mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-28 16:53:49 +00:00
Merge branch 'tip/sched/core' into for-6.12
To receive 863ccdbb91
("sched: Allow sched_class::dequeue_task() to fail")
which makes sched_class.dequeue_task() return bool instead of void. This
leads to compile breakage and will be fixed by a follow-up patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
This commit is contained in:
commit
5ac998574f
@ -335,7 +335,7 @@ static inline bool six_owner_running(struct six_lock *lock)
|
||||
*/
|
||||
rcu_read_lock();
|
||||
struct task_struct *owner = READ_ONCE(lock->owner);
|
||||
bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
|
||||
bool ret = owner ? owner_on_cpu(owner) : !rt_or_dl_task(current);
|
||||
rcu_read_unlock();
|
||||
|
||||
return ret;
|
||||
|
@ -82,7 +82,7 @@ u64 select_estimate_accuracy(struct timespec64 *tv)
|
||||
* Realtime tasks get a slack of 0 for obvious reasons.
|
||||
*/
|
||||
|
||||
if (rt_task(current))
|
||||
if (rt_or_dl_task(current))
|
||||
return 0;
|
||||
|
||||
ktime_get_ts64(&now);
|
||||
|
@ -40,7 +40,7 @@ static inline int task_nice_ioclass(struct task_struct *task)
|
||||
{
|
||||
if (task->policy == SCHED_IDLE)
|
||||
return IOPRIO_CLASS_IDLE;
|
||||
else if (task_is_realtime(task))
|
||||
else if (rt_or_dl_task_policy(task))
|
||||
return IOPRIO_CLASS_RT;
|
||||
else
|
||||
return IOPRIO_CLASS_BE;
|
||||
|
@ -151,8 +151,9 @@ struct user_event_mm;
|
||||
* Special states are those that do not use the normal wait-loop pattern. See
|
||||
* the comment with set_special_state().
|
||||
*/
|
||||
#define is_special_task_state(state) \
|
||||
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
|
||||
#define is_special_task_state(state) \
|
||||
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
|
||||
TASK_DEAD | TASK_FROZEN))
|
||||
|
||||
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
||||
# define debug_normal_state_change(state_value) \
|
||||
@ -543,9 +544,14 @@ struct sched_entity {
|
||||
struct rb_node run_node;
|
||||
u64 deadline;
|
||||
u64 min_vruntime;
|
||||
u64 min_slice;
|
||||
|
||||
struct list_head group_node;
|
||||
unsigned int on_rq;
|
||||
unsigned char on_rq;
|
||||
unsigned char sched_delayed;
|
||||
unsigned char rel_deadline;
|
||||
unsigned char custom_slice;
|
||||
/* hole */
|
||||
|
||||
u64 exec_start;
|
||||
u64 sum_exec_runtime;
|
||||
|
@ -10,16 +10,16 @@
|
||||
|
||||
#include <linux/sched.h>
|
||||
|
||||
#define MAX_DL_PRIO 0
|
||||
|
||||
static inline int dl_prio(int prio)
|
||||
static inline bool dl_prio(int prio)
|
||||
{
|
||||
if (unlikely(prio < MAX_DL_PRIO))
|
||||
return 1;
|
||||
return 0;
|
||||
return unlikely(prio < MAX_DL_PRIO);
|
||||
}
|
||||
|
||||
static inline int dl_task(struct task_struct *p)
|
||||
/*
|
||||
* Returns true if a task has a priority that belongs to DL class. PI-boosted
|
||||
* tasks will return true. Use dl_policy() to ignore PI-boosted tasks.
|
||||
*/
|
||||
static inline bool dl_task(struct task_struct *p)
|
||||
{
|
||||
return dl_prio(p->prio);
|
||||
}
|
||||
|
@ -14,6 +14,7 @@
|
||||
*/
|
||||
|
||||
#define MAX_RT_PRIO 100
|
||||
#define MAX_DL_PRIO 0
|
||||
|
||||
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
|
||||
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
|
||||
|
@ -6,19 +6,40 @@
|
||||
|
||||
struct task_struct;
|
||||
|
||||
static inline int rt_prio(int prio)
|
||||
static inline bool rt_prio(int prio)
|
||||
{
|
||||
if (unlikely(prio < MAX_RT_PRIO))
|
||||
return 1;
|
||||
return 0;
|
||||
return unlikely(prio < MAX_RT_PRIO && prio >= MAX_DL_PRIO);
|
||||
}
|
||||
|
||||
static inline int rt_task(struct task_struct *p)
|
||||
static inline bool rt_or_dl_prio(int prio)
|
||||
{
|
||||
return unlikely(prio < MAX_RT_PRIO);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns true if a task has a priority that belongs to RT class. PI-boosted
|
||||
* tasks will return true. Use rt_policy() to ignore PI-boosted tasks.
|
||||
*/
|
||||
static inline bool rt_task(struct task_struct *p)
|
||||
{
|
||||
return rt_prio(p->prio);
|
||||
}
|
||||
|
||||
static inline bool task_is_realtime(struct task_struct *tsk)
|
||||
/*
|
||||
* Returns true if a task has a priority that belongs to RT or DL classes.
|
||||
* PI-boosted tasks will return true. Use rt_or_dl_task_policy() to ignore
|
||||
* PI-boosted tasks.
|
||||
*/
|
||||
static inline bool rt_or_dl_task(struct task_struct *p)
|
||||
{
|
||||
return rt_or_dl_prio(p->prio);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns true if a task has a policy that belongs to RT or DL classes.
|
||||
* PI-boosted tasks will return false.
|
||||
*/
|
||||
static inline bool rt_or_dl_task_policy(struct task_struct *tsk)
|
||||
{
|
||||
int policy = tsk->policy;
|
||||
|
||||
|
@ -72,7 +72,7 @@ bool __refrigerator(bool check_kthr_stop)
|
||||
bool freeze;
|
||||
|
||||
raw_spin_lock_irq(¤t->pi_lock);
|
||||
set_current_state(TASK_FROZEN);
|
||||
WRITE_ONCE(current->__state, TASK_FROZEN);
|
||||
/* unstale saved_state so that __thaw_task() will wake us up */
|
||||
current->saved_state = TASK_RUNNING;
|
||||
raw_spin_unlock_irq(¤t->pi_lock);
|
||||
|
@ -347,7 +347,7 @@ static __always_inline int __waiter_prio(struct task_struct *task)
|
||||
{
|
||||
int prio = task->prio;
|
||||
|
||||
if (!rt_prio(prio))
|
||||
if (!rt_or_dl_prio(prio))
|
||||
return DEFAULT_PRIO;
|
||||
|
||||
return prio;
|
||||
@ -435,7 +435,7 @@ static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
|
||||
* Note that RT tasks are excluded from same priority (lateral)
|
||||
* steals to prevent the introduction of an unbounded latency.
|
||||
*/
|
||||
if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
|
||||
if (rt_or_dl_prio(waiter->tree.prio))
|
||||
return false;
|
||||
|
||||
return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
|
||||
|
@ -631,7 +631,7 @@ static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
|
||||
* if it is an RT task or wait in the wait queue
|
||||
* for too long.
|
||||
*/
|
||||
if (has_handoff || (!rt_task(waiter->task) &&
|
||||
if (has_handoff || (!rt_or_dl_task(waiter->task) &&
|
||||
!time_after(jiffies, waiter->timeout)))
|
||||
return false;
|
||||
|
||||
@ -914,7 +914,7 @@ static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
|
||||
if (owner_state != OWNER_WRITER) {
|
||||
if (need_resched())
|
||||
break;
|
||||
if (rt_task(current) &&
|
||||
if (rt_or_dl_task(current) &&
|
||||
(prev_owner_state != OWNER_WRITER))
|
||||
break;
|
||||
}
|
||||
|
@ -237,7 +237,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
|
||||
int a_prio = a->task->prio;
|
||||
int b_prio = b->task->prio;
|
||||
|
||||
if (rt_prio(a_prio) || rt_prio(b_prio)) {
|
||||
if (rt_or_dl_prio(a_prio) || rt_or_dl_prio(b_prio)) {
|
||||
|
||||
if (a_prio > b_prio)
|
||||
return true;
|
||||
|
@ -166,7 +166,7 @@ static inline int __task_prio(const struct task_struct *p)
|
||||
if (p->dl_server)
|
||||
return -1; /* deadline */
|
||||
|
||||
if (rt_prio(p->prio)) /* includes deadline */
|
||||
if (rt_or_dl_prio(p->prio))
|
||||
return p->prio; /* [-1, 99] */
|
||||
|
||||
if (p->sched_class == &idle_sched_class)
|
||||
@ -1702,6 +1702,9 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
|
||||
if (unlikely(!p->sched_class->uclamp_enabled))
|
||||
return;
|
||||
|
||||
if (p->se.sched_delayed)
|
||||
return;
|
||||
|
||||
for_each_clamp_id(clamp_id)
|
||||
uclamp_rq_inc_id(rq, p, clamp_id);
|
||||
|
||||
@ -1726,6 +1729,9 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
|
||||
if (unlikely(!p->sched_class->uclamp_enabled))
|
||||
return;
|
||||
|
||||
if (p->se.sched_delayed)
|
||||
return;
|
||||
|
||||
for_each_clamp_id(clamp_id)
|
||||
uclamp_rq_dec_id(rq, p, clamp_id);
|
||||
}
|
||||
@ -2005,14 +2011,21 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
|
||||
}
|
||||
|
||||
uclamp_rq_inc(rq, p);
|
||||
p->sched_class->enqueue_task(rq, p, flags);
|
||||
/*
|
||||
* Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
|
||||
* ->sched_delayed.
|
||||
*/
|
||||
uclamp_rq_inc(rq, p);
|
||||
|
||||
if (sched_core_enabled(rq))
|
||||
sched_core_enqueue(rq, p);
|
||||
}
|
||||
|
||||
void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
/*
|
||||
* Must only return false when DEQUEUE_SLEEP.
|
||||
*/
|
||||
inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
if (sched_core_enabled(rq))
|
||||
sched_core_dequeue(rq, p, flags);
|
||||
@ -2025,8 +2038,12 @@ void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
psi_dequeue(p, flags & DEQUEUE_SLEEP);
|
||||
}
|
||||
|
||||
/*
|
||||
* Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
|
||||
* and mark the task ->sched_delayed.
|
||||
*/
|
||||
uclamp_rq_dec(rq, p);
|
||||
p->sched_class->dequeue_task(rq, p, flags);
|
||||
return p->sched_class->dequeue_task(rq, p, flags);
|
||||
}
|
||||
|
||||
void activate_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
@ -2044,12 +2061,25 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
|
||||
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
|
||||
SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
|
||||
|
||||
WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
|
||||
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
|
||||
|
||||
/*
|
||||
* Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
|
||||
* dequeue_task() and cleared *after* enqueue_task().
|
||||
*/
|
||||
|
||||
dequeue_task(rq, p, flags);
|
||||
}
|
||||
|
||||
static void block_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
|
||||
__block_task(rq, p);
|
||||
}
|
||||
|
||||
/**
|
||||
* task_curr - is this task currently executing on a CPU?
|
||||
* @p: the task in question.
|
||||
@ -3697,12 +3727,14 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags)
|
||||
|
||||
rq = __task_rq_lock(p, &rf);
|
||||
if (task_on_rq_queued(p)) {
|
||||
update_rq_clock(rq);
|
||||
if (p->se.sched_delayed)
|
||||
enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
|
||||
if (!task_on_cpu(rq, p)) {
|
||||
/*
|
||||
* When on_rq && !on_cpu the task is preempted, see if
|
||||
* it should preempt the task that is current now.
|
||||
*/
|
||||
update_rq_clock(rq);
|
||||
wakeup_preempt(rq, p, wake_flags);
|
||||
}
|
||||
ttwu_do_wakeup(p);
|
||||
@ -4091,11 +4123,16 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
||||
* case the whole 'p->on_rq && ttwu_runnable()' case below
|
||||
* without taking any locks.
|
||||
*
|
||||
* Specifically, given current runs ttwu() we must be before
|
||||
* schedule()'s block_task(), as such this must not observe
|
||||
* sched_delayed.
|
||||
*
|
||||
* In particular:
|
||||
* - we rely on Program-Order guarantees for all the ordering,
|
||||
* - we're serialized against set_special_state() by virtue of
|
||||
* it disabling IRQs (this allows not taking ->pi_lock).
|
||||
*/
|
||||
SCHED_WARN_ON(p->se.sched_delayed);
|
||||
if (!ttwu_state_match(p, state, &success))
|
||||
goto out;
|
||||
|
||||
@ -4384,9 +4421,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
|
||||
p->se.nr_migrations = 0;
|
||||
p->se.vruntime = 0;
|
||||
p->se.vlag = 0;
|
||||
p->se.slice = sysctl_sched_base_slice;
|
||||
INIT_LIST_HEAD(&p->se.group_node);
|
||||
|
||||
/* A delayed task cannot be in clone(). */
|
||||
SCHED_WARN_ON(p->se.sched_delayed);
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
p->se.cfs_rq = NULL;
|
||||
#endif
|
||||
@ -4638,6 +4677,8 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
|
||||
|
||||
p->prio = p->normal_prio = p->static_prio;
|
||||
set_load_weight(p, false);
|
||||
p->se.custom_slice = 0;
|
||||
p->se.slice = sysctl_sched_base_slice;
|
||||
|
||||
/*
|
||||
* We don't need the reset flag anymore after the fork. It has
|
||||
@ -6562,13 +6603,15 @@ static void __sched notrace __schedule(unsigned int sched_mode)
|
||||
if (signal_pending_state(prev_state, prev)) {
|
||||
WRITE_ONCE(prev->__state, TASK_RUNNING);
|
||||
} else {
|
||||
int flags = DEQUEUE_NOCLOCK;
|
||||
|
||||
prev->sched_contributes_to_load =
|
||||
(prev_state & TASK_UNINTERRUPTIBLE) &&
|
||||
!(prev_state & TASK_NOLOAD) &&
|
||||
!(prev_state & TASK_FROZEN);
|
||||
|
||||
if (prev->sched_contributes_to_load)
|
||||
rq->nr_uninterruptible++;
|
||||
if (unlikely(is_special_task_state(prev_state)))
|
||||
flags |= DEQUEUE_SPECIAL;
|
||||
|
||||
/*
|
||||
* __schedule() ttwu()
|
||||
@ -6581,12 +6624,7 @@ static void __sched notrace __schedule(unsigned int sched_mode)
|
||||
*
|
||||
* After this, schedule() must not care about p->state any more.
|
||||
*/
|
||||
deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
|
||||
|
||||
if (prev->in_iowait) {
|
||||
atomic_inc(&rq->nr_iowait);
|
||||
delayacct_blkio_start();
|
||||
}
|
||||
block_task(rq, prev, flags);
|
||||
}
|
||||
switch_count = &prev->nvcsw;
|
||||
}
|
||||
@ -8461,6 +8499,7 @@ void __init sched_init(void)
|
||||
}
|
||||
|
||||
set_load_weight(&init_task, false);
|
||||
init_task.se.slice = sysctl_sched_base_slice,
|
||||
|
||||
/*
|
||||
* The boot idle thread does lazy MMU switching as well:
|
||||
@ -8677,7 +8716,7 @@ void normalize_rt_tasks(void)
|
||||
schedstat_set(p->stats.sleep_start, 0);
|
||||
schedstat_set(p->stats.block_start, 0);
|
||||
|
||||
if (!dl_task(p) && !rt_task(p)) {
|
||||
if (!rt_or_dl_task(p)) {
|
||||
/*
|
||||
* Renice negative nice level userspace
|
||||
* tasks back to 0:
|
||||
|
@ -2162,7 +2162,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
enqueue_pushable_dl_task(rq, p);
|
||||
}
|
||||
|
||||
static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
update_curr_dl(rq);
|
||||
|
||||
@ -2172,6 +2172,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
dequeue_dl_entity(&p->dl, flags);
|
||||
if (!p->dl.dl_throttled && !dl_server(&p->dl))
|
||||
dequeue_pushable_dl_task(rq, p);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2426,7 +2428,6 @@ static struct task_struct *__pick_next_task_dl(struct rq *rq, bool peek)
|
||||
else
|
||||
p = dl_se->server_pick_next(dl_se);
|
||||
if (!p) {
|
||||
WARN_ON_ONCE(1);
|
||||
dl_se->dl_yielded = 1;
|
||||
update_curr_dl_se(rq, dl_se, 0);
|
||||
goto again;
|
||||
|
@ -338,7 +338,7 @@ enum dl_param {
|
||||
DL_PERIOD,
|
||||
};
|
||||
|
||||
static unsigned long fair_server_period_max = (1 << 22) * NSEC_PER_USEC; /* ~4 seconds */
|
||||
static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */
|
||||
static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */
|
||||
|
||||
static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf,
|
||||
@ -739,11 +739,12 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
|
||||
else
|
||||
SEQ_printf(m, " %c", task_state_to_char(p));
|
||||
|
||||
SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
|
||||
SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
|
||||
p->comm, task_pid_nr(p),
|
||||
SPLIT_NS(p->se.vruntime),
|
||||
entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
|
||||
SPLIT_NS(p->se.deadline),
|
||||
p->se.custom_slice ? 'S' : ' ',
|
||||
SPLIT_NS(p->se.slice),
|
||||
SPLIT_NS(p->se.sum_exec_runtime),
|
||||
(long long)(p->nvcsw + p->nivcsw),
|
||||
|
@ -779,8 +779,22 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
|
||||
}
|
||||
|
||||
/* ensure we never gain time by being placed backwards. */
|
||||
u64_u32_store(cfs_rq->min_vruntime,
|
||||
__update_min_vruntime(cfs_rq, vruntime));
|
||||
cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
|
||||
}
|
||||
|
||||
static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
struct sched_entity *root = __pick_root_entity(cfs_rq);
|
||||
struct sched_entity *curr = cfs_rq->curr;
|
||||
u64 min_slice = ~0ULL;
|
||||
|
||||
if (curr && curr->on_rq)
|
||||
min_slice = curr->slice;
|
||||
|
||||
if (root)
|
||||
min_slice = min(min_slice, root->min_slice);
|
||||
|
||||
return min_slice;
|
||||
}
|
||||
|
||||
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
|
||||
@ -799,19 +813,34 @@ static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node
|
||||
}
|
||||
}
|
||||
|
||||
static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
|
||||
{
|
||||
if (node) {
|
||||
struct sched_entity *rse = __node_2_se(node);
|
||||
if (rse->min_slice < se->min_slice)
|
||||
se->min_slice = rse->min_slice;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
|
||||
*/
|
||||
static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
|
||||
{
|
||||
u64 old_min_vruntime = se->min_vruntime;
|
||||
u64 old_min_slice = se->min_slice;
|
||||
struct rb_node *node = &se->run_node;
|
||||
|
||||
se->min_vruntime = se->vruntime;
|
||||
__min_vruntime_update(se, node->rb_right);
|
||||
__min_vruntime_update(se, node->rb_left);
|
||||
|
||||
return se->min_vruntime == old_min_vruntime;
|
||||
se->min_slice = se->slice;
|
||||
__min_slice_update(se, node->rb_right);
|
||||
__min_slice_update(se, node->rb_left);
|
||||
|
||||
return se->min_vruntime == old_min_vruntime &&
|
||||
se->min_slice == old_min_slice;
|
||||
}
|
||||
|
||||
RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
|
||||
@ -824,6 +853,7 @@ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
avg_vruntime_add(cfs_rq, se);
|
||||
se->min_vruntime = se->vruntime;
|
||||
se->min_slice = se->slice;
|
||||
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
|
||||
__entity_less, &min_vruntime_cb);
|
||||
}
|
||||
@ -974,17 +1004,18 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
|
||||
* XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
|
||||
* this is probably good enough.
|
||||
*/
|
||||
static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
if ((s64)(se->vruntime - se->deadline) < 0)
|
||||
return;
|
||||
return false;
|
||||
|
||||
/*
|
||||
* For EEVDF the virtual time slope is determined by w_i (iow.
|
||||
* nice) while the request time r_i is determined by
|
||||
* sysctl_sched_base_slice.
|
||||
*/
|
||||
se->slice = sysctl_sched_base_slice;
|
||||
if (!se->custom_slice)
|
||||
se->slice = sysctl_sched_base_slice;
|
||||
|
||||
/*
|
||||
* EEVDF: vd_i = ve_i + r_i / w_i
|
||||
@ -994,10 +1025,7 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
/*
|
||||
* The task has consumed its request, reschedule.
|
||||
*/
|
||||
if (cfs_rq->nr_running > 1) {
|
||||
resched_curr(rq_of(cfs_rq));
|
||||
clear_buddies(cfs_rq, se);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#include "pelt.h"
|
||||
@ -1135,6 +1163,38 @@ static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
|
||||
dl_server_update(p->dl_server, delta_exec);
|
||||
}
|
||||
|
||||
static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
{
|
||||
if (!sched_feat(PREEMPT_SHORT))
|
||||
return false;
|
||||
|
||||
if (curr->vlag == curr->deadline)
|
||||
return false;
|
||||
|
||||
return !entity_eligible(cfs_rq, curr);
|
||||
}
|
||||
|
||||
static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
|
||||
struct sched_entity *pse, struct sched_entity *se)
|
||||
{
|
||||
if (!sched_feat(PREEMPT_SHORT))
|
||||
return false;
|
||||
|
||||
if (pse->slice >= se->slice)
|
||||
return false;
|
||||
|
||||
if (!entity_eligible(cfs_rq, pse))
|
||||
return false;
|
||||
|
||||
if (entity_before(pse, se))
|
||||
return true;
|
||||
|
||||
if (!entity_eligible(cfs_rq, se))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Used by other classes to account runtime.
|
||||
*/
|
||||
@ -1158,6 +1218,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
|
||||
struct sched_entity *curr = cfs_rq->curr;
|
||||
struct rq *rq = rq_of(cfs_rq);
|
||||
s64 delta_exec;
|
||||
bool resched;
|
||||
|
||||
if (unlikely(!curr))
|
||||
return;
|
||||
@ -1167,7 +1228,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
|
||||
return;
|
||||
|
||||
curr->vruntime += calc_delta_fair(delta_exec, curr);
|
||||
update_deadline(cfs_rq, curr);
|
||||
resched = update_deadline(cfs_rq, curr);
|
||||
update_min_vruntime(cfs_rq);
|
||||
|
||||
if (entity_is_task(curr)) {
|
||||
@ -1185,6 +1246,14 @@ static void update_curr(struct cfs_rq *cfs_rq)
|
||||
}
|
||||
|
||||
account_cfs_rq_runtime(cfs_rq, delta_exec);
|
||||
|
||||
if (rq->nr_running == 1)
|
||||
return;
|
||||
|
||||
if (resched || did_preempt_short(cfs_rq, curr)) {
|
||||
resched_curr(rq);
|
||||
clear_buddies(cfs_rq, curr);
|
||||
}
|
||||
}
|
||||
|
||||
static void update_curr_fair(struct rq *rq)
|
||||
@ -5191,7 +5260,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
u64 vslice, vruntime = avg_vruntime(cfs_rq);
|
||||
s64 lag = 0;
|
||||
|
||||
se->slice = sysctl_sched_base_slice;
|
||||
if (!se->custom_slice)
|
||||
se->slice = sysctl_sched_base_slice;
|
||||
vslice = calc_delta_fair(se->slice, se);
|
||||
|
||||
/*
|
||||
@ -5272,6 +5342,12 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
|
||||
se->vruntime = vruntime - lag;
|
||||
|
||||
if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
|
||||
se->deadline += se->vruntime;
|
||||
se->rel_deadline = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* When joining the competition; the existing tasks will be,
|
||||
* on average, halfway through their slice, as such start tasks
|
||||
@ -5291,6 +5367,9 @@ static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
|
||||
|
||||
static inline bool cfs_bandwidth_used(void);
|
||||
|
||||
static void
|
||||
requeue_delayed_entity(struct sched_entity *se);
|
||||
|
||||
static void
|
||||
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
{
|
||||
@ -5378,19 +5457,40 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
|
||||
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
||||
|
||||
static void
|
||||
static bool
|
||||
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
{
|
||||
int action = UPDATE_TG;
|
||||
bool sleep = flags & DEQUEUE_SLEEP;
|
||||
|
||||
update_curr(cfs_rq);
|
||||
|
||||
if (flags & DEQUEUE_DELAYED) {
|
||||
SCHED_WARN_ON(!se->sched_delayed);
|
||||
} else {
|
||||
bool delay = sleep;
|
||||
/*
|
||||
* DELAY_DEQUEUE relies on spurious wakeups, special task
|
||||
* states must not suffer spurious wakeups, excempt them.
|
||||
*/
|
||||
if (flags & DEQUEUE_SPECIAL)
|
||||
delay = false;
|
||||
|
||||
SCHED_WARN_ON(delay && se->sched_delayed);
|
||||
|
||||
if (sched_feat(DELAY_DEQUEUE) && delay &&
|
||||
!entity_eligible(cfs_rq, se)) {
|
||||
if (cfs_rq->next == se)
|
||||
cfs_rq->next = NULL;
|
||||
update_load_avg(cfs_rq, se, 0);
|
||||
se->sched_delayed = 1;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
int action = UPDATE_TG;
|
||||
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
|
||||
action |= DO_DETACH;
|
||||
|
||||
/*
|
||||
* Update run-time statistics of the 'current'.
|
||||
*/
|
||||
update_curr(cfs_rq);
|
||||
|
||||
/*
|
||||
* When dequeuing a sched_entity, we must:
|
||||
* - Update loads to have both entity and cfs_rq synced with now.
|
||||
@ -5408,6 +5508,11 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
clear_buddies(cfs_rq, se);
|
||||
|
||||
update_entity_lag(cfs_rq, se);
|
||||
if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
|
||||
se->deadline -= se->vruntime;
|
||||
se->rel_deadline = 1;
|
||||
}
|
||||
|
||||
if (se != cfs_rq->curr)
|
||||
__dequeue_entity(cfs_rq, se);
|
||||
se->on_rq = 0;
|
||||
@ -5427,8 +5532,16 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
|
||||
update_min_vruntime(cfs_rq);
|
||||
|
||||
if (flags & DEQUEUE_DELAYED) {
|
||||
se->sched_delayed = 0;
|
||||
if (sched_feat(DELAY_ZERO) && se->vlag > 0)
|
||||
se->vlag = 0;
|
||||
}
|
||||
|
||||
if (cfs_rq->nr_running == 0)
|
||||
update_idle_cfs_rq_clock_pelt(cfs_rq);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void
|
||||
@ -5454,6 +5567,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
}
|
||||
|
||||
update_stats_curr_start(cfs_rq, se);
|
||||
SCHED_WARN_ON(cfs_rq->curr);
|
||||
cfs_rq->curr = se;
|
||||
|
||||
/*
|
||||
@ -5474,6 +5588,8 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
se->prev_sum_exec_runtime = se->sum_exec_runtime;
|
||||
}
|
||||
|
||||
static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
|
||||
|
||||
/*
|
||||
* Pick the next process, keeping these things in mind, in this order:
|
||||
* 1) keep things fair between processes/task groups
|
||||
@ -5482,16 +5598,26 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
* 4) do not run the "skip" process, if something else is available
|
||||
*/
|
||||
static struct sched_entity *
|
||||
pick_next_entity(struct cfs_rq *cfs_rq)
|
||||
pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
|
||||
{
|
||||
/*
|
||||
* Enabling NEXT_BUDDY will affect latency but not fairness.
|
||||
*/
|
||||
if (sched_feat(NEXT_BUDDY) &&
|
||||
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
|
||||
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
|
||||
/* ->next will never be delayed */
|
||||
SCHED_WARN_ON(cfs_rq->next->sched_delayed);
|
||||
return cfs_rq->next;
|
||||
}
|
||||
|
||||
return pick_eevdf(cfs_rq);
|
||||
struct sched_entity *se = pick_eevdf(cfs_rq);
|
||||
if (se->sched_delayed) {
|
||||
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
|
||||
SCHED_WARN_ON(se->sched_delayed);
|
||||
SCHED_WARN_ON(se->on_rq);
|
||||
return NULL;
|
||||
}
|
||||
return se;
|
||||
}
|
||||
|
||||
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
||||
@ -5515,6 +5641,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
||||
/* in !on_rq case, update occurred at dequeue */
|
||||
update_load_avg(cfs_rq, prev, 0);
|
||||
}
|
||||
SCHED_WARN_ON(cfs_rq->curr != prev);
|
||||
cfs_rq->curr = NULL;
|
||||
}
|
||||
|
||||
@ -5812,11 +5939,21 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
idle_task_delta = cfs_rq->idle_h_nr_running;
|
||||
for_each_sched_entity(se) {
|
||||
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
|
||||
int flags;
|
||||
|
||||
/* throttled entity or throttle-on-deactivate */
|
||||
if (!se->on_rq)
|
||||
goto done;
|
||||
|
||||
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
|
||||
/*
|
||||
* Abuse SPECIAL to avoid delayed dequeue in this instance.
|
||||
* This avoids teaching dequeue_entities() about throttled
|
||||
* entities and keeps things relatively simple.
|
||||
*/
|
||||
flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
|
||||
if (se->sched_delayed)
|
||||
flags |= DEQUEUE_DELAYED;
|
||||
dequeue_entity(qcfs_rq, se, flags);
|
||||
|
||||
if (cfs_rq_is_idle(group_cfs_rq(se)))
|
||||
idle_task_delta = cfs_rq->h_nr_running;
|
||||
@ -5909,8 +6046,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
for_each_sched_entity(se) {
|
||||
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
|
||||
|
||||
if (se->on_rq)
|
||||
if (se->on_rq) {
|
||||
SCHED_WARN_ON(se->sched_delayed);
|
||||
break;
|
||||
}
|
||||
enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
|
||||
|
||||
if (cfs_rq_is_idle(group_cfs_rq(se)))
|
||||
@ -6760,6 +6899,37 @@ static int sched_idle_cpu(int cpu)
|
||||
}
|
||||
#endif
|
||||
|
||||
static void
|
||||
requeue_delayed_entity(struct sched_entity *se)
|
||||
{
|
||||
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
||||
|
||||
/*
|
||||
* se->sched_delayed should imply: se->on_rq == 1.
|
||||
* Because a delayed entity is one that is still on
|
||||
* the runqueue competing until elegibility.
|
||||
*/
|
||||
SCHED_WARN_ON(!se->sched_delayed);
|
||||
SCHED_WARN_ON(!se->on_rq);
|
||||
|
||||
if (sched_feat(DELAY_ZERO)) {
|
||||
update_entity_lag(cfs_rq, se);
|
||||
if (se->vlag > 0) {
|
||||
cfs_rq->nr_running--;
|
||||
if (se != cfs_rq->curr)
|
||||
__dequeue_entity(cfs_rq, se);
|
||||
se->vlag = 0;
|
||||
place_entity(cfs_rq, se, 0);
|
||||
if (se != cfs_rq->curr)
|
||||
__enqueue_entity(cfs_rq, se);
|
||||
cfs_rq->nr_running++;
|
||||
}
|
||||
}
|
||||
|
||||
update_load_avg(cfs_rq, se, 0);
|
||||
se->sched_delayed = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The enqueue_task method is called before nr_running is
|
||||
* increased. Here we update the fair scheduling stats and
|
||||
@ -6773,6 +6943,12 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
int idle_h_nr_running = task_has_idle_policy(p);
|
||||
int task_new = !(flags & ENQUEUE_WAKEUP);
|
||||
int rq_h_nr_running = rq->cfs.h_nr_running;
|
||||
u64 slice = 0;
|
||||
|
||||
if (flags & ENQUEUE_DELAYED) {
|
||||
requeue_delayed_entity(se);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* The code below (indirectly) updates schedutil which looks at
|
||||
@ -6791,10 +6967,24 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
|
||||
|
||||
for_each_sched_entity(se) {
|
||||
if (se->on_rq)
|
||||
if (se->on_rq) {
|
||||
if (se->sched_delayed)
|
||||
requeue_delayed_entity(se);
|
||||
break;
|
||||
}
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
|
||||
/*
|
||||
* Basically set the slice of group entries to the min_slice of
|
||||
* their respective cfs_rq. This ensures the group can service
|
||||
* its entities in the desired time-frame.
|
||||
*/
|
||||
if (slice) {
|
||||
se->slice = slice;
|
||||
se->custom_slice = 1;
|
||||
}
|
||||
enqueue_entity(cfs_rq, se, flags);
|
||||
slice = cfs_rq_min_slice(cfs_rq);
|
||||
|
||||
cfs_rq->h_nr_running++;
|
||||
cfs_rq->idle_h_nr_running += idle_h_nr_running;
|
||||
@ -6816,6 +7006,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
se_update_runnable(se);
|
||||
update_cfs_group(se);
|
||||
|
||||
se->slice = slice;
|
||||
slice = cfs_rq_min_slice(cfs_rq);
|
||||
|
||||
cfs_rq->h_nr_running++;
|
||||
cfs_rq->idle_h_nr_running += idle_h_nr_running;
|
||||
|
||||
@ -6863,37 +7056,59 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
static void set_next_buddy(struct sched_entity *se);
|
||||
|
||||
/*
|
||||
* The dequeue_task method is called before nr_running is
|
||||
* decreased. We remove the task from the rbtree and
|
||||
* update the fair scheduling stats:
|
||||
* Basically dequeue_task_fair(), except it can deal with dequeue_entity()
|
||||
* failing half-way through and resume the dequeue later.
|
||||
*
|
||||
* Returns:
|
||||
* -1 - dequeue delayed
|
||||
* 0 - dequeue throttled
|
||||
* 1 - dequeue complete
|
||||
*/
|
||||
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
|
||||
{
|
||||
struct cfs_rq *cfs_rq;
|
||||
struct sched_entity *se = &p->se;
|
||||
int task_sleep = flags & DEQUEUE_SLEEP;
|
||||
int idle_h_nr_running = task_has_idle_policy(p);
|
||||
bool was_sched_idle = sched_idle_rq(rq);
|
||||
int rq_h_nr_running = rq->cfs.h_nr_running;
|
||||
bool task_sleep = flags & DEQUEUE_SLEEP;
|
||||
bool task_delayed = flags & DEQUEUE_DELAYED;
|
||||
struct task_struct *p = NULL;
|
||||
int idle_h_nr_running = 0;
|
||||
int h_nr_running = 0;
|
||||
struct cfs_rq *cfs_rq;
|
||||
u64 slice = 0;
|
||||
|
||||
util_est_dequeue(&rq->cfs, p);
|
||||
if (entity_is_task(se)) {
|
||||
p = task_of(se);
|
||||
h_nr_running = 1;
|
||||
idle_h_nr_running = task_has_idle_policy(p);
|
||||
} else {
|
||||
cfs_rq = group_cfs_rq(se);
|
||||
slice = cfs_rq_min_slice(cfs_rq);
|
||||
}
|
||||
|
||||
for_each_sched_entity(se) {
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
dequeue_entity(cfs_rq, se, flags);
|
||||
|
||||
cfs_rq->h_nr_running--;
|
||||
if (!dequeue_entity(cfs_rq, se, flags)) {
|
||||
if (p && &p->se == se)
|
||||
return -1;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
cfs_rq->h_nr_running -= h_nr_running;
|
||||
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
|
||||
|
||||
if (cfs_rq_is_idle(cfs_rq))
|
||||
idle_h_nr_running = 1;
|
||||
idle_h_nr_running = h_nr_running;
|
||||
|
||||
/* end evaluation on encountering a throttled cfs_rq */
|
||||
if (cfs_rq_throttled(cfs_rq))
|
||||
goto dequeue_throttle;
|
||||
return 0;
|
||||
|
||||
/* Don't dequeue parent if it has other entities besides us */
|
||||
if (cfs_rq->load.weight) {
|
||||
slice = cfs_rq_min_slice(cfs_rq);
|
||||
|
||||
/* Avoid re-evaluating load for this entity: */
|
||||
se = parent_entity(se);
|
||||
/*
|
||||
@ -6905,6 +7120,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
break;
|
||||
}
|
||||
flags |= DEQUEUE_SLEEP;
|
||||
flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
|
||||
}
|
||||
|
||||
for_each_sched_entity(se) {
|
||||
@ -6914,20 +7130,21 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
se_update_runnable(se);
|
||||
update_cfs_group(se);
|
||||
|
||||
cfs_rq->h_nr_running--;
|
||||
se->slice = slice;
|
||||
slice = cfs_rq_min_slice(cfs_rq);
|
||||
|
||||
cfs_rq->h_nr_running -= h_nr_running;
|
||||
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
|
||||
|
||||
if (cfs_rq_is_idle(cfs_rq))
|
||||
idle_h_nr_running = 1;
|
||||
idle_h_nr_running = h_nr_running;
|
||||
|
||||
/* end evaluation on encountering a throttled cfs_rq */
|
||||
if (cfs_rq_throttled(cfs_rq))
|
||||
goto dequeue_throttle;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* At this point se is NULL and we are at root level*/
|
||||
sub_nr_running(rq, 1);
|
||||
sub_nr_running(rq, h_nr_running);
|
||||
|
||||
if (rq_h_nr_running && !rq->cfs.h_nr_running)
|
||||
dl_server_stop(&rq->fair_server);
|
||||
@ -6936,9 +7153,37 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
|
||||
rq->next_balance = jiffies;
|
||||
|
||||
dequeue_throttle:
|
||||
util_est_update(&rq->cfs, p, task_sleep);
|
||||
if (p && task_delayed) {
|
||||
SCHED_WARN_ON(!task_sleep);
|
||||
SCHED_WARN_ON(p->on_rq != 1);
|
||||
|
||||
/* Fix-up what dequeue_task_fair() skipped */
|
||||
hrtick_update(rq);
|
||||
|
||||
/* Fix-up what block_task() skipped. */
|
||||
__block_task(rq, p);
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The dequeue_task method is called before nr_running is
|
||||
* decreased. We remove the task from the rbtree and
|
||||
* update the fair scheduling stats:
|
||||
*/
|
||||
static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
util_est_dequeue(&rq->cfs, p);
|
||||
|
||||
if (dequeue_entities(rq, &p->se, flags) < 0) {
|
||||
util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
|
||||
return false;
|
||||
}
|
||||
|
||||
util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
|
||||
hrtick_update(rq);
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
@ -8320,7 +8565,21 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
|
||||
|
||||
static void task_dead_fair(struct task_struct *p)
|
||||
{
|
||||
remove_entity_load_avg(&p->se);
|
||||
struct sched_entity *se = &p->se;
|
||||
|
||||
if (se->sched_delayed) {
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
rq = task_rq_lock(p, &rf);
|
||||
if (se->sched_delayed) {
|
||||
update_rq_clock(rq);
|
||||
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
|
||||
}
|
||||
task_rq_unlock(rq, p, &rf);
|
||||
}
|
||||
|
||||
remove_entity_load_avg(se);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -8356,7 +8615,7 @@ static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context
|
||||
static int
|
||||
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
|
||||
{
|
||||
if (rq->nr_running)
|
||||
if (sched_fair_runnable(rq))
|
||||
return 1;
|
||||
|
||||
return sched_balance_newidle(rq, rf) != 0;
|
||||
@ -8442,7 +8701,17 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
update_curr(cfs_rq);
|
||||
/*
|
||||
* XXX pick_eevdf(cfs_rq) != se ?
|
||||
* If @p has a shorter slice than current and @p is eligible, override
|
||||
* current's slice protection in order to allow preemption.
|
||||
*
|
||||
* Note that even if @p does not turn out to be the most eligible
|
||||
* task at this moment, current's slice protection will be lost.
|
||||
*/
|
||||
if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
|
||||
se->vlag = se->deadline + 1;
|
||||
|
||||
/*
|
||||
* If @p has become the most eligible task, force preemption.
|
||||
*/
|
||||
if (pick_eevdf(cfs_rq) == pse)
|
||||
goto preempt;
|
||||
@ -8453,7 +8722,6 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
|
||||
resched_curr(rq);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static struct task_struct *pick_task_fair(struct rq *rq)
|
||||
{
|
||||
struct sched_entity *se;
|
||||
@ -8465,20 +8733,16 @@ static struct task_struct *pick_task_fair(struct rq *rq)
|
||||
return NULL;
|
||||
|
||||
do {
|
||||
struct sched_entity *curr = cfs_rq->curr;
|
||||
/* Might not have done put_prev_entity() */
|
||||
if (cfs_rq->curr && cfs_rq->curr->on_rq)
|
||||
update_curr(cfs_rq);
|
||||
|
||||
/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
|
||||
if (curr) {
|
||||
if (curr->on_rq)
|
||||
update_curr(cfs_rq);
|
||||
else
|
||||
curr = NULL;
|
||||
if (unlikely(check_cfs_rq_runtime(cfs_rq)))
|
||||
goto again;
|
||||
|
||||
if (unlikely(check_cfs_rq_runtime(cfs_rq)))
|
||||
goto again;
|
||||
}
|
||||
|
||||
se = pick_next_entity(cfs_rq);
|
||||
se = pick_next_entity(rq, cfs_rq);
|
||||
if (!se)
|
||||
goto again;
|
||||
cfs_rq = group_cfs_rq(se);
|
||||
} while (cfs_rq);
|
||||
|
||||
@ -8492,19 +8756,19 @@ static struct task_struct *pick_task_fair(struct rq *rq)
|
||||
|
||||
return task_of(se);
|
||||
}
|
||||
#endif
|
||||
|
||||
struct task_struct *
|
||||
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
|
||||
{
|
||||
struct cfs_rq *cfs_rq = &rq->cfs;
|
||||
struct sched_entity *se;
|
||||
struct task_struct *p;
|
||||
int new_tasks;
|
||||
|
||||
again:
|
||||
if (!sched_fair_runnable(rq))
|
||||
p = pick_task_fair(rq);
|
||||
if (!p)
|
||||
goto idle;
|
||||
se = &p->se;
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
if (!prev || prev->sched_class != &fair_sched_class)
|
||||
@ -8516,52 +8780,14 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
|
||||
*
|
||||
* Therefore attempt to avoid putting and setting the entire cgroup
|
||||
* hierarchy, only change the part that actually changes.
|
||||
*/
|
||||
|
||||
do {
|
||||
struct sched_entity *curr = cfs_rq->curr;
|
||||
|
||||
/*
|
||||
* Since we got here without doing put_prev_entity() we also
|
||||
* have to consider cfs_rq->curr. If it is still a runnable
|
||||
* entity, update_curr() will update its vruntime, otherwise
|
||||
* forget we've ever seen it.
|
||||
*/
|
||||
if (curr) {
|
||||
if (curr->on_rq)
|
||||
update_curr(cfs_rq);
|
||||
else
|
||||
curr = NULL;
|
||||
|
||||
/*
|
||||
* This call to check_cfs_rq_runtime() will do the
|
||||
* throttle and dequeue its entity in the parent(s).
|
||||
* Therefore the nr_running test will indeed
|
||||
* be correct.
|
||||
*/
|
||||
if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
|
||||
cfs_rq = &rq->cfs;
|
||||
|
||||
if (!cfs_rq->nr_running)
|
||||
goto idle;
|
||||
|
||||
goto simple;
|
||||
}
|
||||
}
|
||||
|
||||
se = pick_next_entity(cfs_rq);
|
||||
cfs_rq = group_cfs_rq(se);
|
||||
} while (cfs_rq);
|
||||
|
||||
p = task_of(se);
|
||||
|
||||
/*
|
||||
*
|
||||
* Since we haven't yet done put_prev_entity and if the selected task
|
||||
* is a different task than we started out with, try and touch the
|
||||
* least amount of cfs_rqs.
|
||||
*/
|
||||
if (prev != p) {
|
||||
struct sched_entity *pse = &prev->se;
|
||||
struct cfs_rq *cfs_rq;
|
||||
|
||||
while (!(cfs_rq = is_same_group(se, pse))) {
|
||||
int se_depth = se->depth;
|
||||
@ -8587,13 +8813,8 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
|
||||
if (prev)
|
||||
put_prev_task(rq, prev);
|
||||
|
||||
do {
|
||||
se = pick_next_entity(cfs_rq);
|
||||
set_next_entity(cfs_rq, se);
|
||||
cfs_rq = group_cfs_rq(se);
|
||||
} while (cfs_rq);
|
||||
|
||||
p = task_of(se);
|
||||
for_each_sched_entity(se)
|
||||
set_next_entity(cfs_rq_of(se), se);
|
||||
|
||||
done: __maybe_unused;
|
||||
#ifdef CONFIG_SMP
|
||||
@ -12872,10 +13093,23 @@ static void attach_task_cfs_rq(struct task_struct *p)
|
||||
static void switched_from_fair(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
detach_task_cfs_rq(p);
|
||||
/*
|
||||
* Since this is called after changing class, this is a little weird
|
||||
* and we cannot use DEQUEUE_DELAYED.
|
||||
*/
|
||||
if (p->se.sched_delayed) {
|
||||
dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
|
||||
p->se.sched_delayed = 0;
|
||||
p->se.rel_deadline = 0;
|
||||
if (sched_feat(DELAY_ZERO) && p->se.vlag > 0)
|
||||
p->se.vlag = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void switched_to_fair(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
SCHED_WARN_ON(p->se.sched_delayed);
|
||||
|
||||
attach_task_cfs_rq(p);
|
||||
|
||||
set_task_max_allowed_capacity(p);
|
||||
@ -12919,12 +13153,17 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
|
||||
/* ensure bandwidth has been allocated on our new cfs_rq */
|
||||
account_cfs_rq_runtime(cfs_rq, 0);
|
||||
}
|
||||
|
||||
if (!first)
|
||||
return;
|
||||
|
||||
SCHED_WARN_ON(se->sched_delayed);
|
||||
}
|
||||
|
||||
void init_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
|
||||
u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
|
||||
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
|
||||
#ifdef CONFIG_SMP
|
||||
raw_spin_lock_init(&cfs_rq->removed.lock);
|
||||
#endif
|
||||
@ -13026,28 +13265,35 @@ void online_fair_sched_group(struct task_group *tg)
|
||||
|
||||
void unregister_fair_sched_group(struct task_group *tg)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct rq *rq;
|
||||
int cpu;
|
||||
|
||||
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
if (tg->se[cpu])
|
||||
remove_entity_load_avg(tg->se[cpu]);
|
||||
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
|
||||
struct sched_entity *se = tg->se[cpu];
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
|
||||
if (se) {
|
||||
if (se->sched_delayed) {
|
||||
guard(rq_lock_irqsave)(rq);
|
||||
if (se->sched_delayed) {
|
||||
update_rq_clock(rq);
|
||||
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
|
||||
}
|
||||
list_del_leaf_cfs_rq(cfs_rq);
|
||||
}
|
||||
remove_entity_load_avg(se);
|
||||
}
|
||||
|
||||
/*
|
||||
* Only empty task groups can be destroyed; so we can speculatively
|
||||
* check on_list without danger of it being re-added.
|
||||
*/
|
||||
if (!tg->cfs_rq[cpu]->on_list)
|
||||
continue;
|
||||
|
||||
rq = cpu_rq(cpu);
|
||||
|
||||
raw_spin_rq_lock_irqsave(rq, flags);
|
||||
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
|
||||
raw_spin_rq_unlock_irqrestore(rq, flags);
|
||||
if (cfs_rq->on_list) {
|
||||
guard(rq_lock_irqsave)(rq);
|
||||
list_del_leaf_cfs_rq(cfs_rq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,8 +5,24 @@
|
||||
* sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled.
|
||||
*/
|
||||
SCHED_FEAT(PLACE_LAG, true)
|
||||
/*
|
||||
* Give new tasks half a slice to ease into the competition.
|
||||
*/
|
||||
SCHED_FEAT(PLACE_DEADLINE_INITIAL, true)
|
||||
/*
|
||||
* Preserve relative virtual deadline on 'migration'.
|
||||
*/
|
||||
SCHED_FEAT(PLACE_REL_DEADLINE, true)
|
||||
/*
|
||||
* Inhibit (wakeup) preemption until the current task has either matched the
|
||||
* 0-lag point or until is has exhausted it's slice.
|
||||
*/
|
||||
SCHED_FEAT(RUN_TO_PARITY, true)
|
||||
/*
|
||||
* Allow wakeup of tasks with a shorter slice to cancel RESPECT_SLICE for
|
||||
* current.
|
||||
*/
|
||||
SCHED_FEAT(PREEMPT_SHORT, true)
|
||||
|
||||
/*
|
||||
* Prefer to schedule the task we woke last (assuming it failed
|
||||
@ -21,6 +37,18 @@ SCHED_FEAT(NEXT_BUDDY, false)
|
||||
*/
|
||||
SCHED_FEAT(CACHE_HOT_BUDDY, true)
|
||||
|
||||
/*
|
||||
* Delay dequeueing tasks until they get selected or woken.
|
||||
*
|
||||
* By delaying the dequeue for non-eligible tasks, they remain in the
|
||||
* competition and can burn off their negative lag. When they get selected
|
||||
* they'll have positive lag by definition.
|
||||
*
|
||||
* DELAY_ZERO clips the lag on dequeue (or wakeup) to 0.
|
||||
*/
|
||||
SCHED_FEAT(DELAY_DEQUEUE, true)
|
||||
SCHED_FEAT(DELAY_ZERO, true)
|
||||
|
||||
/*
|
||||
* Allow wakeup-time preemption of the current task:
|
||||
*/
|
||||
|
@ -484,13 +484,14 @@ struct task_struct *pick_next_task_idle(struct rq *rq)
|
||||
* It is not legal to sleep in the idle task - print a warning
|
||||
* message if some code attempts to do it:
|
||||
*/
|
||||
static void
|
||||
static bool
|
||||
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
raw_spin_rq_unlock_irq(rq);
|
||||
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
||||
dump_stack();
|
||||
raw_spin_rq_lock_irq(rq);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1483,7 +1483,7 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
||||
enqueue_pushable_task(rq, p);
|
||||
}
|
||||
|
||||
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
||||
static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
struct sched_rt_entity *rt_se = &p->rt;
|
||||
|
||||
@ -1491,6 +1491,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
||||
dequeue_rt_entity(rt_se, flags);
|
||||
|
||||
dequeue_pushable_task(rq, p);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -68,6 +68,7 @@
|
||||
#include <linux/wait_api.h>
|
||||
#include <linux/wait_bit.h>
|
||||
#include <linux/workqueue_api.h>
|
||||
#include <linux/delayacct.h>
|
||||
|
||||
#include <trace/events/power.h>
|
||||
#include <trace/events/sched.h>
|
||||
@ -645,10 +646,6 @@ struct cfs_rq {
|
||||
u64 min_vruntime_fi;
|
||||
#endif
|
||||
|
||||
#ifndef CONFIG_64BIT
|
||||
u64 min_vruntime_copy;
|
||||
#endif
|
||||
|
||||
struct rb_root_cached tasks_timeline;
|
||||
|
||||
/*
|
||||
@ -891,6 +888,9 @@ static inline void se_update_runnable(struct sched_entity *se)
|
||||
|
||||
static inline long se_runnable(struct sched_entity *se)
|
||||
{
|
||||
if (se->sched_delayed)
|
||||
return false;
|
||||
|
||||
if (entity_is_task(se))
|
||||
return !!se->on_rq;
|
||||
else
|
||||
@ -905,6 +905,9 @@ static inline void se_update_runnable(struct sched_entity *se) { }
|
||||
|
||||
static inline long se_runnable(struct sched_entity *se)
|
||||
{
|
||||
if (se->sched_delayed)
|
||||
return false;
|
||||
|
||||
return !!se->on_rq;
|
||||
}
|
||||
|
||||
@ -2317,11 +2320,13 @@ extern const u32 sched_prio_to_wmult[40];
|
||||
*
|
||||
*/
|
||||
|
||||
#define DEQUEUE_SLEEP 0x01
|
||||
#define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */
|
||||
#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
|
||||
#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
|
||||
#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
|
||||
#define DEQUEUE_SPECIAL 0x10
|
||||
#define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
|
||||
#define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */
|
||||
|
||||
#define ENQUEUE_WAKEUP 0x01
|
||||
#define ENQUEUE_RESTORE 0x02
|
||||
@ -2337,6 +2342,7 @@ extern const u32 sched_prio_to_wmult[40];
|
||||
#endif
|
||||
#define ENQUEUE_INITIAL 0x80
|
||||
#define ENQUEUE_MIGRATING 0x100
|
||||
#define ENQUEUE_DELAYED 0x200
|
||||
|
||||
#define RETRY_TASK ((void *)-1UL)
|
||||
|
||||
@ -2355,7 +2361,7 @@ struct sched_class {
|
||||
#endif
|
||||
|
||||
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
|
||||
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
|
||||
bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
|
||||
void (*yield_task) (struct rq *rq);
|
||||
bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
|
||||
|
||||
@ -2711,6 +2717,19 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
|
||||
sched_update_tick_dependency(rq);
|
||||
}
|
||||
|
||||
static inline void __block_task(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
WRITE_ONCE(p->on_rq, 0);
|
||||
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
|
||||
if (p->sched_contributes_to_load)
|
||||
rq->nr_uninterruptible++;
|
||||
|
||||
if (p->in_iowait) {
|
||||
atomic_inc(&rq->nr_iowait);
|
||||
delayacct_blkio_start();
|
||||
}
|
||||
}
|
||||
|
||||
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
|
||||
@ -3736,7 +3755,7 @@ extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *c
|
||||
extern void __setscheduler_prio(struct task_struct *p, int prio);
|
||||
extern void set_load_weight(struct task_struct *p, bool update_load);
|
||||
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
|
||||
extern void check_class_changing(struct rq *rq, struct task_struct *p,
|
||||
const struct sched_class *prev_class);
|
||||
|
@ -57,10 +57,11 @@ enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
|
||||
add_nr_running(rq, 1);
|
||||
}
|
||||
|
||||
static void
|
||||
static bool
|
||||
dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
sub_nr_running(rq, 1);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void yield_task_stop(struct rq *rq)
|
||||
|
@ -57,7 +57,7 @@ static int effective_prio(struct task_struct *p)
|
||||
* keep the priority unchanged. Otherwise, update priority
|
||||
* to the normal priority:
|
||||
*/
|
||||
if (!rt_prio(p->prio))
|
||||
if (!rt_or_dl_prio(p->prio))
|
||||
return p->normal_prio;
|
||||
return p->prio;
|
||||
}
|
||||
@ -420,10 +420,20 @@ static void __setscheduler_params(struct task_struct *p,
|
||||
|
||||
p->policy = policy;
|
||||
|
||||
if (dl_policy(policy))
|
||||
if (dl_policy(policy)) {
|
||||
__setparam_dl(p, attr);
|
||||
else if (fair_policy(policy))
|
||||
} else if (fair_policy(policy)) {
|
||||
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
|
||||
if (attr->sched_runtime) {
|
||||
p->se.custom_slice = 1;
|
||||
p->se.slice = clamp_t(u64, attr->sched_runtime,
|
||||
NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
|
||||
NSEC_PER_MSEC*100); /* HZ=100 / 10 */
|
||||
} else {
|
||||
p->se.custom_slice = 0;
|
||||
p->se.slice = sysctl_sched_base_slice;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* __sched_setscheduler() ensures attr->sched_priority == 0 when
|
||||
@ -723,7 +733,9 @@ int __sched_setscheduler(struct task_struct *p,
|
||||
* but store a possible modification of reset_on_fork.
|
||||
*/
|
||||
if (unlikely(policy == p->policy)) {
|
||||
if (fair_policy(policy) && attr->sched_nice != task_nice(p))
|
||||
if (fair_policy(policy) &&
|
||||
(attr->sched_nice != task_nice(p) ||
|
||||
(attr->sched_runtime != p->se.slice)))
|
||||
goto change;
|
||||
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
|
||||
goto change;
|
||||
@ -870,6 +882,9 @@ static int _sched_setscheduler(struct task_struct *p, int policy,
|
||||
.sched_nice = PRIO_TO_NICE(p->static_prio),
|
||||
};
|
||||
|
||||
if (p->se.custom_slice)
|
||||
attr.sched_runtime = p->se.slice;
|
||||
|
||||
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
|
||||
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
|
||||
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
|
||||
@ -1036,12 +1051,14 @@ static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *a
|
||||
|
||||
static void get_params(struct task_struct *p, struct sched_attr *attr)
|
||||
{
|
||||
if (task_has_dl_policy(p))
|
||||
if (task_has_dl_policy(p)) {
|
||||
__getparam_dl(p, attr);
|
||||
else if (task_has_rt_policy(p))
|
||||
} else if (task_has_rt_policy(p)) {
|
||||
attr->sched_priority = p->rt_priority;
|
||||
else
|
||||
} else {
|
||||
attr->sched_nice = task_nice(p);
|
||||
attr->sched_runtime = p->se.slice;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1975,7 +1975,7 @@ static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
|
||||
* expiry.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
|
||||
if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
|
||||
if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
|
||||
mode |= HRTIMER_MODE_HARD;
|
||||
}
|
||||
|
||||
@ -2075,7 +2075,7 @@ long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
|
||||
u64 slack;
|
||||
|
||||
slack = current->timer_slack_ns;
|
||||
if (rt_task(current))
|
||||
if (rt_or_dl_task(current))
|
||||
slack = 0;
|
||||
|
||||
hrtimer_init_sleeper_on_stack(&t, clockid, mode);
|
||||
@ -2280,7 +2280,7 @@ schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
|
||||
* Override any slack passed by the user if under
|
||||
* rt contraints.
|
||||
*/
|
||||
if (rt_task(current))
|
||||
if (rt_or_dl_task(current))
|
||||
delta = 0;
|
||||
|
||||
hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
|
||||
|
@ -547,7 +547,7 @@ probe_wakeup(void *ignore, struct task_struct *p)
|
||||
* - wakeup_dl handles tasks belonging to sched_dl class only.
|
||||
*/
|
||||
if (tracing_dl || (wakeup_dl && !dl_task(p)) ||
|
||||
(wakeup_rt && !dl_task(p) && !rt_task(p)) ||
|
||||
(wakeup_rt && !rt_or_dl_task(p)) ||
|
||||
(!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio)))
|
||||
return;
|
||||
|
||||
|
@ -418,7 +418,7 @@ static void domain_dirty_limits(struct dirty_throttle_control *dtc)
|
||||
bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
|
||||
|
||||
tsk = current;
|
||||
if (rt_task(tsk)) {
|
||||
if (rt_or_dl_task(tsk)) {
|
||||
bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
|
||||
thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
|
||||
}
|
||||
@ -477,7 +477,7 @@ static unsigned long node_dirty_limit(struct pglist_data *pgdat)
|
||||
else
|
||||
dirty = vm_dirty_ratio * node_memory / 100;
|
||||
|
||||
if (rt_task(tsk))
|
||||
if (rt_or_dl_task(tsk))
|
||||
dirty += dirty / 4;
|
||||
|
||||
/*
|
||||
|
@ -4002,7 +4002,7 @@ gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
|
||||
*/
|
||||
if (alloc_flags & ALLOC_MIN_RESERVE)
|
||||
alloc_flags &= ~ALLOC_CPUSET;
|
||||
} else if (unlikely(rt_task(current)) && in_task())
|
||||
} else if (unlikely(rt_or_dl_task(current)) && in_task())
|
||||
alloc_flags |= ALLOC_MIN_RESERVE;
|
||||
|
||||
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
|
||||
|
Loading…
Reference in New Issue
Block a user