libbpf: switch btf_dedup() to hashmap for dedup table

Utilize libbpf's hashmap as a multimap fof dedup_table implementation.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit is contained in:
Andrii Nakryiko 2019-05-24 11:59:02 -07:00 committed by Alexei Starovoitov
parent 5d04ec687c
commit 2fc3fc0bcd

View File

@ -14,6 +14,7 @@
#include "bpf.h" #include "bpf.h"
#include "libbpf.h" #include "libbpf.h"
#include "libbpf_internal.h" #include "libbpf_internal.h"
#include "hashmap.h"
#define max(a, b) ((a) > (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b))
@ -1293,16 +1294,9 @@ done:
return err; return err;
} }
#define BTF_DEDUP_TABLE_DEFAULT_SIZE (1 << 14)
#define BTF_DEDUP_TABLE_MAX_SIZE_LOG 31
#define BTF_UNPROCESSED_ID ((__u32)-1) #define BTF_UNPROCESSED_ID ((__u32)-1)
#define BTF_IN_PROGRESS_ID ((__u32)-2) #define BTF_IN_PROGRESS_ID ((__u32)-2)
struct btf_dedup_node {
struct btf_dedup_node *next;
__u32 type_id;
};
struct btf_dedup { struct btf_dedup {
/* .BTF section to be deduped in-place */ /* .BTF section to be deduped in-place */
struct btf *btf; struct btf *btf;
@ -1318,7 +1312,7 @@ struct btf_dedup {
* candidates, which is fine because we rely on subsequent * candidates, which is fine because we rely on subsequent
* btf_xxx_equal() checks to authoritatively verify type equality. * btf_xxx_equal() checks to authoritatively verify type equality.
*/ */
struct btf_dedup_node **dedup_table; struct hashmap *dedup_table;
/* Canonical types map */ /* Canonical types map */
__u32 *map; __u32 *map;
/* Hypothetical mapping, used during type graph equivalence checks */ /* Hypothetical mapping, used during type graph equivalence checks */
@ -1343,30 +1337,18 @@ struct btf_str_ptrs {
__u32 cap; __u32 cap;
}; };
static inline __u32 hash_combine(__u32 h, __u32 value) static long hash_combine(long h, long value)
{ {
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ return h * 31 + value;
#define GOLDEN_RATIO_PRIME 0x9e370001UL
return h * 37 + value * GOLDEN_RATIO_PRIME;
#undef GOLDEN_RATIO_PRIME
} }
#define for_each_dedup_cand(d, hash, node) \ #define for_each_dedup_cand(d, node, hash) \
for (node = d->dedup_table[hash & (d->opts.dedup_table_size - 1)]; \ hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
node; \
node = node->next)
static int btf_dedup_table_add(struct btf_dedup *d, __u32 hash, __u32 type_id) static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
{ {
struct btf_dedup_node *node = malloc(sizeof(struct btf_dedup_node)); return hashmap__append(d->dedup_table,
int bucket = hash & (d->opts.dedup_table_size - 1); (void *)hash, (void *)(long)type_id);
if (!node)
return -ENOMEM;
node->type_id = type_id;
node->next = d->dedup_table[bucket];
d->dedup_table[bucket] = node;
return 0;
} }
static int btf_dedup_hypot_map_add(struct btf_dedup *d, static int btf_dedup_hypot_map_add(struct btf_dedup *d,
@ -1395,36 +1377,10 @@ static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
d->hypot_cnt = 0; d->hypot_cnt = 0;
} }
static void btf_dedup_table_free(struct btf_dedup *d)
{
struct btf_dedup_node *head, *tmp;
int i;
if (!d->dedup_table)
return;
for (i = 0; i < d->opts.dedup_table_size; i++) {
while (d->dedup_table[i]) {
tmp = d->dedup_table[i];
d->dedup_table[i] = tmp->next;
free(tmp);
}
head = d->dedup_table[i];
while (head) {
tmp = head;
head = head->next;
free(tmp);
}
}
free(d->dedup_table);
d->dedup_table = NULL;
}
static void btf_dedup_free(struct btf_dedup *d) static void btf_dedup_free(struct btf_dedup *d)
{ {
btf_dedup_table_free(d); hashmap__free(d->dedup_table);
d->dedup_table = NULL;
free(d->map); free(d->map);
d->map = NULL; d->map = NULL;
@ -1438,40 +1394,43 @@ static void btf_dedup_free(struct btf_dedup *d)
free(d); free(d);
} }
/* Find closest power of two >= to size, capped at 2^max_size_log */ static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
static __u32 roundup_pow2_max(__u32 size, int max_size_log)
{ {
int i; return (size_t)key;
for (i = 0; i < max_size_log && (1U << i) < size; i++)
;
return 1U << i;
} }
static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
{
return 0;
}
static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
{
return k1 == k2;
}
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts) const struct btf_dedup_opts *opts)
{ {
struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
int i, err = 0; int i, err = 0;
__u32 sz;
if (!d) if (!d)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
sz = opts && opts->dedup_table_size ? opts->dedup_table_size /* dedup_table_size is now used only to force collisions in tests */
: BTF_DEDUP_TABLE_DEFAULT_SIZE; if (opts && opts->dedup_table_size == 1)
sz = roundup_pow2_max(sz, BTF_DEDUP_TABLE_MAX_SIZE_LOG); hash_fn = btf_dedup_collision_hash_fn;
d->opts.dedup_table_size = sz;
d->btf = btf; d->btf = btf;
d->btf_ext = btf_ext; d->btf_ext = btf_ext;
d->dedup_table = calloc(d->opts.dedup_table_size, d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
sizeof(struct btf_dedup_node *)); if (IS_ERR(d->dedup_table)) {
if (!d->dedup_table) { err = PTR_ERR(d->dedup_table);
err = -ENOMEM; d->dedup_table = NULL;
goto done; goto done;
} }
@ -1790,9 +1749,9 @@ done:
return err; return err;
} }
static __u32 btf_hash_common(struct btf_type *t) static long btf_hash_common(struct btf_type *t)
{ {
__u32 h; long h;
h = hash_combine(0, t->name_off); h = hash_combine(0, t->name_off);
h = hash_combine(h, t->info); h = hash_combine(h, t->info);
@ -1808,10 +1767,10 @@ static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
} }
/* Calculate type signature hash of INT. */ /* Calculate type signature hash of INT. */
static __u32 btf_hash_int(struct btf_type *t) static long btf_hash_int(struct btf_type *t)
{ {
__u32 info = *(__u32 *)(t + 1); __u32 info = *(__u32 *)(t + 1);
__u32 h; long h;
h = btf_hash_common(t); h = btf_hash_common(t);
h = hash_combine(h, info); h = hash_combine(h, info);
@ -1831,9 +1790,9 @@ static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
} }
/* Calculate type signature hash of ENUM. */ /* Calculate type signature hash of ENUM. */
static __u32 btf_hash_enum(struct btf_type *t) static long btf_hash_enum(struct btf_type *t)
{ {
__u32 h; long h;
/* don't hash vlen and enum members to support enum fwd resolving */ /* don't hash vlen and enum members to support enum fwd resolving */
h = hash_combine(0, t->name_off); h = hash_combine(0, t->name_off);
@ -1885,11 +1844,11 @@ static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
* as referenced type IDs equivalence is established separately during type * as referenced type IDs equivalence is established separately during type
* graph equivalence check algorithm. * graph equivalence check algorithm.
*/ */
static __u32 btf_hash_struct(struct btf_type *t) static long btf_hash_struct(struct btf_type *t)
{ {
struct btf_member *member = (struct btf_member *)(t + 1); struct btf_member *member = (struct btf_member *)(t + 1);
__u32 vlen = BTF_INFO_VLEN(t->info); __u32 vlen = BTF_INFO_VLEN(t->info);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
int i; int i;
for (i = 0; i < vlen; i++) { for (i = 0; i < vlen; i++) {
@ -1932,10 +1891,10 @@ static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
* under assumption that they were already resolved to canonical type IDs and * under assumption that they were already resolved to canonical type IDs and
* are not going to change. * are not going to change.
*/ */
static __u32 btf_hash_array(struct btf_type *t) static long btf_hash_array(struct btf_type *t)
{ {
struct btf_array *info = (struct btf_array *)(t + 1); struct btf_array *info = (struct btf_array *)(t + 1);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
h = hash_combine(h, info->type); h = hash_combine(h, info->type);
h = hash_combine(h, info->index_type); h = hash_combine(h, info->index_type);
@ -1986,11 +1945,11 @@ static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
* under assumption that they were already resolved to canonical type IDs and * under assumption that they were already resolved to canonical type IDs and
* are not going to change. * are not going to change.
*/ */
static inline __u32 btf_hash_fnproto(struct btf_type *t) static long btf_hash_fnproto(struct btf_type *t)
{ {
struct btf_param *member = (struct btf_param *)(t + 1); struct btf_param *member = (struct btf_param *)(t + 1);
__u16 vlen = BTF_INFO_VLEN(t->info); __u16 vlen = BTF_INFO_VLEN(t->info);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
int i; int i;
for (i = 0; i < vlen; i++) { for (i = 0; i < vlen; i++) {
@ -2008,7 +1967,7 @@ static inline __u32 btf_hash_fnproto(struct btf_type *t)
* This function is called during reference types deduplication to compare * This function is called during reference types deduplication to compare
* FUNC_PROTO to potential canonical representative. * FUNC_PROTO to potential canonical representative.
*/ */
static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
{ {
struct btf_param *m1, *m2; struct btf_param *m1, *m2;
__u16 vlen; __u16 vlen;
@ -2034,7 +1993,7 @@ static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
* IDs. This check is performed during type graph equivalence check and * IDs. This check is performed during type graph equivalence check and
* referenced types equivalence is checked separately. * referenced types equivalence is checked separately.
*/ */
static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
{ {
struct btf_param *m1, *m2; struct btf_param *m1, *m2;
__u16 vlen; __u16 vlen;
@ -2065,11 +2024,12 @@ static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_type *t = d->btf->types[type_id]; struct btf_type *t = d->btf->types[type_id];
struct hashmap_entry *hash_entry;
struct btf_type *cand; struct btf_type *cand;
struct btf_dedup_node *cand_node;
/* if we don't find equivalent type, then we are canonical */ /* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id; __u32 new_id = type_id;
__u32 h; __u32 cand_id;
long h;
switch (BTF_INFO_KIND(t->info)) { switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_CONST: case BTF_KIND_CONST:
@ -2088,10 +2048,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
case BTF_KIND_INT: case BTF_KIND_INT:
h = btf_hash_int(t); h = btf_hash_int(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_int(t, cand)) { if (btf_equal_int(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
@ -2099,10 +2060,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
case BTF_KIND_ENUM: case BTF_KIND_ENUM:
h = btf_hash_enum(t); h = btf_hash_enum(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_enum(t, cand)) { if (btf_equal_enum(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
if (d->opts.dont_resolve_fwds) if (d->opts.dont_resolve_fwds)
@ -2110,21 +2072,22 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
if (btf_compat_enum(t, cand)) { if (btf_compat_enum(t, cand)) {
if (btf_is_enum_fwd(t)) { if (btf_is_enum_fwd(t)) {
/* resolve fwd to full enum */ /* resolve fwd to full enum */
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
/* resolve canonical enum fwd to full enum */ /* resolve canonical enum fwd to full enum */
d->map[cand_node->type_id] = type_id; d->map[cand_id] = type_id;
} }
} }
break; break;
case BTF_KIND_FWD: case BTF_KIND_FWD:
h = btf_hash_common(t); h = btf_hash_common(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) { if (btf_equal_common(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
@ -2525,12 +2488,12 @@ static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
*/ */
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_dedup_node *cand_node;
struct btf_type *cand_type, *t; struct btf_type *cand_type, *t;
struct hashmap_entry *hash_entry;
/* if we don't find equivalent type, then we are canonical */ /* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id; __u32 new_id = type_id;
__u16 kind; __u16 kind;
__u32 h; long h;
/* already deduped or is in process of deduping (loop detected) */ /* already deduped or is in process of deduping (loop detected) */
if (d->map[type_id] <= BTF_MAX_NR_TYPES) if (d->map[type_id] <= BTF_MAX_NR_TYPES)
@ -2543,7 +2506,8 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
return 0; return 0;
h = btf_hash_struct(t); h = btf_hash_struct(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
__u32 cand_id = (__u32)(long)hash_entry->value;
int eq; int eq;
/* /*
@ -2556,17 +2520,17 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
* creating a loop (FWD -> STRUCT and STRUCT -> FWD), because * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
* FWD and compatible STRUCT/UNION are considered equivalent. * FWD and compatible STRUCT/UNION are considered equivalent.
*/ */
cand_type = d->btf->types[cand_node->type_id]; cand_type = d->btf->types[cand_id];
if (!btf_shallow_equal_struct(t, cand_type)) if (!btf_shallow_equal_struct(t, cand_type))
continue; continue;
btf_dedup_clear_hypot_map(d); btf_dedup_clear_hypot_map(d);
eq = btf_dedup_is_equiv(d, type_id, cand_node->type_id); eq = btf_dedup_is_equiv(d, type_id, cand_id);
if (eq < 0) if (eq < 0)
return eq; return eq;
if (!eq) if (!eq)
continue; continue;
new_id = cand_node->type_id; new_id = cand_id;
btf_dedup_merge_hypot_map(d); btf_dedup_merge_hypot_map(d);
break; break;
} }
@ -2616,12 +2580,12 @@ static int btf_dedup_struct_types(struct btf_dedup *d)
*/ */
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_dedup_node *cand_node; struct hashmap_entry *hash_entry;
__u32 new_id = type_id, cand_id;
struct btf_type *t, *cand; struct btf_type *t, *cand;
/* if we don't find equivalent type, then we are representative type */ /* if we don't find equivalent type, then we are representative type */
__u32 new_id = type_id;
int ref_type_id; int ref_type_id;
__u32 h; long h;
if (d->map[type_id] == BTF_IN_PROGRESS_ID) if (d->map[type_id] == BTF_IN_PROGRESS_ID)
return -ELOOP; return -ELOOP;
@ -2644,10 +2608,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
t->type = ref_type_id; t->type = ref_type_id;
h = btf_hash_common(t); h = btf_hash_common(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) { if (btf_equal_common(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
@ -2667,10 +2632,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
info->index_type = ref_type_id; info->index_type = ref_type_id;
h = btf_hash_array(t); h = btf_hash_array(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_array(t, cand)) { if (btf_equal_array(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
@ -2698,10 +2664,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
} }
h = btf_hash_fnproto(t); h = btf_hash_fnproto(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_fnproto(t, cand)) { if (btf_equal_fnproto(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
@ -2728,7 +2695,9 @@ static int btf_dedup_ref_types(struct btf_dedup *d)
if (err < 0) if (err < 0)
return err; return err;
} }
btf_dedup_table_free(d); /* we won't need d->dedup_table anymore */
hashmap__free(d->dedup_table);
d->dedup_table = NULL;
return 0; return 0;
} }