inline bool should_skip_init(gfp_t flags)
{
/* Don't skip, if hardware tag-based KASAN is not enabled. */
if (!kasan_hw_tags_enabled())
return false;
/* For hardware tag-based KASAN, skip if requested. */
return (flags & __GFP_SKIP_ZERO);
}
inline void post_alloc_hook(struct page *page, unsigned int order,
gfp_t gfp_flags)
{
bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
!should_skip_init(gfp_flags);
bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
set_page_private(page, 0);
set_page_refcounted(page);
@ -2358,19 +2395,38 @@ inline void post_alloc_hook(struct page *page, unsigned int order,
/*
* As memory initialization might be integrated into KASAN,
* kasan_alloc_pages and kernel_init_free_pages must be
* KASAN unpoisoning and memory initializion code must be
* kept together to avoid discrepancies in behavior.
*/
if (kasan_has_integrated_init()) {
kasan_alloc_pages(page, order, gfp_flags);
} else {
bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
kasan_unpoison_pages(page, order, init);
if (init)
kernel_init_free_pages(page, 1 << order,
gfp_flags & __GFP_ZEROTAGS);
/*
* If memory tags should be zeroed (which happens only when memory
* should be initialized as well).
*/
if (init_tags) {
int i;
/* Initialize both memory and tags. */
for (i = 0; i != 1 << order; ++i)
tag_clear_highpage(page + i);
/* Note that memory is already initialized by the loop above. */
init = false;
}
if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
/* Unpoison shadow memory or set memory tags. */
kasan_unpoison_pages(page, order, init);
/* Note that memory is already initialized by KASAN. */
if (kasan_has_integrated_init())
init = false;
}
/* If memory is still not initialized, do it now. */
if (init)
kernel_init_free_pages(page, 1 << order);
/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
SetPageSkipKASanPoison(page);
set_page_owner(page, order, gfp_flags);
page_table_check_alloc(page, order);

View File

@ -10,6 +10,7 @@
#include <linux/migrate.h>
#include <linux/stackdepot.h>
#include <linux/seq_file.h>
#include <linux/memcontrol.h>
#include <linux/sched/clock.h>
#include "internal.h"
@ -28,7 +29,9 @@ struct page_owner {
depot_stack_handle_t free_handle;
u64 ts_nsec;
u64 free_ts_nsec;
char comm[TASK_COMM_LEN];
pid_t pid;
pid_t tgid;
};
static bool page_owner_enabled = false;
@ -163,7 +166,10 @@ static inline void __set_page_owner_handle(struct page_ext *page_ext,
page_owner->gfp_mask = gfp_mask;
page_owner->last_migrate_reason = -1;
page_owner->pid = current->pid;
page_owner->tgid = current->tgid;
page_owner->ts_nsec = local_clock();
strlcpy(page_owner->comm, current->comm,
sizeof(page_owner->comm));
__set_bit(PAGE_EXT_OWNER, &page_ext->flags);
__set_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags);
@ -229,8 +235,10 @@ void __folio_copy_owner(struct folio *newfolio, struct folio *old)
old_page_owner->last_migrate_reason;
new_page_owner->handle = old_page_owner->handle;
new_page_owner->pid = old_page_owner->pid;
new_page_owner->tgid = old_page_owner->tgid;
new_page_owner->ts_nsec = old_page_owner->ts_nsec;
new_page_owner->free_ts_nsec = old_page_owner->ts_nsec;
strcpy(new_page_owner->comm, old_page_owner->comm);
/*
* We don't clear the bit on the old folio as it's going to be freed
@ -325,6 +333,45 @@ void pagetypeinfo_showmixedcount_print(struct seq_file *m,
seq_putc(m, '\n');
}
/*
* Looking for memcg information and print it out
*/
static inline int print_page_owner_memcg(char *kbuf, size_t count, int ret,
struct page *page)
{
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
struct mem_cgroup *memcg;
bool online;
char name[80];
rcu_read_lock();
memcg_data = READ_ONCE(page->memcg_data);
if (!memcg_data)
goto out_unlock;
if (memcg_data & MEMCG_DATA_OBJCGS)
ret += scnprintf(kbuf + ret, count - ret,
"Slab cache page\n");
memcg = page_memcg_check(page);
if (!memcg)
goto out_unlock;
online = (memcg->css.flags & CSS_ONLINE);
cgroup_name(memcg->css.cgroup, name, sizeof(name));
ret += scnprintf(kbuf + ret, count - ret,
"Charged %sto %smemcg %s\n",
PageMemcgKmem(page) ? "(via objcg) " : "",
online ? "" : "offline ",
name);
out_unlock:
rcu_read_unlock();
#endif /* CONFIG_MEMCG */
return ret;
}
static ssize_t
print_page_owner(char __user *buf, size_t count, unsigned long pfn,
struct page *page, struct page_owner *page_owner,
@ -338,19 +385,17 @@ print_page_owner(char __user *buf, size_t count, unsigned long pfn,
if (!kbuf)
return -ENOMEM;
ret = snprintf(kbuf, count,
"Page allocated via order %u, mask %#x(%pGg), pid %d, ts %llu ns, free_ts %llu ns\n",
ret = scnprintf(kbuf, count,
"Page allocated via order %u, mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu ns, free_ts %llu ns\n",
page_owner->order, page_owner->gfp_mask,
&page_owner->gfp_mask, page_owner->pid,
page_owner->tgid, page_owner->comm,
page_owner->ts_nsec, page_owner->free_ts_nsec);
if (ret >= count)
goto err;
/* Print information relevant to grouping pages by mobility */
pageblock_mt = get_pageblock_migratetype(page);
page_mt = gfp_migratetype(page_owner->gfp_mask);
ret += snprintf(kbuf + ret, count - ret,
ret += scnprintf(kbuf + ret, count - ret,
"PFN %lu type %s Block %lu type %s Flags %pGp\n",
pfn,
migratetype_names[page_mt],
@ -358,21 +403,18 @@ print_page_owner(char __user *buf, size_t count, unsigned long pfn,
migratetype_names[pageblock_mt],
&page->flags);
if (ret >= count)
goto err;
ret += stack_depot_snprint(handle, kbuf + ret, count - ret, 0);
if (ret >= count)
goto err;
if (page_owner->last_migrate_reason != -1) {
ret += snprintf(kbuf + ret, count - ret,
ret += scnprintf(kbuf + ret, count - ret,
"Page has been migrated, last migrate reason: %s\n",
migrate_reason_names[page_owner->last_migrate_reason]);
if (ret >= count)
goto err;
}
ret = print_page_owner_memcg(kbuf, count, ret, page);
ret += snprintf(kbuf + ret, count - ret, "\n");
if (ret >= count)
goto err;
@ -415,9 +457,10 @@ void __dump_page_owner(const struct page *page)
else
pr_alert("page_owner tracks the page as freed\n");
pr_alert("page last allocated via order %u, migratetype %s, gfp_mask %#x(%pGg), pid %d, ts %llu, free_ts %llu\n",
pr_alert("page last allocated via order %u, migratetype %s, gfp_mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu, free_ts %llu\n",
page_owner->order, migratetype_names[mt], gfp_mask, &gfp_mask,
page_owner->pid, page_owner->ts_nsec, page_owner->free_ts_nsec);
page_owner->pid, page_owner->tgid, page_owner->comm,
page_owner->ts_nsec, page_owner->free_ts_nsec);
handle = READ_ONCE(page_owner->handle);
if (!handle)

View File

@ -76,7 +76,9 @@
#include <asm/tlbflush.h>
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>
#include <trace/events/migrate.h>
#include "internal.h"
@ -1236,14 +1238,14 @@ void page_add_new_anon_rmap(struct page *page,
void page_add_file_rmap(struct page *page,
struct vm_area_struct *vma, bool compound)
{
int i, nr = 1;
int i, nr = 0;
VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
lock_page_memcg(page);
if (compound && PageTransHuge(page)) {
int nr_pages = thp_nr_pages(page);
for (i = 0, nr = 0; i < nr_pages; i++) {
for (i = 0; i < nr_pages; i++) {
if (atomic_inc_and_test(&page[i]._mapcount))
nr++;
}
@ -1271,11 +1273,12 @@ void page_add_file_rmap(struct page *page,
VM_WARN_ON_ONCE(!PageLocked(page));
SetPageDoubleMap(compound_head(page));
}
if (!atomic_inc_and_test(&page->_mapcount))
goto out;
if (atomic_inc_and_test(&page->_mapcount))
nr++;
}
__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
out:
if (nr)
__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
unlock_page_memcg(page);
mlock_vma_page(page, vma, compound);
@ -1283,7 +1286,7 @@ void page_add_file_rmap(struct page *page,
static void page_remove_file_rmap(struct page *page, bool compound)
{
int i, nr = 1;
int i, nr = 0;
VM_BUG_ON_PAGE(compound && !PageHead(page), page);
@ -1298,12 +1301,12 @@ static void page_remove_file_rmap(struct page *page, bool compound)
if (compound && PageTransHuge(page)) {
int nr_pages = thp_nr_pages(page);
for (i = 0, nr = 0; i < nr_pages; i++) {
for (i = 0; i < nr_pages; i++) {
if (atomic_add_negative(-1, &page[i]._mapcount))
nr++;
}
if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
return;
goto out;
if (PageSwapBacked(page))
__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
-nr_pages);
@ -1311,16 +1314,12 @@ static void page_remove_file_rmap(struct page *page, bool compound)
__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
-nr_pages);
} else {
if (!atomic_add_negative(-1, &page->_mapcount))
return;
if (atomic_add_negative(-1, &page->_mapcount))
nr++;
}
/*
* We use the irq-unsafe __{inc|mod}_lruvec_page_state because
* these counters are not modified in interrupt context, and
* pte lock(a spinlock) is held, which implies preemption disabled.
*/
__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
out:
if (nr)
__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
}
static void page_remove_anon_compound_rmap(struct page *page)
@ -1589,7 +1588,30 @@ static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
/* MADV_FREE page check */
if (!folio_test_swapbacked(folio)) {
if (!folio_test_dirty(folio)) {
int ref_count, map_count;
/*
* Synchronize with gup_pte_range():
* - clear PTE; barrier; read refcount
* - inc refcount; barrier; read PTE
*/
smp_mb();
ref_count = folio_ref_count(folio);
map_count = folio_mapcount(folio);
/*
* Order reads for page refcount and dirty flag
* (see comments in __remove_mapping()).
*/
smp_rmb();
/*
* The only page refs must be one from isolation
* plus the rmap(s) (dropped by discard:).
*/
if (ref_count == 1 + map_count &&
!folio_test_dirty(folio)) {
/* Invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm,
address, address + PAGE_SIZE);
@ -1852,6 +1874,8 @@ static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
if (pte_swp_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
compound_order(&folio->page));
/*
* No need to invalidate here it will synchronize on
* against the special swap migration pte.
@ -1920,6 +1944,8 @@ static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
if (pte_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, address, pvmw.pte, swp_pte);
trace_set_migration_pte(address, pte_val(swp_pte),
compound_order(&folio->page));
/*
* No need to invalidate here it will synchronize on
* against the special swap migration pte.

View File

@ -97,7 +97,6 @@ static void __page_cache_release(struct page *page)
mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
}
__ClearPageWaiters(page);
}
static void __put_single_page(struct page *page)
@ -152,7 +151,6 @@ void put_pages_list(struct list_head *pages)
continue;
}
/* Cannot be PageLRU because it's passed to us using the lru */
__ClearPageWaiters(page);
}
free_unref_page_list(pages);
@ -971,8 +969,6 @@ void release_pages(struct page **pages, int nr)
count_vm_event(UNEVICTABLE_PGCLEARED);
}
__ClearPageWaiters(page);
list_add(&page->lru, &pages_to_free);
}
if (lruvec)

View File

@ -1167,16 +1167,6 @@ static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
return NULL;
}
static struct swap_info_struct *swap_info_get(swp_entry_t entry)
{
struct swap_info_struct *p;
p = _swap_info_get(entry);
if (p)
spin_lock(&p->lock);
return p;
}
static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
struct swap_info_struct *q)
{
@ -1601,100 +1591,6 @@ static bool page_swapped(struct page *page)
return false;
}
static int page_trans_huge_map_swapcount(struct page *page,
int *total_swapcount)
{
int i, map_swapcount, _total_swapcount;
unsigned long offset = 0;
struct swap_info_struct *si;
struct swap_cluster_info *ci = NULL;
unsigned char *map = NULL;
int swapcount = 0;
/* hugetlbfs shouldn't call it */
VM_BUG_ON_PAGE(PageHuge(page), page);
if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
if (PageSwapCache(page))
swapcount = page_swapcount(page);
if (total_swapcount)
*total_swapcount = swapcount;
return swapcount + page_trans_huge_mapcount(page);
}
page = compound_head(page);
_total_swapcount = map_swapcount = 0;
if (PageSwapCache(page)) {
swp_entry_t entry;
entry.val = page_private(page);
si = _swap_info_get(entry);
if (si) {
map = si->swap_map;
offset = swp_offset(entry);
}
}
if (map)
ci = lock_cluster(si, offset);
for (i = 0; i < HPAGE_PMD_NR; i++) {
int mapcount = atomic_read(&page[i]._mapcount) + 1;
if (map) {
swapcount = swap_count(map[offset + i]);
_total_swapcount += swapcount;
}
map_swapcount = max(map_swapcount, mapcount + swapcount);
}
unlock_cluster(ci);
if (PageDoubleMap(page))
map_swapcount -= 1;
if (total_swapcount)
*total_swapcount = _total_swapcount;
return map_swapcount + compound_mapcount(page);
}
/*
* We can write to an anon page without COW if there are no other references
* to it. And as a side-effect, free up its swap: because the old content
* on disk will never be read, and seeking back there to write new content
* later would only waste time away from clustering.
*/
bool reuse_swap_page(struct page *page)
{
int count, total_swapcount;
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (unlikely(PageKsm(page)))
return false;
count = page_trans_huge_map_swapcount(page, &total_swapcount);
if (count == 1 && PageSwapCache(page) &&
(likely(!PageTransCompound(page)) ||
/* The remaining swap count will be freed soon */
total_swapcount == page_swapcount(page))) {
if (!PageWriteback(page)) {
page = compound_head(page);
delete_from_swap_cache(page);
SetPageDirty(page);
} else {
swp_entry_t entry;
struct swap_info_struct *p;
entry.val = page_private(page);
p = swap_info_get(entry);
if (p->flags & SWP_STABLE_WRITES) {
spin_unlock(&p->lock);
return false;
}
spin_unlock(&p->lock);
}
}
return count <= 1;
}
/*
* If swap is getting full, or if there are no more mappings of this page,
* then try_to_free_swap is called to free its swap space.

View File

@ -74,7 +74,7 @@ static const bool vmap_allow_huge = false;
bool is_vmalloc_addr(const void *x)
{
unsigned long addr = (unsigned long)x;
unsigned long addr = (unsigned long)kasan_reset_tag(x);
return addr >= VMALLOC_START && addr < VMALLOC_END;
}
@ -631,7 +631,7 @@ int is_vmalloc_or_module_addr(const void *x)
* just put it in the vmalloc space.
*/
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
unsigned long addr = (unsigned long)x;
unsigned long addr = (unsigned long)kasan_reset_tag(x);
if (addr >= MODULES_VADDR && addr < MODULES_END)
return 1;
#endif
@ -795,6 +795,8 @@ static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
struct vmap_area *va = NULL;
struct rb_node *n = vmap_area_root.rb_node;
addr = (unsigned long)kasan_reset_tag((void *)addr);
while (n) {
struct vmap_area *tmp;
@ -816,6 +818,8 @@ static struct vmap_area *__find_vmap_area(unsigned long addr)
{
struct rb_node *n = vmap_area_root.rb_node;
addr = (unsigned long)kasan_reset_tag((void *)addr);
while (n) {
struct vmap_area *va;
@ -2166,7 +2170,7 @@ EXPORT_SYMBOL_GPL(vm_unmap_aliases);
void vm_unmap_ram(const void *mem, unsigned int count)
{
unsigned long size = (unsigned long)count << PAGE_SHIFT;
unsigned long addr = (unsigned long)mem;
unsigned long addr = (unsigned long)kasan_reset_tag(mem);
struct vmap_area *va;
might_sleep();
@ -2227,14 +2231,19 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node)
mem = (void *)addr;
}
kasan_unpoison_vmalloc(mem, size);
if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
pages, PAGE_SHIFT) < 0) {
vm_unmap_ram(mem, count);
return NULL;
}
/*
* Mark the pages as accessible, now that they are mapped.
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
return mem;
}
EXPORT_SYMBOL(vm_map_ram);
@ -2460,10 +2469,20 @@ static struct vm_struct *__get_vm_area_node(unsigned long size,
return NULL;
}
kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
setup_vmalloc_vm(area, va, flags, caller);
/*
* Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
* best-effort approach, as they can be mapped outside of vmalloc code.
* For VM_ALLOC mappings, the pages are marked as accessible after
* getting mapped in __vmalloc_node_range().
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
if (!(flags & VM_ALLOC))
area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
KASAN_VMALLOC_PROT_NORMAL);
return area;
}
@ -2547,7 +2566,7 @@ struct vm_struct *remove_vm_area(const void *addr)
va->vm = NULL;
spin_unlock(&vmap_area_lock);
kasan_free_shadow(vm);
kasan_free_module_shadow(vm);
free_unmap_vmap_area(va);
return vm;
@ -3071,7 +3090,8 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
const void *caller)
{
struct vm_struct *area;
void *addr;
void *ret;
kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
unsigned long real_size = size;
unsigned long real_align = align;
unsigned int shift = PAGE_SHIFT;
@ -3124,10 +3144,50 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
goto fail;
}
addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
if (!addr)
/*
* Prepare arguments for __vmalloc_area_node() and
* kasan_unpoison_vmalloc().
*/
if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
if (kasan_hw_tags_enabled()) {
/*
* Modify protection bits to allow tagging.
* This must be done before mapping.
*/
prot = arch_vmap_pgprot_tagged(prot);
/*
* Skip page_alloc poisoning and zeroing for physical
* pages backing VM_ALLOC mapping. Memory is instead
* poisoned and zeroed by kasan_unpoison_vmalloc().
*/
gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
}
/* Take note that the mapping is PAGE_KERNEL. */
kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
}
/* Allocate physical pages and map them into vmalloc space. */
ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
if (!ret)
goto fail;
/*
* Mark the pages as accessible, now that they are mapped.
* The init condition should match the one in post_alloc_hook()
* (except for the should_skip_init() check) to make sure that memory
* is initialized under the same conditions regardless of the enabled
* KASAN mode.
* Tag-based KASAN modes only assign tags to normal non-executable
* allocations, see __kasan_unpoison_vmalloc().
*/
kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
kasan_flags |= KASAN_VMALLOC_INIT;
/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
* flag. It means that vm_struct is not fully initialized.
@ -3139,7 +3199,7 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
if (!(vm_flags & VM_DEFER_KMEMLEAK))
kmemleak_vmalloc(area, size, gfp_mask);
return addr;
return area->addr;
fail:
if (shift > PAGE_SHIFT) {
@ -3424,6 +3484,8 @@ long vread(char *buf, char *addr, unsigned long count)
unsigned long buflen = count;
unsigned long n;
addr = kasan_reset_tag(addr);
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
@ -3809,9 +3871,6 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
for (area = 0; area < nr_vms; area++) {
if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
goto err_free_shadow;
kasan_unpoison_vmalloc((void *)vas[area]->va_start,
sizes[area]);
}
/* insert all vm's */
@ -3824,6 +3883,16 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
}
spin_unlock(&vmap_area_lock);
/*
* Mark allocated areas as accessible. Do it now as a best-effort
* approach, as they can be mapped outside of vmalloc code.
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
for (area = 0; area < nr_vms; area++)
vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
kfree(vas);
return vms;

View File

@ -28,6 +28,7 @@
*
* When all tests are finished, clean up and exit the program with one of:
*
* ksft_finished();
* ksft_exit(condition);
* ksft_exit_pass();
* ksft_exit_fail();
@ -235,6 +236,15 @@ static inline int ksft_exit_fail(void)
ksft_exit_fail(); \
} while (0)
/**
* ksft_finished() - Exit selftest with success if all tests passed
*/
#define ksft_finished() \
ksft_exit(ksft_plan == \
ksft_cnt.ksft_pass + \
ksft_cnt.ksft_xfail + \
ksft_cnt.ksft_xskip)
static inline int ksft_exit_fail_msg(const char *msg, ...)
{
int saved_errno = errno;

View File

@ -3,6 +3,7 @@ hugepage-mmap
hugepage-mremap
hugepage-shm
hugepage-vmemmap
hugetlb-madvise
khugepaged
map_hugetlb
map_populate

View File

@ -30,6 +30,7 @@ LDLIBS = -lrt -lpthread
TEST_GEN_FILES = compaction_test
TEST_GEN_FILES += gup_test
TEST_GEN_FILES += hmm-tests
TEST_GEN_FILES += hugetlb-madvise
TEST_GEN_FILES += hugepage-mmap
TEST_GEN_FILES += hugepage-mremap
TEST_GEN_FILES += hugepage-shm

View File

@ -10,8 +10,9 @@
#include <assert.h>
#include "../../../../mm/gup_test.h"
#include "util.h"
#define MB (1UL << 20)
#define PAGE_SIZE sysconf(_SC_PAGESIZE)
/* Just the flags we need, copied from mm.h: */
#define FOLL_WRITE 0x01 /* check pte is writable */

View File

@ -0,0 +1,410 @@
// SPDX-License-Identifier: GPL-2.0
/*
* hugepage-madvise:
*
* Basic functional testing of madvise MADV_DONTNEED and MADV_REMOVE
* on hugetlb mappings.
*
* Before running this test, make sure the administrator has pre-allocated
* at least MIN_FREE_PAGES hugetlb pages and they are free. In addition,
* the test takes an argument that is the path to a file in a hugetlbfs
* filesystem. Therefore, a hugetlbfs filesystem must be mounted on some
* directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#define __USE_GNU
#include <fcntl.h>
#define USAGE "USAGE: %s <hugepagefile_name>\n"
#define MIN_FREE_PAGES 20
#define NR_HUGE_PAGES 10 /* common number of pages to map/allocate */
#define validate_free_pages(exp_free) \
do { \
int fhp = get_free_hugepages(); \
if (fhp != (exp_free)) { \
printf("Unexpected number of free huge " \
"pages line %d\n", __LINE__); \
exit(1); \
} \
} while (0)
unsigned long huge_page_size;
unsigned long base_page_size;
/*
* default_huge_page_size copied from mlock2-tests.c
*/
unsigned long default_huge_page_size(void)
{
unsigned long hps = 0;
char *line = NULL;
size_t linelen = 0;
FILE *f = fopen("/proc/meminfo", "r");
if (!f)
return 0;
while (getline(&line, &linelen, f) > 0) {
if (sscanf(line, "Hugepagesize: %lu kB", &hps) == 1) {
hps <<= 10;
break;
}
}
free(line);
fclose(f);
return hps;
}
unsigned long get_free_hugepages(void)
{
unsigned long fhp = 0;
char *line = NULL;
size_t linelen = 0;
FILE *f = fopen("/proc/meminfo", "r");
if (!f)
return fhp;
while (getline(&line, &linelen, f) > 0) {
if (sscanf(line, "HugePages_Free: %lu", &fhp) == 1)
break;
}
free(line);
fclose(f);
return fhp;
}
void write_fault_pages(void *addr, unsigned long nr_pages)
{
unsigned long i;
for (i = 0; i < nr_pages; i++)
*((unsigned long *)(addr + (i * huge_page_size))) = i;
}
void read_fault_pages(void *addr, unsigned long nr_pages)
{
unsigned long i, tmp;
for (i = 0; i < nr_pages; i++)
tmp += *((unsigned long *)(addr + (i * huge_page_size)));
}
int main(int argc, char **argv)
{
unsigned long free_hugepages;
void *addr, *addr2;
int fd;
int ret;
if (argc != 2) {
printf(USAGE, argv[0]);
exit(1);
}
huge_page_size = default_huge_page_size();
if (!huge_page_size) {
printf("Unable to determine huge page size, exiting!\n");
exit(1);
}
base_page_size = sysconf(_SC_PAGE_SIZE);
if (!huge_page_size) {
printf("Unable to determine base page size, exiting!\n");
exit(1);
}
free_hugepages = get_free_hugepages();
if (free_hugepages < MIN_FREE_PAGES) {
printf("Not enough free huge pages to test, exiting!\n");
exit(1);
}
fd = open(argv[1], O_CREAT | O_RDWR, 0755);
if (fd < 0) {
perror("Open failed");
exit(1);
}
/*
* Test validity of MADV_DONTNEED addr and length arguments. mmap
* size is NR_HUGE_PAGES + 2. One page at the beginning and end of
* the mapping will be unmapped so we KNOW there is nothing mapped
* there.
*/
addr = mmap(NULL, (NR_HUGE_PAGES + 2) * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
-1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
if (munmap(addr, huge_page_size) ||
munmap(addr + (NR_HUGE_PAGES + 1) * huge_page_size,
huge_page_size)) {
perror("munmap");
exit(1);
}
addr = addr + huge_page_size;
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* addr before mapping should fail */
ret = madvise(addr - base_page_size, NR_HUGE_PAGES * huge_page_size,
MADV_DONTNEED);
if (!ret) {
printf("Unexpected success of madvise call with invalid addr line %d\n",
__LINE__);
exit(1);
}
/* addr + length after mapping should fail */
ret = madvise(addr, (NR_HUGE_PAGES * huge_page_size) + base_page_size,
MADV_DONTNEED);
if (!ret) {
printf("Unexpected success of madvise call with invalid length line %d\n",
__LINE__);
exit(1);
}
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
/*
* Test alignment of MADV_DONTNEED addr and length arguments
*/
addr = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
-1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* addr is not huge page size aligned and should fail */
ret = madvise(addr + base_page_size,
NR_HUGE_PAGES * huge_page_size - base_page_size,
MADV_DONTNEED);
if (!ret) {
printf("Unexpected success of madvise call with unaligned start address %d\n",
__LINE__);
exit(1);
}
/* addr + length should be aligned up to huge page size */
if (madvise(addr,
((NR_HUGE_PAGES - 1) * huge_page_size) + base_page_size,
MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
/* should free all pages in mapping */
validate_free_pages(free_hugepages);
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
/*
* Test MADV_DONTNEED on anonymous private mapping
*/
addr = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
-1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
/* should free all pages in mapping */
validate_free_pages(free_hugepages);
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
/*
* Test MADV_DONTNEED on private mapping of hugetlb file
*/
if (fallocate(fd, 0, 0, NR_HUGE_PAGES * huge_page_size)) {
perror("fallocate");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
addr = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
/* read should not consume any pages */
read_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* madvise should not free any pages */
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* writes should allocate private pages */
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - (2 * NR_HUGE_PAGES));
/* madvise should free private pages */
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* writes should allocate private pages */
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - (2 * NR_HUGE_PAGES));
/*
* The fallocate below certainly should free the pages associated
* with the file. However, pages in the private mapping are also
* freed. This is not the 'correct' behavior, but is expected
* because this is how it has worked since the initial hugetlb
* implementation.
*/
if (fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
0, NR_HUGE_PAGES * huge_page_size)) {
perror("fallocate");
exit(1);
}
validate_free_pages(free_hugepages);
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
/*
* Test MADV_DONTNEED on shared mapping of hugetlb file
*/
if (fallocate(fd, 0, 0, NR_HUGE_PAGES * huge_page_size)) {
perror("fallocate");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
addr = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
/* write should not consume any pages */
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* madvise should not free any pages */
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/*
* Test MADV_REMOVE on shared mapping of hugetlb file
*
* madvise is same as hole punch and should free all pages.
*/
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_REMOVE)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages);
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
/*
* Test MADV_REMOVE on shared and private mapping of hugetlb file
*/
if (fallocate(fd, 0, 0, NR_HUGE_PAGES * huge_page_size)) {
perror("fallocate");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
addr = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
exit(1);
}
/* shared write should not consume any additional pages */
write_fault_pages(addr, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
addr2 = mmap(NULL, NR_HUGE_PAGES * huge_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
if (addr2 == MAP_FAILED) {
perror("mmap");
exit(1);
}
/* private read should not consume any pages */
read_fault_pages(addr2, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* private write should consume additional pages */
write_fault_pages(addr2, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - (2 * NR_HUGE_PAGES));
/* madvise of shared mapping should not free any pages */
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages - (2 * NR_HUGE_PAGES));
/* madvise of private mapping should free private pages */
if (madvise(addr2, NR_HUGE_PAGES * huge_page_size, MADV_DONTNEED)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages - NR_HUGE_PAGES);
/* private write should consume additional pages again */
write_fault_pages(addr2, NR_HUGE_PAGES);
validate_free_pages(free_hugepages - (2 * NR_HUGE_PAGES));
/*
* madvise should free both file and private pages although this is
* not correct. private pages should not be freed, but this is
* expected. See comment associated with FALLOC_FL_PUNCH_HOLE call.
*/
if (madvise(addr, NR_HUGE_PAGES * huge_page_size, MADV_REMOVE)) {
perror("madvise");
exit(1);
}
validate_free_pages(free_hugepages);
(void)munmap(addr, NR_HUGE_PAGES * huge_page_size);
(void)munmap(addr2, NR_HUGE_PAGES * huge_page_size);
close(fd);
unlink(argv[1]);
return 0;
}

View File

@ -12,6 +12,7 @@
#include "../kselftest.h"
#include "../../../../include/vdso/time64.h"
#include "util.h"
#define KSM_SYSFS_PATH "/sys/kernel/mm/ksm/"
#define KSM_FP(s) (KSM_SYSFS_PATH s)
@ -22,15 +23,6 @@
#define KSM_MERGE_ACROSS_NODES_DEFAULT true
#define MB (1ul << 20)
#define PAGE_SHIFT 12
#define HPAGE_SHIFT 21
#define PAGE_SIZE (1 << PAGE_SHIFT)
#define HPAGE_SIZE (1 << HPAGE_SHIFT)
#define PAGEMAP_PRESENT(ent) (((ent) & (1ull << 63)) != 0)
#define PAGEMAP_PFN(ent) ((ent) & ((1ull << 55) - 1))
struct ksm_sysfs {
unsigned long max_page_sharing;
unsigned long merge_across_nodes;
@ -456,34 +448,6 @@ static int check_ksm_numa_merge(int mapping, int prot, int timeout, bool merge_a
return KSFT_FAIL;
}
int64_t allocate_transhuge(void *ptr, int pagemap_fd)
{
uint64_t ent[2];
/* drop pmd */
if (mmap(ptr, HPAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANONYMOUS |
MAP_NORESERVE | MAP_PRIVATE, -1, 0) != ptr)
errx(2, "mmap transhuge");
if (madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE))
err(2, "MADV_HUGEPAGE");
/* allocate transparent huge page */
*(volatile void **)ptr = ptr;
if (pread(pagemap_fd, ent, sizeof(ent),
(uintptr_t)ptr >> (PAGE_SHIFT - 3)) != sizeof(ent))
err(2, "read pagemap");
if (PAGEMAP_PRESENT(ent[0]) && PAGEMAP_PRESENT(ent[1]) &&
PAGEMAP_PFN(ent[0]) + 1 == PAGEMAP_PFN(ent[1]) &&
!(PAGEMAP_PFN(ent[0]) & ((1 << (HPAGE_SHIFT - PAGE_SHIFT)) - 1)))
return PAGEMAP_PFN(ent[0]);
return -1;
}
static int ksm_merge_hugepages_time(int mapping, int prot, int timeout, size_t map_size)
{
void *map_ptr, *map_ptr_orig;

View File

@ -282,7 +282,7 @@ int main(int argc, char *argv[])
close(fd);
ksft_exit(!ksft_get_fail_cnt());
ksft_finished();
}
#else /* __NR_memfd_secret */

View File

@ -131,6 +131,18 @@ else
echo "[PASS]"
fi
echo "-----------------------"
echo "running hugetlb-madvise"
echo "-----------------------"
./hugetlb-madvise $mnt/madvise-test
if [ $? -ne 0 ]; then
echo "[FAIL]"
exitcode=1
else
echo "[PASS]"
fi
rm -f $mnt/madvise-test
echo "NOTE: The above hugetlb tests provide minimal coverage. Use"
echo " https://github.com/libhugetlbfs/libhugetlbfs.git for"
echo " hugetlb regression testing."
@ -196,14 +208,13 @@ echo "running userfaultfd_hugetlb"
echo "---------------------------"
# Test requires source and destination huge pages. Size of source
# (half_ufd_size_MB) is passed as argument to test.
./userfaultfd hugetlb $half_ufd_size_MB 32 $mnt/ufd_test_file
./userfaultfd hugetlb $half_ufd_size_MB 32
if [ $? -ne 0 ]; then
echo "[FAIL]"
exitcode=1
else
echo "[PASS]"
fi
rm -f $mnt/ufd_test_file
echo "-------------------------"
echo "running userfaultfd_shmem"

View File

@ -15,48 +15,12 @@
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include "util.h"
#define PAGE_SHIFT 12
#define HPAGE_SHIFT 21
#define PAGE_SIZE (1 << PAGE_SHIFT)
#define HPAGE_SIZE (1 << HPAGE_SHIFT)
#define PAGEMAP_PRESENT(ent) (((ent) & (1ull << 63)) != 0)
#define PAGEMAP_PFN(ent) ((ent) & ((1ull << 55) - 1))
int pagemap_fd;
int backing_fd = -1;
int mmap_flags = MAP_ANONYMOUS | MAP_NORESERVE | MAP_PRIVATE;
#define PROT_RW (PROT_READ | PROT_WRITE)
int64_t allocate_transhuge(void *ptr)
{
uint64_t ent[2];
/* drop pmd */
if (mmap(ptr, HPAGE_SIZE, PROT_RW, MAP_FIXED | mmap_flags,
backing_fd, 0) != ptr)
errx(2, "mmap transhuge");
if (madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE))
err(2, "MADV_HUGEPAGE");
/* allocate transparent huge page */
*(volatile void **)ptr = ptr;
if (pread(pagemap_fd, ent, sizeof(ent),
(uintptr_t)ptr >> (PAGE_SHIFT - 3)) != sizeof(ent))
err(2, "read pagemap");
if (PAGEMAP_PRESENT(ent[0]) && PAGEMAP_PRESENT(ent[1]) &&
PAGEMAP_PFN(ent[0]) + 1 == PAGEMAP_PFN(ent[1]) &&
!(PAGEMAP_PFN(ent[0]) & ((1 << (HPAGE_SHIFT - PAGE_SHIFT)) - 1)))
return PAGEMAP_PFN(ent[0]);
return -1;
}
int main(int argc, char **argv)
{
size_t ram, len;
@ -67,6 +31,7 @@ int main(int argc, char **argv)
double s;
uint8_t *map;
size_t map_len;
int pagemap_fd;
ram = sysconf(_SC_PHYS_PAGES);
if (ram > SIZE_MAX / sysconf(_SC_PAGESIZE) / 4)
@ -122,7 +87,7 @@ int main(int argc, char **argv)
for (p = ptr; p < ptr + len; p += HPAGE_SIZE) {
int64_t pfn;
pfn = allocate_transhuge(p);
pfn = allocate_transhuge(p, pagemap_fd);
if (pfn < 0) {
nr_failed++;

View File

@ -89,7 +89,6 @@ static bool test_uffdio_minor = false;
static bool map_shared;
static int shm_fd;
static int huge_fd;
static char *huge_fd_off0;
static unsigned long long *count_verify;
static int uffd = -1;
static int uffd_flags, finished, *pipefd;
@ -128,9 +127,9 @@ const char *examples =
"./userfaultfd anon 100 99999\n\n"
"# Run share memory test on 1GiB region with 99 bounces:\n"
"./userfaultfd shmem 1000 99\n\n"
"# Run hugetlb memory test on 256MiB region with 50 bounces (using /dev/hugepages/hugefile):\n"
"./userfaultfd hugetlb 256 50 /dev/hugepages/hugefile\n\n"
"# Run the same hugetlb test but using shmem:\n"
"# Run hugetlb memory test on 256MiB region with 50 bounces:\n"
"./userfaultfd hugetlb 256 50\n\n"
"# Run the same hugetlb test but using shared file:\n"
"./userfaultfd hugetlb_shared 256 50 /dev/hugepages/hugefile\n\n"
"# 10MiB-~6GiB 999 bounces anonymous test, "
"continue forever unless an error triggers\n"
@ -227,10 +226,13 @@ static void noop_alias_mapping(__u64 *start, size_t len, unsigned long offset)
static void hugetlb_release_pages(char *rel_area)
{
if (fallocate(huge_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
rel_area == huge_fd_off0 ? 0 : nr_pages * page_size,
nr_pages * page_size))
err("fallocate() failed");
if (!map_shared) {
if (madvise(rel_area, nr_pages * page_size, MADV_DONTNEED))
err("madvise(MADV_DONTNEED) failed");
} else {
if (madvise(rel_area, nr_pages * page_size, MADV_REMOVE))
err("madvise(MADV_REMOVE) failed");
}
}
static void hugetlb_allocate_area(void **alloc_area)
@ -238,26 +240,37 @@ static void hugetlb_allocate_area(void **alloc_area)
void *area_alias = NULL;
char **alloc_area_alias;
*alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
(map_shared ? MAP_SHARED : MAP_PRIVATE) |
MAP_HUGETLB |
(*alloc_area == area_src ? 0 : MAP_NORESERVE),
huge_fd, *alloc_area == area_src ? 0 :
nr_pages * page_size);
if (!map_shared)
*alloc_area = mmap(NULL,
nr_pages * page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB |
(*alloc_area == area_src ? 0 : MAP_NORESERVE),
-1,
0);
else
*alloc_area = mmap(NULL,
nr_pages * page_size,
PROT_READ | PROT_WRITE,
MAP_SHARED |
(*alloc_area == area_src ? 0 : MAP_NORESERVE),
huge_fd,
*alloc_area == area_src ? 0 : nr_pages * page_size);
if (*alloc_area == MAP_FAILED)
err("mmap of hugetlbfs file failed");
if (map_shared) {
area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_HUGETLB,
huge_fd, *alloc_area == area_src ? 0 :
nr_pages * page_size);
area_alias = mmap(NULL,
nr_pages * page_size,
PROT_READ | PROT_WRITE,
MAP_SHARED,
huge_fd,
*alloc_area == area_src ? 0 : nr_pages * page_size);
if (area_alias == MAP_FAILED)
err("mmap of hugetlb file alias failed");
}
if (*alloc_area == area_src) {
huge_fd_off0 = *alloc_area;
alloc_area_alias = &area_src_alias;
} else {
alloc_area_alias = &area_dst_alias;
@ -270,12 +283,7 @@ static void hugetlb_alias_mapping(__u64 *start, size_t len, unsigned long offset
{
if (!map_shared)
return;
/*
* We can't zap just the pagetable with hugetlbfs because
* MADV_DONTEED won't work. So exercise -EEXIST on a alias
* mapping where the pagetables are not established initially,
* this way we'll exercise the -EEXEC at the fs level.
*/
*start = (unsigned long) area_dst_alias + offset;
}
@ -428,7 +436,6 @@ static void uffd_test_ctx_clear(void)
uffd = -1;
}
huge_fd_off0 = NULL;
munmap_area((void **)&area_src);
munmap_area((void **)&area_src_alias);
munmap_area((void **)&area_dst);
@ -926,10 +933,7 @@ static int faulting_process(int signal_test)
struct sigaction act;
unsigned long signalled = 0;
if (test_type != TEST_HUGETLB)
split_nr_pages = (nr_pages + 1) / 2;
else
split_nr_pages = nr_pages;
split_nr_pages = (nr_pages + 1) / 2;
if (signal_test) {
sigbuf = &jbuf;
@ -986,9 +990,6 @@ static int faulting_process(int signal_test)
if (signal_test)
return signalled != split_nr_pages;
if (test_type == TEST_HUGETLB)
return 0;
area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size,
MREMAP_MAYMOVE | MREMAP_FIXED, area_src);
if (area_dst == MAP_FAILED)
@ -1676,7 +1677,7 @@ int main(int argc, char **argv)
}
nr_pages = nr_pages_per_cpu * nr_cpus;
if (test_type == TEST_HUGETLB) {
if (test_type == TEST_HUGETLB && map_shared) {
if (argc < 5)
usage();
huge_fd = open(argv[4], O_CREAT | O_RDWR, 0755);

View File

@ -0,0 +1,69 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __KSELFTEST_VM_UTIL_H
#define __KSELFTEST_VM_UTIL_H
#include <stdint.h>
#include <sys/mman.h>
#include <err.h>
#include <string.h> /* ffsl() */
#include <unistd.h> /* _SC_PAGESIZE */
static unsigned int __page_size;
static unsigned int __page_shift;
static inline unsigned int page_size(void)
{
if (!__page_size)
__page_size = sysconf(_SC_PAGESIZE);
return __page_size;
}
static inline unsigned int page_shift(void)
{
if (!__page_shift)
__page_shift = (ffsl(page_size()) - 1);
return __page_shift;
}
#define PAGE_SHIFT (page_shift())
#define PAGE_SIZE (page_size())
/*
* On ppc64 this will only work with radix 2M hugepage size
*/
#define HPAGE_SHIFT 21
#define HPAGE_SIZE (1 << HPAGE_SHIFT)
#define PAGEMAP_PRESENT(ent) (((ent) & (1ull << 63)) != 0)
#define PAGEMAP_PFN(ent) ((ent) & ((1ull << 55) - 1))
static inline int64_t allocate_transhuge(void *ptr, int pagemap_fd)
{
uint64_t ent[2];
/* drop pmd */
if (mmap(ptr, HPAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANONYMOUS |
MAP_NORESERVE | MAP_PRIVATE, -1, 0) != ptr)
errx(2, "mmap transhuge");
if (madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE))
err(2, "MADV_HUGEPAGE");
/* allocate transparent huge page */
*(volatile void **)ptr = ptr;
if (pread(pagemap_fd, ent, sizeof(ent),
(uintptr_t)ptr >> (PAGE_SHIFT - 3)) != sizeof(ent))
err(2, "read pagemap");
if (PAGEMAP_PRESENT(ent[0]) && PAGEMAP_PRESENT(ent[1]) &&
PAGEMAP_PFN(ent[0]) + 1 == PAGEMAP_PFN(ent[1]) &&
!(PAGEMAP_PFN(ent[0]) & ((1 << (HPAGE_SHIFT - PAGE_SHIFT)) - 1)))
return PAGEMAP_PFN(ent[0]);
return -1;
}
#endif

View File

@ -20,21 +20,56 @@
#include <string.h>
#include <regex.h>
#include <errno.h>
#include <linux/types.h>
#include <getopt.h>
#define bool int
#define true 1
#define false 0
#define TASK_COMM_LEN 16
struct block_list {
char *txt;
char *comm; // task command name
char *stacktrace;
__u64 ts_nsec;
__u64 free_ts_nsec;
int len;
int num;
int page_num;
pid_t pid;
pid_t tgid;
};
static int sort_by_memory;
enum FILTER_BIT {
FILTER_UNRELEASE = 1<<1,
FILTER_PID = 1<<2,
FILTER_TGID = 1<<3,
FILTER_COMM = 1<<4
};
enum CULL_BIT {
CULL_UNRELEASE = 1<<1,
CULL_PID = 1<<2,
CULL_TGID = 1<<3,
CULL_COMM = 1<<4,
CULL_STACKTRACE = 1<<5
};
struct filter_condition {
pid_t tgid;
pid_t pid;
char comm[TASK_COMM_LEN];
};
static struct filter_condition fc;
static regex_t order_pattern;
static regex_t pid_pattern;
static regex_t tgid_pattern;
static regex_t comm_pattern;
static regex_t ts_nsec_pattern;
static regex_t free_ts_nsec_pattern;
static struct block_list *list;
static int list_size;
static int max_size;
struct block_list *block_head;
static int cull;
static int filter;
int read_block(char *buf, int buf_size, FILE *fin)
{
@ -58,6 +93,13 @@ static int compare_txt(const void *p1, const void *p2)
return strcmp(l1->txt, l2->txt);
}
static int compare_stacktrace(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
return strcmp(l1->stacktrace, l2->stacktrace);
}
static int compare_num(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
@ -72,41 +114,260 @@ static int compare_page_num(const void *p1, const void *p2)
return l2->page_num - l1->page_num;
}
static int get_page_num(char *buf)
static int compare_pid(const void *p1, const void *p2)
{
int err, val_len, order_val;
char order_str[4] = {0};
char *endptr;
const struct block_list *l1 = p1, *l2 = p2;
return l1->pid - l2->pid;
}
static int compare_tgid(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
return l1->tgid - l2->tgid;
}
static int compare_comm(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
return strcmp(l1->comm, l2->comm);
}
static int compare_ts(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
return l1->ts_nsec < l2->ts_nsec ? -1 : 1;
}
static int compare_free_ts(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
return l1->free_ts_nsec < l2->free_ts_nsec ? -1 : 1;
}
static int compare_release(const void *p1, const void *p2)
{
const struct block_list *l1 = p1, *l2 = p2;
if (!l1->free_ts_nsec && !l2->free_ts_nsec)
return 0;
if (l1->free_ts_nsec && l2->free_ts_nsec)
return 0;
return l1->free_ts_nsec ? 1 : -1;
}
static int compare_cull_condition(const void *p1, const void *p2)
{
if (cull == 0)
return compare_txt(p1, p2);
if ((cull & CULL_STACKTRACE) && compare_stacktrace(p1, p2))
return compare_stacktrace(p1, p2);
if ((cull & CULL_PID) && compare_pid(p1, p2))
return compare_pid(p1, p2);
if ((cull & CULL_TGID) && compare_tgid(p1, p2))
return compare_tgid(p1, p2);
if ((cull & CULL_COMM) && compare_comm(p1, p2))
return compare_comm(p1, p2);
if ((cull & CULL_UNRELEASE) && compare_release(p1, p2))
return compare_release(p1, p2);
return 0;
}
static int search_pattern(regex_t *pattern, char *pattern_str, char *buf)
{
int err, val_len;
regmatch_t pmatch[2];
err = regexec(&order_pattern, buf, 2, pmatch, REG_NOTBOL);
err = regexec(pattern, buf, 2, pmatch, REG_NOTBOL);
if (err != 0 || pmatch[1].rm_so == -1) {
printf("no order pattern in %s\n", buf);
return 0;
printf("no matching pattern in %s\n", buf);
return -1;
}
val_len = pmatch[1].rm_eo - pmatch[1].rm_so;
if (val_len > 2) /* max_order should not exceed 2 digits */
goto wrong_order;
memcpy(order_str, buf + pmatch[1].rm_so, val_len);
memcpy(pattern_str, buf + pmatch[1].rm_so, val_len);
return 0;
}
static void check_regcomp(regex_t *pattern, const char *regex)
{
int err;
err = regcomp(pattern, regex, REG_EXTENDED | REG_NEWLINE);
if (err != 0 || pattern->re_nsub != 1) {
printf("Invalid pattern %s code %d\n", regex, err);
exit(1);
}
}
static char **explode(char sep, const char *str, int *size)
{
int count = 0, len = strlen(str);
int lastindex = -1, j = 0;
for (int i = 0; i < len; i++)
if (str[i] == sep)
count++;
char **ret = calloc(++count, sizeof(char *));
for (int i = 0; i < len; i++) {
if (str[i] == sep) {
ret[j] = calloc(i - lastindex, sizeof(char));
memcpy(ret[j++], str + lastindex + 1, i - lastindex - 1);
lastindex = i;
}
}
if (lastindex <= len - 1) {
ret[j] = calloc(len - lastindex, sizeof(char));
memcpy(ret[j++], str + lastindex + 1, strlen(str) - 1 - lastindex);
}
*size = j;
return ret;
}
static void free_explode(char **arr, int size)
{
for (int i = 0; i < size; i++)
free(arr[i]);
free(arr);
}
# define FIELD_BUFF 25
static int get_page_num(char *buf)
{
int order_val;
char order_str[FIELD_BUFF] = {0};
char *endptr;
search_pattern(&order_pattern, order_str, buf);
errno = 0;
order_val = strtol(order_str, &endptr, 10);
if (errno != 0 || endptr == order_str || *endptr != '\0')
goto wrong_order;
if (order_val > 64 || errno != 0 || endptr == order_str || *endptr != '\0') {
printf("wrong order in follow buf:\n%s\n", buf);
return 0;
}
return 1 << order_val;
}
wrong_order:
printf("wrong order in follow buf:\n%s\n", buf);
return 0;
static pid_t get_pid(char *buf)
{
pid_t pid;
char pid_str[FIELD_BUFF] = {0};
char *endptr;
search_pattern(&pid_pattern, pid_str, buf);
errno = 0;
pid = strtol(pid_str, &endptr, 10);
if (errno != 0 || endptr == pid_str || *endptr != '\0') {
printf("wrong/invalid pid in follow buf:\n%s\n", buf);
return -1;
}
return pid;
}
static pid_t get_tgid(char *buf)
{
pid_t tgid;
char tgid_str[FIELD_BUFF] = {0};
char *endptr;
search_pattern(&tgid_pattern, tgid_str, buf);
errno = 0;
tgid = strtol(tgid_str, &endptr, 10);
if (errno != 0 || endptr == tgid_str || *endptr != '\0') {
printf("wrong/invalid tgid in follow buf:\n%s\n", buf);
return -1;
}
return tgid;
}
static __u64 get_ts_nsec(char *buf)
{
__u64 ts_nsec;
char ts_nsec_str[FIELD_BUFF] = {0};
char *endptr;
search_pattern(&ts_nsec_pattern, ts_nsec_str, buf);
errno = 0;
ts_nsec = strtoull(ts_nsec_str, &endptr, 10);
if (errno != 0 || endptr == ts_nsec_str || *endptr != '\0') {
printf("wrong ts_nsec in follow buf:\n%s\n", buf);
return -1;
}
return ts_nsec;
}
static __u64 get_free_ts_nsec(char *buf)
{
__u64 free_ts_nsec;
char free_ts_nsec_str[FIELD_BUFF] = {0};
char *endptr;
search_pattern(&free_ts_nsec_pattern, free_ts_nsec_str, buf);
errno = 0;
free_ts_nsec = strtoull(free_ts_nsec_str, &endptr, 10);
if (errno != 0 || endptr == free_ts_nsec_str || *endptr != '\0') {
printf("wrong free_ts_nsec in follow buf:\n%s\n", buf);
return -1;
}
return free_ts_nsec;
}
static char *get_comm(char *buf)
{
char *comm_str = malloc(TASK_COMM_LEN);
memset(comm_str, 0, TASK_COMM_LEN);
search_pattern(&comm_pattern, comm_str, buf);
errno = 0;
if (errno != 0) {
printf("wrong comm in follow buf:\n%s\n", buf);
return NULL;
}
return comm_str;
}
static bool is_need(char *buf)
{
if ((filter & FILTER_UNRELEASE) && get_free_ts_nsec(buf) != 0)
return false;
if ((filter & FILTER_PID) && get_pid(buf) != fc.pid)
return false;
if ((filter & FILTER_TGID) && get_tgid(buf) != fc.tgid)
return false;
char *comm = get_comm(buf);
if ((filter & FILTER_COMM) &&
strncmp(comm, fc.comm, TASK_COMM_LEN) != 0) {
free(comm);
return false;
}
return true;
}
static void add_list(char *buf, int len)
{
if (list_size != 0 &&
len == list[list_size-1].len &&
memcmp(buf, list[list_size-1].txt, len) == 0) {
len == list[list_size-1].len &&
memcmp(buf, list[list_size-1].txt, len) == 0) {
list[list_size-1].num++;
list[list_size-1].page_num += get_page_num(buf);
return;
@ -115,12 +376,27 @@ static void add_list(char *buf, int len)
printf("max_size too small??\n");
exit(1);
}
if (!is_need(buf))
return;
list[list_size].pid = get_pid(buf);
list[list_size].tgid = get_tgid(buf);
list[list_size].comm = get_comm(buf);
list[list_size].txt = malloc(len+1);
if (!list[list_size].txt) {
printf("Out of memory\n");
exit(1);
}
memcpy(list[list_size].txt, buf, len);
list[list_size].txt[len] = 0;
list[list_size].len = len;
list[list_size].num = 1;
list[list_size].page_num = get_page_num(buf);
memcpy(list[list_size].txt, buf, len);
list[list_size].txt[len] = 0;
list[list_size].stacktrace = strchr(list[list_size].txt, '\n') ?: "";
if (*list[list_size].stacktrace == '\n')
list[list_size].stacktrace++;
list[list_size].ts_nsec = get_ts_nsec(buf);
list[list_size].free_ts_nsec = get_free_ts_nsec(buf);
list_size++;
if (list_size % 1000 == 0) {
printf("loaded %d\r", list_size);
@ -128,29 +404,129 @@ static void add_list(char *buf, int len)
}
}
static bool parse_cull_args(const char *arg_str)
{
int size = 0;
char **args = explode(',', arg_str, &size);
for (int i = 0; i < size; ++i)
if (!strcmp(args[i], "pid") || !strcmp(args[i], "p"))
cull |= CULL_PID;
else if (!strcmp(args[i], "tgid") || !strcmp(args[i], "tg"))
cull |= CULL_TGID;
else if (!strcmp(args[i], "name") || !strcmp(args[i], "n"))
cull |= CULL_COMM;
else if (!strcmp(args[i], "stacktrace") || !strcmp(args[i], "st"))
cull |= CULL_STACKTRACE;
else if (!strcmp(args[i], "free") || !strcmp(args[i], "f"))
cull |= CULL_UNRELEASE;
else {
free_explode(args, size);
return false;
}
free_explode(args, size);
return true;
}
#define BUF_SIZE (128 * 1024)
static void usage(void)
{
printf("Usage: ./page_owner_sort [-m] <input> <output>\n"
"-m Sort by total memory. If this option is unset, sort by times\n"
printf("Usage: ./page_owner_sort [OPTIONS] <input> <output>\n"
"-m\t\tSort by total memory.\n"
"-s\t\tSort by the stack trace.\n"
"-t\t\tSort by times (default).\n"
"-p\t\tSort by pid.\n"
"-P\t\tSort by tgid.\n"
"-n\t\tSort by task command name.\n"
"-a\t\tSort by memory allocate time.\n"
"-r\t\tSort by memory release time.\n"
"-c\t\tCull by comparing stacktrace instead of total block.\n"
"-f\t\tFilter out the information of blocks whose memory has been released.\n"
"--pid <PID>\tSelect by pid. This selects the information of blocks whose process ID number equals to <PID>.\n"
"--tgid <TGID>\tSelect by tgid. This selects the information of blocks whose Thread Group ID number equals to <TGID>.\n"
"--name <command>\n\t\tSelect by command name. This selects the information of blocks whose command name identical to <command>.\n"
"--cull <rules>\tCull by user-defined rules. <rules> is a single argument in the form of a comma-separated list with some common fields predefined\n"
);
}
int main(int argc, char **argv)
{
int (*cmp)(const void *, const void *) = compare_num;
FILE *fin, *fout;
char *buf;
char *buf, *endptr;
int ret, i, count;
struct block_list *list2;
struct stat st;
int err;
int opt;
struct option longopts[] = {
{ "pid", required_argument, NULL, 1 },
{ "tgid", required_argument, NULL, 2 },
{ "name", required_argument, NULL, 3 },
{ "cull", required_argument, NULL, 4 },
{ 0, 0, 0, 0},
};
while ((opt = getopt(argc, argv, "m")) != -1)
while ((opt = getopt_long(argc, argv, "acfmnprstP", longopts, NULL)) != -1)
switch (opt) {
case 'a':
cmp = compare_ts;
break;
case 'c':
cull = cull | CULL_STACKTRACE;
break;
case 'f':
filter = filter | FILTER_UNRELEASE;
break;
case 'm':
sort_by_memory = 1;
cmp = compare_page_num;
break;
case 'p':
cmp = compare_pid;
break;
case 'r':
cmp = compare_free_ts;
break;
case 's':
cmp = compare_stacktrace;
break;
case 't':
cmp = compare_num;
break;
case 'P':
cmp = compare_tgid;
break;
case 'n':
cmp = compare_comm;
break;
case 1:
filter = filter | FILTER_PID;
errno = 0;
fc.pid = strtol(optarg, &endptr, 10);
if (errno != 0 || endptr == optarg || *endptr != '\0') {
printf("wrong/invalid pid in from the command line:%s\n", optarg);
exit(1);
}
break;
case 2:
filter = filter | FILTER_TGID;
errno = 0;
fc.tgid = strtol(optarg, &endptr, 10);
if (errno != 0 || endptr == optarg || *endptr != '\0') {
printf("wrong/invalid tgid in from the command line:%s\n", optarg);
exit(1);
}
break;
case 3:
filter = filter | FILTER_COMM;
strncpy(fc.comm, optarg, TASK_COMM_LEN);
fc.comm[TASK_COMM_LEN-1] = '\0';
break;
case 4:
if (!parse_cull_args(optarg)) {
printf("wrong argument after --cull in from the command line:%s\n",
optarg);
exit(1);
}
break;
default:
usage();
@ -170,13 +546,12 @@ int main(int argc, char **argv)
exit(1);
}
err = regcomp(&order_pattern, "order\\s*([0-9]*),", REG_EXTENDED|REG_NEWLINE);
if (err != 0 || order_pattern.re_nsub != 1) {
printf("%s: Invalid pattern 'order\\s*([0-9]*),' code %d\n",
argv[0], err);
exit(1);
}
check_regcomp(&order_pattern, "order\\s*([0-9]*),");
check_regcomp(&pid_pattern, "pid\\s*([0-9]*),");
check_regcomp(&tgid_pattern, "tgid\\s*([0-9]*) ");
check_regcomp(&comm_pattern, "tgid\\s*[0-9]*\\s*\\((.*)\\),\\s*ts");
check_regcomp(&ts_nsec_pattern, "ts\\s*([0-9]*)\\s*ns,");
check_regcomp(&free_ts_nsec_pattern, "free_ts\\s*([0-9]*)\\s*ns");
fstat(fileno(fin), &st);
max_size = st.st_size / 100; /* hack ... */
@ -199,35 +574,48 @@ int main(int argc, char **argv)
printf("sorting ....\n");
qsort(list, list_size, sizeof(list[0]), compare_txt);
list2 = malloc(sizeof(*list) * list_size);
if (!list2) {
printf("Out of memory\n");
exit(1);
}
qsort(list, list_size, sizeof(list[0]), compare_cull_condition);
printf("culling\n");
for (i = count = 0; i < list_size; i++) {
if (count == 0 ||
strcmp(list2[count-1].txt, list[i].txt) != 0) {
list2[count++] = list[i];
compare_cull_condition((void *)(&list[count-1]), (void *)(&list[i])) != 0) {
list[count++] = list[i];
} else {
list2[count-1].num += list[i].num;
list2[count-1].page_num += list[i].page_num;
list[count-1].num += list[i].num;
list[count-1].page_num += list[i].page_num;
}
}
if (sort_by_memory)
qsort(list2, count, sizeof(list[0]), compare_page_num);
else
qsort(list2, count, sizeof(list[0]), compare_num);
for (i = 0; i < count; i++)
fprintf(fout, "%d times, %d pages:\n%s\n",
list2[i].num, list2[i].page_num, list2[i].txt);
qsort(list, count, sizeof(list[0]), cmp);
for (i = 0; i < count; i++) {
if (cull == 0)
fprintf(fout, "%d times, %d pages:\n%s\n",
list[i].num, list[i].page_num, list[i].txt);
else {
fprintf(fout, "%d times, %d pages",
list[i].num, list[i].page_num);
if (cull & CULL_PID || filter & FILTER_PID)
fprintf(fout, ", PID %d", list[i].pid);
if (cull & CULL_TGID || filter & FILTER_TGID)
fprintf(fout, ", TGID %d", list[i].pid);
if (cull & CULL_COMM || filter & FILTER_COMM)
fprintf(fout, ", task_comm_name: %s", list[i].comm);
if (cull & CULL_UNRELEASE)
fprintf(fout, " (%s)",
list[i].free_ts_nsec ? "UNRELEASED" : "RELEASED");
if (cull & CULL_STACKTRACE)
fprintf(fout, ":\n%s", list[i].stacktrace);
fprintf(fout, "\n");
}
}
regfree(&order_pattern);
regfree(&pid_pattern);
regfree(&tgid_pattern);
regfree(&comm_pattern);
regfree(&ts_nsec_pattern);
regfree(&free_ts_nsec_pattern);
return 0;
}