mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-01 10:43:43 +00:00
drm/doc: Add initial komeda driver documentation
v2: Some editing changes according to Randy Dunlap's comments Signed-off-by: James Qian Wang (Arm Technology China) <james.qian.wang@arm.com> Signed-off-by: Liviu Dudau <liviu.dudau@arm.com>
This commit is contained in:
parent
61f1c4a8ab
commit
557c37360e
@ -18,6 +18,7 @@ GPU Driver Documentation
|
||||
bridge/dw-hdmi
|
||||
xen-front
|
||||
afbc
|
||||
komeda-kms
|
||||
|
||||
.. only:: subproject and html
|
||||
|
||||
|
488
Documentation/gpu/komeda-kms.rst
Normal file
488
Documentation/gpu/komeda-kms.rst
Normal file
@ -0,0 +1,488 @@
|
||||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
==============================
|
||||
drm/komeda Arm display driver
|
||||
==============================
|
||||
|
||||
The drm/komeda driver supports the Arm display processor D71 and later products,
|
||||
this document gives a brief overview of driver design: how it works and why
|
||||
design it like that.
|
||||
|
||||
Overview of D71 like display IPs
|
||||
================================
|
||||
|
||||
From D71, Arm display IP begins to adopt a flexible and modularized
|
||||
architecture. A display pipeline is made up of multiple individual and
|
||||
functional pipeline stages called components, and every component has some
|
||||
specific capabilities that can give the flowed pipeline pixel data a
|
||||
particular processing.
|
||||
|
||||
Typical D71 components:
|
||||
|
||||
Layer
|
||||
-----
|
||||
Layer is the first pipeline stage, which prepares the pixel data for the next
|
||||
stage. It fetches the pixel from memory, decodes it if it's AFBC, rotates the
|
||||
source image, unpacks or converts YUV pixels to the device internal RGB pixels,
|
||||
then adjusts the color_space of pixels if needed.
|
||||
|
||||
Scaler
|
||||
------
|
||||
As its name suggests, scaler takes responsibility for scaling, and D71 also
|
||||
supports image enhancements by scaler.
|
||||
The usage of scaler is very flexible and can be connected to layer output
|
||||
for layer scaling, or connected to compositor and scale the whole display
|
||||
frame and then feed the output data into wb_layer which will then write it
|
||||
into memory.
|
||||
|
||||
Compositor (compiz)
|
||||
-------------------
|
||||
Compositor blends multiple layers or pixel data flows into one single display
|
||||
frame. its output frame can be fed into post image processor for showing it on
|
||||
the monitor or fed into wb_layer and written to memory at the same time.
|
||||
user can also insert a scaler between compositor and wb_layer to down scale
|
||||
the display frame first and and then write to memory.
|
||||
|
||||
Writeback Layer (wb_layer)
|
||||
--------------------------
|
||||
Writeback layer does the opposite things of Layer, which connects to compiz
|
||||
and writes the composition result to memory.
|
||||
|
||||
Post image processor (improc)
|
||||
-----------------------------
|
||||
Post image processor adjusts frame data like gamma and color space to fit the
|
||||
requirements of the monitor.
|
||||
|
||||
Timing controller (timing_ctrlr)
|
||||
--------------------------------
|
||||
Final stage of display pipeline, Timing controller is not for the pixel
|
||||
handling, but only for controlling the display timing.
|
||||
|
||||
Merger
|
||||
------
|
||||
D71 scaler mostly only has the half horizontal input/output capabilities
|
||||
compared with Layer, like if Layer supports 4K input size, the scaler only can
|
||||
support 2K input/output in the same time. To achieve the ful frame scaling, D71
|
||||
introduces Layer Split, which splits the whole image to two half parts and feeds
|
||||
them to two Layers A and B, and does the scaling independently. After scaling
|
||||
the result need to be fed to merger to merge two part images together, and then
|
||||
output merged result to compiz.
|
||||
|
||||
Splitter
|
||||
--------
|
||||
Similar to Layer Split, but Splitter is used for writeback, which splits the
|
||||
compiz result to two parts and then feed them to two scalers.
|
||||
|
||||
Possible D71 Pipeline usage
|
||||
===========================
|
||||
|
||||
Benefitting from the modularized architecture, D71 pipelines can be easily
|
||||
adjusted to fit different usages. And D71 has two pipelines, which support two
|
||||
types of working mode:
|
||||
|
||||
- Dual display mode
|
||||
Two pipelines work independently and separately to drive two display outputs.
|
||||
|
||||
- Single display mode
|
||||
Two pipelines work together to drive only one display output.
|
||||
|
||||
On this mode, pipeline_B doesn't work indenpendently, but outputs its
|
||||
composition result into pipeline_A, and its pixel timing also derived from
|
||||
pipeline_A.timing_ctrlr. The pipeline_B works just like a "slave" of
|
||||
pipeline_A(master)
|
||||
|
||||
Single pipeline data flow
|
||||
-------------------------
|
||||
|
||||
.. kernel-render:: DOT
|
||||
:alt: Single pipeline digraph
|
||||
:caption: Single pipeline data flow
|
||||
|
||||
digraph single_ppl {
|
||||
rankdir=LR;
|
||||
|
||||
subgraph {
|
||||
"Memory";
|
||||
"Monitor";
|
||||
}
|
||||
|
||||
subgraph cluster_pipeline {
|
||||
style=dashed
|
||||
node [shape=box]
|
||||
{
|
||||
node [bgcolor=grey style=dashed]
|
||||
"Scaler-0";
|
||||
"Scaler-1";
|
||||
"Scaler-0/1"
|
||||
}
|
||||
|
||||
node [bgcolor=grey style=filled]
|
||||
"Layer-0" -> "Scaler-0"
|
||||
"Layer-1" -> "Scaler-0"
|
||||
"Layer-2" -> "Scaler-1"
|
||||
"Layer-3" -> "Scaler-1"
|
||||
|
||||
"Layer-0" -> "Compiz"
|
||||
"Layer-1" -> "Compiz"
|
||||
"Layer-2" -> "Compiz"
|
||||
"Layer-3" -> "Compiz"
|
||||
"Scaler-0" -> "Compiz"
|
||||
"Scaler-1" -> "Compiz"
|
||||
|
||||
"Compiz" -> "Scaler-0/1" -> "Wb_layer"
|
||||
"Compiz" -> "Improc" -> "Timing Controller"
|
||||
}
|
||||
|
||||
"Wb_layer" -> "Memory"
|
||||
"Timing Controller" -> "Monitor"
|
||||
}
|
||||
|
||||
Dual pipeline with Slave enabled
|
||||
--------------------------------
|
||||
|
||||
.. kernel-render:: DOT
|
||||
:alt: Slave pipeline digraph
|
||||
:caption: Slave pipeline enabled data flow
|
||||
|
||||
digraph slave_ppl {
|
||||
rankdir=LR;
|
||||
|
||||
subgraph {
|
||||
"Memory";
|
||||
"Monitor";
|
||||
}
|
||||
node [shape=box]
|
||||
subgraph cluster_pipeline_slave {
|
||||
style=dashed
|
||||
label="Slave Pipeline_B"
|
||||
node [shape=box]
|
||||
{
|
||||
node [bgcolor=grey style=dashed]
|
||||
"Slave.Scaler-0";
|
||||
"Slave.Scaler-1";
|
||||
}
|
||||
|
||||
node [bgcolor=grey style=filled]
|
||||
"Slave.Layer-0" -> "Slave.Scaler-0"
|
||||
"Slave.Layer-1" -> "Slave.Scaler-0"
|
||||
"Slave.Layer-2" -> "Slave.Scaler-1"
|
||||
"Slave.Layer-3" -> "Slave.Scaler-1"
|
||||
|
||||
"Slave.Layer-0" -> "Slave.Compiz"
|
||||
"Slave.Layer-1" -> "Slave.Compiz"
|
||||
"Slave.Layer-2" -> "Slave.Compiz"
|
||||
"Slave.Layer-3" -> "Slave.Compiz"
|
||||
"Slave.Scaler-0" -> "Slave.Compiz"
|
||||
"Slave.Scaler-1" -> "Slave.Compiz"
|
||||
}
|
||||
|
||||
subgraph cluster_pipeline_master {
|
||||
style=dashed
|
||||
label="Master Pipeline_A"
|
||||
node [shape=box]
|
||||
{
|
||||
node [bgcolor=grey style=dashed]
|
||||
"Scaler-0";
|
||||
"Scaler-1";
|
||||
"Scaler-0/1"
|
||||
}
|
||||
|
||||
node [bgcolor=grey style=filled]
|
||||
"Layer-0" -> "Scaler-0"
|
||||
"Layer-1" -> "Scaler-0"
|
||||
"Layer-2" -> "Scaler-1"
|
||||
"Layer-3" -> "Scaler-1"
|
||||
|
||||
"Slave.Compiz" -> "Compiz"
|
||||
"Layer-0" -> "Compiz"
|
||||
"Layer-1" -> "Compiz"
|
||||
"Layer-2" -> "Compiz"
|
||||
"Layer-3" -> "Compiz"
|
||||
"Scaler-0" -> "Compiz"
|
||||
"Scaler-1" -> "Compiz"
|
||||
|
||||
"Compiz" -> "Scaler-0/1" -> "Wb_layer"
|
||||
"Compiz" -> "Improc" -> "Timing Controller"
|
||||
}
|
||||
|
||||
"Wb_layer" -> "Memory"
|
||||
"Timing Controller" -> "Monitor"
|
||||
}
|
||||
|
||||
Sub-pipelines for input and output
|
||||
----------------------------------
|
||||
|
||||
A complete display pipeline can be easily divided into three sub-pipelines
|
||||
according to the in/out usage.
|
||||
|
||||
Layer(input) pipeline
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. kernel-render:: DOT
|
||||
:alt: Layer data digraph
|
||||
:caption: Layer (input) data flow
|
||||
|
||||
digraph layer_data_flow {
|
||||
rankdir=LR;
|
||||
node [shape=box]
|
||||
|
||||
{
|
||||
node [bgcolor=grey style=dashed]
|
||||
"Scaler-n";
|
||||
}
|
||||
|
||||
"Layer-n" -> "Scaler-n" -> "Compiz"
|
||||
}
|
||||
|
||||
.. kernel-render:: DOT
|
||||
:alt: Layer Split digraph
|
||||
:caption: Layer Split pipeline
|
||||
|
||||
digraph layer_data_flow {
|
||||
rankdir=LR;
|
||||
node [shape=box]
|
||||
|
||||
"Layer-0/1" -> "Scaler-0" -> "Merger"
|
||||
"Layer-2/3" -> "Scaler-1" -> "Merger"
|
||||
"Merger" -> "Compiz"
|
||||
}
|
||||
|
||||
Writeback(output) pipeline
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
.. kernel-render:: DOT
|
||||
:alt: writeback digraph
|
||||
:caption: Writeback(output) data flow
|
||||
|
||||
digraph writeback_data_flow {
|
||||
rankdir=LR;
|
||||
node [shape=box]
|
||||
|
||||
{
|
||||
node [bgcolor=grey style=dashed]
|
||||
"Scaler-n";
|
||||
}
|
||||
|
||||
"Compiz" -> "Scaler-n" -> "Wb_layer"
|
||||
}
|
||||
|
||||
.. kernel-render:: DOT
|
||||
:alt: split writeback digraph
|
||||
:caption: Writeback(output) Split data flow
|
||||
|
||||
digraph writeback_data_flow {
|
||||
rankdir=LR;
|
||||
node [shape=box]
|
||||
|
||||
"Compiz" -> "Splitter"
|
||||
"Splitter" -> "Scaler-0" -> "Merger"
|
||||
"Splitter" -> "Scaler-1" -> "Merger"
|
||||
"Merger" -> "Wb_layer"
|
||||
}
|
||||
|
||||
Display output pipeline
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
.. kernel-render:: DOT
|
||||
:alt: display digraph
|
||||
:caption: display output data flow
|
||||
|
||||
digraph single_ppl {
|
||||
rankdir=LR;
|
||||
node [shape=box]
|
||||
|
||||
"Compiz" -> "Improc" -> "Timing Controller"
|
||||
}
|
||||
|
||||
In the following section we'll see these three sub-pipelines will be handled
|
||||
by KMS-plane/wb_conn/crtc respectively.
|
||||
|
||||
Komeda Resource abstraction
|
||||
===========================
|
||||
|
||||
struct komeda_pipeline/component
|
||||
--------------------------------
|
||||
|
||||
To fully utilize and easily access/configure the HW, the driver side also uses
|
||||
a similar architecture: Pipeline/Component to describe the HW features and
|
||||
capabilities, and a specific component includes two parts:
|
||||
|
||||
- Data flow controlling.
|
||||
- Specific component capabilities and features.
|
||||
|
||||
So the driver defines a common header struct komeda_component to describe the
|
||||
data flow control and all specific components are a subclass of this base
|
||||
structure.
|
||||
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_pipeline.h
|
||||
:internal:
|
||||
|
||||
Resource discovery and initialization
|
||||
=====================================
|
||||
|
||||
Pipeline and component are used to describe how to handle the pixel data. We
|
||||
still need a @struct komeda_dev to describe the whole view of the device, and
|
||||
the control-abilites of device.
|
||||
|
||||
We have &komeda_dev, &komeda_pipeline, &komeda_component. Now fill devices with
|
||||
pipelines. Since komeda is not for D71 only but also intended for later products,
|
||||
of course we’d better share as much as possible between different products. To
|
||||
achieve this, split the komeda device into two layers: CORE and CHIP.
|
||||
|
||||
- CORE: for common features and capabilities handling.
|
||||
- CHIP: for register programing and HW specific feature (limitation) handling.
|
||||
|
||||
CORE can access CHIP by three chip function structures:
|
||||
|
||||
- struct komeda_dev_funcs
|
||||
- struct komeda_pipeline_funcs
|
||||
- struct komeda_component_funcs
|
||||
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_dev.h
|
||||
:internal:
|
||||
|
||||
Format handling
|
||||
===============
|
||||
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_format_caps.h
|
||||
:internal:
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_framebuffer.h
|
||||
:internal:
|
||||
|
||||
Attach komeda_dev to DRM-KMS
|
||||
============================
|
||||
|
||||
Komeda abstracts resources by pipeline/component, but DRM-KMS uses
|
||||
crtc/plane/connector. One KMS-obj cannot represent only one single component,
|
||||
since the requirements of a single KMS object cannot simply be achieved by a
|
||||
single component, usually that needs multiple components to fit the requirement.
|
||||
Like set mode, gamma, ctm for KMS all target on CRTC-obj, but komeda needs
|
||||
compiz, improc and timing_ctrlr to work together to fit these requirements.
|
||||
And a KMS-Plane may require multiple komeda resources: layer/scaler/compiz.
|
||||
|
||||
So, one KMS-Obj represents a sub-pipeline of komeda resources.
|
||||
|
||||
- Plane: `Layer(input) pipeline`_
|
||||
- Wb_connector: `Writeback(output) pipeline`_
|
||||
- Crtc: `Display output pipeline`_
|
||||
|
||||
So, for komeda, we treat KMS crtc/plane/connector as users of pipeline and
|
||||
component, and at any one time a pipeline/component only can be used by one
|
||||
user. And pipeline/component will be treated as private object of DRM-KMS; the
|
||||
state will be managed by drm_atomic_state as well.
|
||||
|
||||
How to map plane to Layer(input) pipeline
|
||||
-----------------------------------------
|
||||
|
||||
Komeda has multiple Layer input pipelines, see:
|
||||
- `Single pipeline data flow`_
|
||||
- `Dual pipeline with Slave enabled`_
|
||||
|
||||
The easiest way is binding a plane to a fixed Layer pipeline, but consider the
|
||||
komeda capabilities:
|
||||
|
||||
- Layer Split, See `Layer(input) pipeline`_
|
||||
|
||||
Layer_Split is quite complicated feature, which splits a big image into two
|
||||
parts and handles it by two layers and two scalers individually. But it
|
||||
imports an edge problem or effect in the middle of the image after the split.
|
||||
To avoid such a problem, it needs a complicated Split calculation and some
|
||||
special configurations to the layer and scaler. We'd better hide such HW
|
||||
related complexity to user mode.
|
||||
|
||||
- Slave pipeline, See `Dual pipeline with Slave enabled`_
|
||||
|
||||
Since the compiz component doesn't output alpha value, the slave pipeline
|
||||
only can be used for bottom layers composition. The komeda driver wants to
|
||||
hide this limitation to the user. The way to do this is to pick a suitable
|
||||
Layer according to plane_state->zpos.
|
||||
|
||||
So for komeda, the KMS-plane doesn't represent a fixed komeda layer pipeline,
|
||||
but multiple Layers with same capabilities. Komeda will select one or more
|
||||
Layers to fit the requirement of one KMS-plane.
|
||||
|
||||
Make component/pipeline to be drm_private_obj
|
||||
---------------------------------------------
|
||||
|
||||
Add :c:type:`drm_private_obj` to :c:type:`komeda_component`, :c:type:`komeda_pipeline`
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
struct komeda_component {
|
||||
struct drm_private_obj obj;
|
||||
...
|
||||
}
|
||||
|
||||
struct komeda_pipeline {
|
||||
struct drm_private_obj obj;
|
||||
...
|
||||
}
|
||||
|
||||
Tracking component_state/pipeline_state by drm_atomic_state
|
||||
-----------------------------------------------------------
|
||||
|
||||
Add :c:type:`drm_private_state` and user to :c:type:`komeda_component_state`,
|
||||
:c:type:`komeda_pipeline_state`
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
struct komeda_component_state {
|
||||
struct drm_private_state obj;
|
||||
void *binding_user;
|
||||
...
|
||||
}
|
||||
|
||||
struct komeda_pipeline_state {
|
||||
struct drm_private_state obj;
|
||||
struct drm_crtc *crtc;
|
||||
...
|
||||
}
|
||||
|
||||
komeda component validation
|
||||
---------------------------
|
||||
|
||||
Komeda has multiple types of components, but the process of validation are
|
||||
similar, usually including the following steps:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int komeda_xxxx_validate(struct komeda_component_xxx xxx_comp,
|
||||
struct komeda_component_output *input_dflow,
|
||||
struct drm_plane/crtc/connector *user,
|
||||
struct drm_plane/crtc/connector_state, *user_state)
|
||||
{
|
||||
setup 1: check if component is needed, like the scaler is optional depending
|
||||
on the user_state; if unneeded, just return, and the caller will
|
||||
put the data flow into next stage.
|
||||
Setup 2: check user_state with component features and capabilities to see
|
||||
if requirements can be met; if not, return fail.
|
||||
Setup 3: get component_state from drm_atomic_state, and try set to set
|
||||
user to component; fail if component has been assigned to another
|
||||
user already.
|
||||
Setup 3: configure the component_state, like set its input component,
|
||||
convert user_state to component specific state.
|
||||
Setup 4: adjust the input_dflow and prepare it for the next stage.
|
||||
}
|
||||
|
||||
komeda_kms Abstraction
|
||||
----------------------
|
||||
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_kms.h
|
||||
:internal:
|
||||
|
||||
komde_kms Functions
|
||||
-------------------
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_crtc.c
|
||||
:internal:
|
||||
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_plane.c
|
||||
:internal:
|
||||
|
||||
Build komeda to be a Linux module driver
|
||||
========================================
|
||||
|
||||
Now we have two level devices:
|
||||
|
||||
- komeda_dev: describes the real display hardware.
|
||||
- komeda_kms_dev: attachs or connects komeda_dev to DRM-KMS.
|
||||
|
||||
All komeda operations are supplied or operated by komeda_dev or komeda_kms_dev,
|
||||
the module driver is only a simple wrapper to pass the Linux command
|
||||
(probe/remove/pm) into komeda_dev or komeda_kms_dev.
|
Loading…
Reference in New Issue
Block a user