iio: dac: add support for AXI DAC IP core

Support the Analog Devices Generic AXI DAC IP core. The IP core is used
for interfacing with digital-to-analog (DAC) converters that require either
a high-speed serial interface (JESD204B/C) or a source synchronous parallel
interface (LVDS/CMOS). Typically (for such devices) SPI will be used for
configuration only, while this IP core handles the streaming of data into
memory via DMA.

Signed-off-by: Nuno Sa <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/20240419-iio-backend-axi-dac-v4-9-5ca45b4de294@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Nuno Sa 2024-04-19 10:25:42 +02:00 committed by Jonathan Cameron
parent 87800c4342
commit 4e3949a192
4 changed files with 658 additions and 0 deletions

View File

@ -1413,6 +1413,7 @@ L: linux-iio@vger.kernel.org
S: Supported S: Supported
W: https://ez.analog.com/linux-software-drivers W: https://ez.analog.com/linux-software-drivers
F: Documentation/devicetree/bindings/iio/dac/adi,axi-dac.yaml F: Documentation/devicetree/bindings/iio/dac/adi,axi-dac.yaml
F: drivers/iio/dac/adi-axi-dac.c
ANALOG DEVICES INC DMA DRIVERS ANALOG DEVICES INC DMA DRIVERS
M: Lars-Peter Clausen <lars@metafoo.de> M: Lars-Peter Clausen <lars@metafoo.de>

View File

@ -131,6 +131,27 @@ config AD5624R_SPI
Say yes here to build support for Analog Devices AD5624R, AD5644R and Say yes here to build support for Analog Devices AD5624R, AD5644R and
AD5664R converters (DAC). This driver uses the common SPI interface. AD5664R converters (DAC). This driver uses the common SPI interface.
config ADI_AXI_DAC
tristate "Analog Devices Generic AXI DAC IP core driver"
select IIO_BUFFER
select IIO_BUFFER_DMAENGINE
select REGMAP_MMIO
select IIO_BACKEND
help
Say yes here to build support for Analog Devices Generic
AXI DAC IP core. The IP core is used for interfacing with
digital-to-analog (DAC) converters that require either a high-speed
serial interface (JESD204B/C) or a source synchronous parallel
interface (LVDS/CMOS).
Typically (for such devices) SPI will be used for configuration only,
while this IP core handles the streaming of data into memory via DMA.
Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
If unsure, say N (but it's safe to say "Y").
To compile this driver as a module, choose M here: the
module will be called adi-axi-dac.
config LTC2688 config LTC2688
tristate "Analog Devices LTC2688 DAC spi driver" tristate "Analog Devices LTC2688 DAC spi driver"
depends on SPI depends on SPI

View File

@ -29,6 +29,7 @@ obj-$(CONFIG_AD5696_I2C) += ad5696-i2c.o
obj-$(CONFIG_AD7293) += ad7293.o obj-$(CONFIG_AD7293) += ad7293.o
obj-$(CONFIG_AD7303) += ad7303.o obj-$(CONFIG_AD7303) += ad7303.o
obj-$(CONFIG_AD8801) += ad8801.o obj-$(CONFIG_AD8801) += ad8801.o
obj-$(CONFIG_ADI_AXI_DAC) += adi-axi-dac.o
obj-$(CONFIG_CIO_DAC) += cio-dac.o obj-$(CONFIG_CIO_DAC) += cio-dac.o
obj-$(CONFIG_DPOT_DAC) += dpot-dac.o obj-$(CONFIG_DPOT_DAC) += dpot-dac.o
obj-$(CONFIG_DS4424) += ds4424.o obj-$(CONFIG_DS4424) += ds4424.o

View File

@ -0,0 +1,635 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices Generic AXI DAC IP core
* Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
*
* Copyright 2016-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/limits.h>
#include <linux/kstrtox.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/units.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
/*
* Register definitions:
* https://wiki.analog.com/resources/fpga/docs/axi_dac_ip#register_map
*/
/* Base controls */
#define AXI_DAC_REG_CONFIG 0x0c
#define AXI_DDS_DISABLE BIT(6)
/* DAC controls */
#define AXI_DAC_REG_RSTN 0x0040
#define AXI_DAC_RSTN_CE_N BIT(2)
#define AXI_DAC_RSTN_MMCM_RSTN BIT(1)
#define AXI_DAC_RSTN_RSTN BIT(0)
#define AXI_DAC_REG_CNTRL_1 0x0044
#define AXI_DAC_SYNC BIT(0)
#define AXI_DAC_REG_CNTRL_2 0x0048
#define ADI_DAC_R1_MODE BIT(4)
#define AXI_DAC_DRP_STATUS 0x0074
#define AXI_DAC_DRP_LOCKED BIT(17)
/* DAC Channel controls */
#define AXI_DAC_REG_CHAN_CNTRL_1(c) (0x0400 + (c) * 0x40)
#define AXI_DAC_REG_CHAN_CNTRL_3(c) (0x0408 + (c) * 0x40)
#define AXI_DAC_SCALE_SIGN BIT(15)
#define AXI_DAC_SCALE_INT BIT(14)
#define AXI_DAC_SCALE GENMASK(14, 0)
#define AXI_DAC_REG_CHAN_CNTRL_2(c) (0x0404 + (c) * 0x40)
#define AXI_DAC_REG_CHAN_CNTRL_4(c) (0x040c + (c) * 0x40)
#define AXI_DAC_PHASE GENMASK(31, 16)
#define AXI_DAC_FREQUENCY GENMASK(15, 0)
#define AXI_DAC_REG_CHAN_CNTRL_7(c) (0x0418 + (c) * 0x40)
#define AXI_DAC_DATA_SEL GENMASK(3, 0)
/* 360 degrees in rad */
#define AXI_DAC_2_PI_MEGA 6283190
enum {
AXI_DAC_DATA_INTERNAL_TONE,
AXI_DAC_DATA_DMA = 2,
};
struct axi_dac_state {
struct regmap *regmap;
struct device *dev;
/*
* lock to protect multiple accesses to the device registers and global
* data/variables.
*/
struct mutex lock;
u64 dac_clk;
u32 reg_config;
bool int_tone;
};
static int axi_dac_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int __val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
AXI_DAC_RSTN_MMCM_RSTN);
if (ret)
return ret;
/*
* Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all
* designs really use it but if they don't we still get the lock bit
* set. So let's do it all the time so the code is generic.
*/
ret = regmap_read_poll_timeout(st->regmap, AXI_DAC_DRP_STATUS, __val,
__val & AXI_DAC_DRP_LOCKED, 100, 1000);
if (ret)
return ret;
return regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
AXI_DAC_RSTN_RSTN | AXI_DAC_RSTN_MMCM_RSTN);
}
static void axi_dac_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
}
static struct iio_buffer *axi_dac_request_buffer(struct iio_backend *back,
struct iio_dev *indio_dev)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
const char *dma_name;
if (device_property_read_string(st->dev, "dma-names", &dma_name))
dma_name = "tx";
return iio_dmaengine_buffer_setup_ext(st->dev, indio_dev, dma_name,
IIO_BUFFER_DIRECTION_OUT);
}
static void axi_dac_free_buffer(struct iio_backend *back,
struct iio_buffer *buffer)
{
iio_dmaengine_buffer_free(buffer);
}
enum {
AXI_DAC_FREQ_TONE_1,
AXI_DAC_FREQ_TONE_2,
AXI_DAC_SCALE_TONE_1,
AXI_DAC_SCALE_TONE_2,
AXI_DAC_PHASE_TONE_1,
AXI_DAC_PHASE_TONE_2,
};
static int __axi_dac_frequency_get(struct axi_dac_state *st, unsigned int chan,
unsigned int tone_2, unsigned int *freq)
{
u32 reg, raw;
int ret;
if (!st->dac_clk) {
dev_err(st->dev, "Sampling rate is 0...\n");
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_FREQUENCY, raw);
*freq = DIV_ROUND_CLOSEST_ULL(raw * st->dac_clk, BIT(16));
return 0;
}
static int axi_dac_frequency_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int freq;
int ret;
scoped_guard(mutex, &st->lock) {
ret = __axi_dac_frequency_get(st, chan->channel, tone_2, &freq);
if (ret)
return ret;
}
return sysfs_emit(buf, "%u\n", freq);
}
static int axi_dac_scale_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int scale, sign;
int ret, vals[2];
u32 reg, raw;
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
sign = FIELD_GET(AXI_DAC_SCALE_SIGN, raw);
raw = FIELD_GET(AXI_DAC_SCALE, raw);
scale = DIV_ROUND_CLOSEST_ULL((u64)raw * MEGA, AXI_DAC_SCALE_INT);
vals[0] = scale / MEGA;
vals[1] = scale % MEGA;
if (sign) {
vals[0] *= -1;
if (!vals[0])
vals[1] *= -1;
}
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int axi_dac_phase_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
u32 reg, raw, phase;
int ret, vals[2];
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_PHASE, raw);
phase = DIV_ROUND_CLOSEST_ULL((u64)raw * AXI_DAC_2_PI_MEGA, U16_MAX);
vals[0] = phase / MEGA;
vals[1] = phase % MEGA;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int __axi_dac_frequency_set(struct axi_dac_state *st, unsigned int chan,
u64 sample_rate, unsigned int freq,
unsigned int tone_2)
{
u32 reg;
u16 raw;
int ret;
if (!sample_rate || freq > sample_rate / 2) {
dev_err(st->dev, "Invalid frequency(%u) dac_clk(%llu)\n",
freq, sample_rate);
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
raw = DIV64_U64_ROUND_CLOSEST((u64)freq * BIT(16), sample_rate);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_FREQUENCY, raw);
if (ret)
return ret;
/* synchronize channels */
return regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
}
static int axi_dac_frequency_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
unsigned int freq;
int ret;
ret = kstrtou32(buf, 10, &freq);
if (ret)
return ret;
guard(mutex)(&st->lock);
ret = __axi_dac_frequency_set(st, chan->channel, st->dac_clk, freq,
tone_2);
if (ret)
return ret;
return len;
}
static int axi_dac_scale_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, scale;
u32 raw = 0, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
scale = integer * MEGA + frac;
if (scale <= -2 * (int)MEGA || scale >= 2 * (int)MEGA)
return -EINVAL;
/* format is 1.1.14 (sign, integer and fractional bits) */
if (scale < 0) {
raw = FIELD_PREP(AXI_DAC_SCALE_SIGN, 1);
scale *= -1;
}
raw |= div_u64((u64)scale * AXI_DAC_SCALE_INT, MEGA);
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, reg, raw);
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_phase_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, phase;
u32 raw, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
phase = integer * MEGA + frac;
if (phase < 0 || phase > AXI_DAC_2_PI_MEGA)
return -EINVAL;
raw = DIV_ROUND_CLOSEST_ULL((u64)phase * U16_MAX, AXI_DAC_2_PI_MEGA);
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_PHASE,
FIELD_PREP(AXI_DAC_PHASE, raw));
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_ext_info_set(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_set(st, chan, buf, len,
private - AXI_DAC_FREQ_TONE_1);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_set(st, chan, buf, len,
private - AXI_DAC_SCALE_TONE_1);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_set(st, chan, buf, len,
private - AXI_DAC_PHASE_TONE_2);
default:
return -EOPNOTSUPP;
}
}
static int axi_dac_ext_info_get(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_get(st, chan, buf,
private - AXI_DAC_FREQ_TONE_1);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_get(st, chan, buf,
private - AXI_DAC_SCALE_TONE_1);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_get(st, chan, buf,
private - AXI_DAC_PHASE_TONE_1);
default:
return -EOPNOTSUPP;
}
}
static const struct iio_chan_spec_ext_info axi_dac_ext_info[] = {
IIO_BACKEND_EX_INFO("frequency0", IIO_SEPARATE, AXI_DAC_FREQ_TONE_1),
IIO_BACKEND_EX_INFO("frequency1", IIO_SEPARATE, AXI_DAC_FREQ_TONE_2),
IIO_BACKEND_EX_INFO("scale0", IIO_SEPARATE, AXI_DAC_SCALE_TONE_1),
IIO_BACKEND_EX_INFO("scale1", IIO_SEPARATE, AXI_DAC_SCALE_TONE_2),
IIO_BACKEND_EX_INFO("phase0", IIO_SEPARATE, AXI_DAC_PHASE_TONE_1),
IIO_BACKEND_EX_INFO("phase1", IIO_SEPARATE, AXI_DAC_PHASE_TONE_2),
{}
};
static int axi_dac_extend_chan(struct iio_backend *back,
struct iio_chan_spec *chan)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (chan->type != IIO_ALTVOLTAGE)
return -EINVAL;
if (st->reg_config & AXI_DDS_DISABLE)
/* nothing to extend */
return 0;
chan->ext_info = axi_dac_ext_info;
return 0;
}
static int axi_dac_data_source_set(struct iio_backend *back, unsigned int chan,
enum iio_backend_data_source data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data) {
case IIO_BACKEND_INTERNAL_CONTINUOS_WAVE:
return regmap_update_bits(st->regmap,
AXI_DAC_REG_CHAN_CNTRL_7(chan),
AXI_DAC_DATA_SEL,
AXI_DAC_DATA_INTERNAL_TONE);
case IIO_BACKEND_EXTERNAL:
return regmap_update_bits(st->regmap,
AXI_DAC_REG_CHAN_CNTRL_7(chan),
AXI_DAC_DATA_SEL, AXI_DAC_DATA_DMA);
default:
return -EINVAL;
}
}
static int axi_dac_set_sample_rate(struct iio_backend *back, unsigned int chan,
u64 sample_rate)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int freq;
int ret, tone;
if (!sample_rate)
return -EINVAL;
if (st->reg_config & AXI_DDS_DISABLE)
/* sample_rate has no meaning if DDS is disabled */
return 0;
guard(mutex)(&st->lock);
/*
* If dac_clk is 0 then this must be the first time we're being notified
* about the interface sample rate. Hence, just update our internal
* variable and bail... If it's not 0, then we get the current DDS
* frequency (for the old rate) and update the registers for the new
* sample rate.
*/
if (!st->dac_clk) {
st->dac_clk = sample_rate;
return 0;
}
for (tone = 0; tone <= AXI_DAC_FREQ_TONE_2; tone++) {
ret = __axi_dac_frequency_get(st, chan, tone, &freq);
if (ret)
return ret;
ret = __axi_dac_frequency_set(st, chan, sample_rate, tone, freq);
if (ret)
return ret;
}
st->dac_clk = sample_rate;
return 0;
}
static const struct iio_backend_ops axi_dac_generic = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.extend_chan_spec = axi_dac_extend_chan,
.ext_info_set = axi_dac_ext_info_set,
.ext_info_get = axi_dac_ext_info_get,
.data_source_set = axi_dac_data_source_set,
.set_sample_rate = axi_dac_set_sample_rate,
};
static const struct regmap_config axi_dac_regmap_config = {
.val_bits = 32,
.reg_bits = 32,
.reg_stride = 4,
.max_register = 0x0800,
};
static int axi_dac_probe(struct platform_device *pdev)
{
const unsigned int *expected_ver;
struct axi_dac_state *st;
void __iomem *base;
unsigned int ver;
struct clk *clk;
int ret;
st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
expected_ver = device_get_match_data(&pdev->dev);
if (!expected_ver)
return -ENODEV;
clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
st->dev = &pdev->dev;
st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&axi_dac_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
/*
* Force disable the core. Up to the frontend to enable us. And we can
* still read/write registers...
*/
ret = regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
if (ret)
return ret;
if (ADI_AXI_PCORE_VER_MAJOR(ver) != ADI_AXI_PCORE_VER_MAJOR(*expected_ver)) {
dev_err(&pdev->dev,
"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR(*expected_ver),
ADI_AXI_PCORE_VER_MINOR(*expected_ver),
ADI_AXI_PCORE_VER_PATCH(*expected_ver),
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return -ENODEV;
}
/* Let's get the core read only configuration */
ret = regmap_read(st->regmap, AXI_DAC_REG_CONFIG, &st->reg_config);
if (ret)
return ret;
/*
* In some designs, setting the R1_MODE bit to 0 (which is the default
* value) causes all channels of the frontend to be routed to the same
* DMA (so they are sampled together). This is for things like
* Multiple-Input and Multiple-Output (MIMO). As most of the times we
* want independent channels let's override the core's default value and
* set the R1_MODE bit.
*/
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_2, ADI_DAC_R1_MODE);
if (ret)
return ret;
mutex_init(&st->lock);
ret = devm_iio_backend_register(&pdev->dev, &axi_dac_generic, st);
if (ret)
return ret;
dev_info(&pdev->dev, "AXI DAC IP core (%d.%.2d.%c) probed\n",
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return 0;
}
static unsigned int axi_dac_9_1_b_info = ADI_AXI_PCORE_VER(9, 1, 'b');
static const struct of_device_id axi_dac_of_match[] = {
{ .compatible = "adi,axi-dac-9.1.b", .data = &axi_dac_9_1_b_info },
{}
};
MODULE_DEVICE_TABLE(of, axi_dac_of_match);
static struct platform_driver axi_dac_driver = {
.driver = {
.name = "adi-axi-dac",
.of_match_table = axi_dac_of_match,
},
.probe = axi_dac_probe,
};
module_platform_driver(axi_dac_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Generic AXI DAC IP core driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_DMAENGINE_BUFFER);
MODULE_IMPORT_NS(IIO_BACKEND);