mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-29 09:13:38 +00:00
radix tree test: Convert multiorder tests to XArray
This is the last remaining user of the multiorder functionality of the radix tree. Test the XArray instead. Signed-off-by: Matthew Wilcox <willy@infradead.org>
This commit is contained in:
parent
b66b5a48b8
commit
542980aa93
@ -39,21 +39,20 @@ static int item_insert_order(struct xarray *xa, unsigned long index,
|
||||
return xas_error(&xas);
|
||||
}
|
||||
|
||||
void multiorder_iteration(void)
|
||||
void multiorder_iteration(struct xarray *xa)
|
||||
{
|
||||
RADIX_TREE(tree, GFP_KERNEL);
|
||||
struct radix_tree_iter iter;
|
||||
void **slot;
|
||||
XA_STATE(xas, xa, 0);
|
||||
struct item *item;
|
||||
int i, j, err;
|
||||
|
||||
printv(1, "Multiorder iteration test\n");
|
||||
|
||||
#define NUM_ENTRIES 11
|
||||
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
|
||||
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
|
||||
|
||||
printv(1, "Multiorder iteration test\n");
|
||||
|
||||
for (i = 0; i < NUM_ENTRIES; i++) {
|
||||
err = item_insert_order(&tree, index[i], order[i]);
|
||||
err = item_insert_order(xa, index[i], order[i]);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
@ -62,14 +61,14 @@ void multiorder_iteration(void)
|
||||
if (j <= (index[i] | ((1 << order[i]) - 1)))
|
||||
break;
|
||||
|
||||
radix_tree_for_each_slot(slot, &tree, &iter, j) {
|
||||
int height = order[i] / RADIX_TREE_MAP_SHIFT;
|
||||
int shift = height * RADIX_TREE_MAP_SHIFT;
|
||||
xas_set(&xas, j);
|
||||
xas_for_each(&xas, item, ULONG_MAX) {
|
||||
int height = order[i] / XA_CHUNK_SHIFT;
|
||||
int shift = height * XA_CHUNK_SHIFT;
|
||||
unsigned long mask = (1UL << order[i]) - 1;
|
||||
struct item *item = *slot;
|
||||
|
||||
assert((iter.index | mask) == (index[i] | mask));
|
||||
assert(iter.shift == shift);
|
||||
assert((xas.xa_index | mask) == (index[i] | mask));
|
||||
assert(xas.xa_node->shift == shift);
|
||||
assert(!radix_tree_is_internal_node(item));
|
||||
assert((item->index | mask) == (index[i] | mask));
|
||||
assert(item->order == order[i]);
|
||||
@ -77,18 +76,15 @@ void multiorder_iteration(void)
|
||||
}
|
||||
}
|
||||
|
||||
item_kill_tree(&tree);
|
||||
item_kill_tree(xa);
|
||||
}
|
||||
|
||||
void multiorder_tagged_iteration(void)
|
||||
void multiorder_tagged_iteration(struct xarray *xa)
|
||||
{
|
||||
RADIX_TREE(tree, GFP_KERNEL);
|
||||
struct radix_tree_iter iter;
|
||||
void **slot;
|
||||
XA_STATE(xas, xa, 0);
|
||||
struct item *item;
|
||||
int i, j;
|
||||
|
||||
printv(1, "Multiorder tagged iteration test\n");
|
||||
|
||||
#define MT_NUM_ENTRIES 9
|
||||
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
|
||||
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
|
||||
@ -96,13 +92,15 @@ void multiorder_tagged_iteration(void)
|
||||
#define TAG_ENTRIES 7
|
||||
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
|
||||
|
||||
for (i = 0; i < MT_NUM_ENTRIES; i++)
|
||||
assert(!item_insert_order(&tree, index[i], order[i]));
|
||||
printv(1, "Multiorder tagged iteration test\n");
|
||||
|
||||
assert(!radix_tree_tagged(&tree, 1));
|
||||
for (i = 0; i < MT_NUM_ENTRIES; i++)
|
||||
assert(!item_insert_order(xa, index[i], order[i]));
|
||||
|
||||
assert(!xa_marked(xa, XA_MARK_1));
|
||||
|
||||
for (i = 0; i < TAG_ENTRIES; i++)
|
||||
assert(radix_tree_tag_set(&tree, tag_index[i], 1));
|
||||
xa_set_mark(xa, tag_index[i], XA_MARK_1);
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
int k;
|
||||
@ -114,22 +112,22 @@ void multiorder_tagged_iteration(void)
|
||||
break;
|
||||
}
|
||||
|
||||
radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
|
||||
xas_set(&xas, j);
|
||||
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
|
||||
unsigned long mask;
|
||||
struct item *item = *slot;
|
||||
for (k = i; index[k] < tag_index[i]; k++)
|
||||
;
|
||||
mask = (1UL << order[k]) - 1;
|
||||
|
||||
assert((iter.index | mask) == (tag_index[i] | mask));
|
||||
assert(!radix_tree_is_internal_node(item));
|
||||
assert((xas.xa_index | mask) == (tag_index[i] | mask));
|
||||
assert(!xa_is_internal(item));
|
||||
assert((item->index | mask) == (tag_index[i] | mask));
|
||||
assert(item->order == order[k]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
assert(tag_tagged_items(&tree, 0, ~0UL, TAG_ENTRIES, XA_MARK_1,
|
||||
assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
|
||||
XA_MARK_2) == TAG_ENTRIES);
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
@ -142,29 +140,31 @@ void multiorder_tagged_iteration(void)
|
||||
break;
|
||||
}
|
||||
|
||||
radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
|
||||
struct item *item = *slot;
|
||||
xas_set(&xas, j);
|
||||
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
|
||||
for (k = i; index[k] < tag_index[i]; k++)
|
||||
;
|
||||
mask = (1 << order[k]) - 1;
|
||||
|
||||
assert((iter.index | mask) == (tag_index[i] | mask));
|
||||
assert(!radix_tree_is_internal_node(item));
|
||||
assert((xas.xa_index | mask) == (tag_index[i] | mask));
|
||||
assert(!xa_is_internal(item));
|
||||
assert((item->index | mask) == (tag_index[i] | mask));
|
||||
assert(item->order == order[k]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
assert(tag_tagged_items(&tree, 1, ~0UL, MT_NUM_ENTRIES * 2, XA_MARK_1,
|
||||
assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
|
||||
XA_MARK_0) == TAG_ENTRIES);
|
||||
i = 0;
|
||||
radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
|
||||
assert(iter.index == tag_index[i]);
|
||||
xas_set(&xas, 0);
|
||||
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
|
||||
assert(xas.xa_index == tag_index[i]);
|
||||
i++;
|
||||
}
|
||||
assert(i == TAG_ENTRIES);
|
||||
|
||||
item_kill_tree(&tree);
|
||||
item_kill_tree(xa);
|
||||
}
|
||||
|
||||
bool stop_iteration = false;
|
||||
@ -187,52 +187,45 @@ static void *creator_func(void *ptr)
|
||||
|
||||
static void *iterator_func(void *ptr)
|
||||
{
|
||||
struct radix_tree_root *tree = ptr;
|
||||
struct radix_tree_iter iter;
|
||||
XA_STATE(xas, ptr, 0);
|
||||
struct item *item;
|
||||
void **slot;
|
||||
|
||||
while (!stop_iteration) {
|
||||
rcu_read_lock();
|
||||
radix_tree_for_each_slot(slot, tree, &iter, 0) {
|
||||
item = radix_tree_deref_slot(slot);
|
||||
|
||||
if (!item)
|
||||
xas_for_each(&xas, item, ULONG_MAX) {
|
||||
if (xas_retry(&xas, item))
|
||||
continue;
|
||||
if (radix_tree_deref_retry(item)) {
|
||||
slot = radix_tree_iter_retry(&iter);
|
||||
continue;
|
||||
}
|
||||
|
||||
item_sanity(item, iter.index);
|
||||
item_sanity(item, xas.xa_index);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void multiorder_iteration_race(void)
|
||||
static void multiorder_iteration_race(struct xarray *xa)
|
||||
{
|
||||
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
|
||||
pthread_t worker_thread[num_threads];
|
||||
RADIX_TREE(tree, GFP_KERNEL);
|
||||
int i;
|
||||
|
||||
pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
|
||||
pthread_create(&worker_thread[0], NULL, &creator_func, xa);
|
||||
for (i = 1; i < num_threads; i++)
|
||||
pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
|
||||
pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
|
||||
|
||||
for (i = 0; i < num_threads; i++)
|
||||
pthread_join(worker_thread[i], NULL);
|
||||
|
||||
item_kill_tree(&tree);
|
||||
item_kill_tree(xa);
|
||||
}
|
||||
|
||||
static DEFINE_XARRAY(array);
|
||||
|
||||
void multiorder_checks(void)
|
||||
{
|
||||
multiorder_iteration();
|
||||
multiorder_tagged_iteration();
|
||||
multiorder_iteration_race();
|
||||
multiorder_iteration(&array);
|
||||
multiorder_tagged_iteration(&array);
|
||||
multiorder_iteration_race(&array);
|
||||
|
||||
radix_tree_cpu_dead(0);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user