Merge branch 'tip/sched/core' into for-6.12

To receive 863ccdbb91 ("sched: Allow sched_class::dequeue_task() to fail")
which makes sched_class.dequeue_task() return bool instead of void. This
leads to compile breakage and will be fixed by a follow-up patch.

Signed-off-by: Tejun Heo <tj@kernel.org>
This commit is contained in:
Tejun Heo 2024-08-20 08:55:03 -10:00
commit 5ac998574f
25 changed files with 577 additions and 194 deletions

View File

@ -335,7 +335,7 @@ static inline bool six_owner_running(struct six_lock *lock)
*/
rcu_read_lock();
struct task_struct *owner = READ_ONCE(lock->owner);
bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
bool ret = owner ? owner_on_cpu(owner) : !rt_or_dl_task(current);
rcu_read_unlock();
return ret;

View File

@ -82,7 +82,7 @@ u64 select_estimate_accuracy(struct timespec64 *tv)
* Realtime tasks get a slack of 0 for obvious reasons.
*/
if (rt_task(current))
if (rt_or_dl_task(current))
return 0;
ktime_get_ts64(&now);

View File

@ -40,7 +40,7 @@ static inline int task_nice_ioclass(struct task_struct *task)
{
if (task->policy == SCHED_IDLE)
return IOPRIO_CLASS_IDLE;
else if (task_is_realtime(task))
else if (rt_or_dl_task_policy(task))
return IOPRIO_CLASS_RT;
else
return IOPRIO_CLASS_BE;

View File

@ -152,7 +152,8 @@ struct user_event_mm;
* the comment with set_special_state().
*/
#define is_special_task_state(state) \
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
TASK_DEAD | TASK_FROZEN))
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define debug_normal_state_change(state_value) \
@ -543,9 +544,14 @@ struct sched_entity {
struct rb_node run_node;
u64 deadline;
u64 min_vruntime;
u64 min_slice;
struct list_head group_node;
unsigned int on_rq;
unsigned char on_rq;
unsigned char sched_delayed;
unsigned char rel_deadline;
unsigned char custom_slice;
/* hole */
u64 exec_start;
u64 sum_exec_runtime;

View File

@ -10,16 +10,16 @@
#include <linux/sched.h>
#define MAX_DL_PRIO 0
static inline int dl_prio(int prio)
static inline bool dl_prio(int prio)
{
if (unlikely(prio < MAX_DL_PRIO))
return 1;
return 0;
return unlikely(prio < MAX_DL_PRIO);
}
static inline int dl_task(struct task_struct *p)
/*
* Returns true if a task has a priority that belongs to DL class. PI-boosted
* tasks will return true. Use dl_policy() to ignore PI-boosted tasks.
*/
static inline bool dl_task(struct task_struct *p)
{
return dl_prio(p->prio);
}

View File

@ -14,6 +14,7 @@
*/
#define MAX_RT_PRIO 100
#define MAX_DL_PRIO 0
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)

View File

@ -6,19 +6,40 @@
struct task_struct;
static inline int rt_prio(int prio)
static inline bool rt_prio(int prio)
{
if (unlikely(prio < MAX_RT_PRIO))
return 1;
return 0;
return unlikely(prio < MAX_RT_PRIO && prio >= MAX_DL_PRIO);
}
static inline int rt_task(struct task_struct *p)
static inline bool rt_or_dl_prio(int prio)
{
return unlikely(prio < MAX_RT_PRIO);
}
/*
* Returns true if a task has a priority that belongs to RT class. PI-boosted
* tasks will return true. Use rt_policy() to ignore PI-boosted tasks.
*/
static inline bool rt_task(struct task_struct *p)
{
return rt_prio(p->prio);
}
static inline bool task_is_realtime(struct task_struct *tsk)
/*
* Returns true if a task has a priority that belongs to RT or DL classes.
* PI-boosted tasks will return true. Use rt_or_dl_task_policy() to ignore
* PI-boosted tasks.
*/
static inline bool rt_or_dl_task(struct task_struct *p)
{
return rt_or_dl_prio(p->prio);
}
/*
* Returns true if a task has a policy that belongs to RT or DL classes.
* PI-boosted tasks will return false.
*/
static inline bool rt_or_dl_task_policy(struct task_struct *tsk)
{
int policy = tsk->policy;

View File

@ -72,7 +72,7 @@ bool __refrigerator(bool check_kthr_stop)
bool freeze;
raw_spin_lock_irq(&current->pi_lock);
set_current_state(TASK_FROZEN);
WRITE_ONCE(current->__state, TASK_FROZEN);
/* unstale saved_state so that __thaw_task() will wake us up */
current->saved_state = TASK_RUNNING;
raw_spin_unlock_irq(&current->pi_lock);

View File

@ -347,7 +347,7 @@ static __always_inline int __waiter_prio(struct task_struct *task)
{
int prio = task->prio;
if (!rt_prio(prio))
if (!rt_or_dl_prio(prio))
return DEFAULT_PRIO;
return prio;
@ -435,7 +435,7 @@ static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
* Note that RT tasks are excluded from same priority (lateral)
* steals to prevent the introduction of an unbounded latency.
*/
if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
if (rt_or_dl_prio(waiter->tree.prio))
return false;
return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);

View File

@ -631,7 +631,7 @@ static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
* if it is an RT task or wait in the wait queue
* for too long.
*/
if (has_handoff || (!rt_task(waiter->task) &&
if (has_handoff || (!rt_or_dl_task(waiter->task) &&
!time_after(jiffies, waiter->timeout)))
return false;
@ -914,7 +914,7 @@ static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
if (owner_state != OWNER_WRITER) {
if (need_resched())
break;
if (rt_task(current) &&
if (rt_or_dl_task(current) &&
(prev_owner_state != OWNER_WRITER))
break;
}

View File

@ -237,7 +237,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
int a_prio = a->task->prio;
int b_prio = b->task->prio;
if (rt_prio(a_prio) || rt_prio(b_prio)) {
if (rt_or_dl_prio(a_prio) || rt_or_dl_prio(b_prio)) {
if (a_prio > b_prio)
return true;

View File

@ -166,7 +166,7 @@ static inline int __task_prio(const struct task_struct *p)
if (p->dl_server)
return -1; /* deadline */
if (rt_prio(p->prio)) /* includes deadline */
if (rt_or_dl_prio(p->prio))
return p->prio; /* [-1, 99] */
if (p->sched_class == &idle_sched_class)
@ -1702,6 +1702,9 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
if (p->se.sched_delayed)
return;
for_each_clamp_id(clamp_id)
uclamp_rq_inc_id(rq, p, clamp_id);
@ -1726,6 +1729,9 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
if (p->se.sched_delayed)
return;
for_each_clamp_id(clamp_id)
uclamp_rq_dec_id(rq, p, clamp_id);
}
@ -2005,14 +2011,21 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
}
uclamp_rq_inc(rq, p);
p->sched_class->enqueue_task(rq, p, flags);
/*
* Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
* ->sched_delayed.
*/
uclamp_rq_inc(rq, p);
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
}
void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
/*
* Must only return false when DEQUEUE_SLEEP.
*/
inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (sched_core_enabled(rq))
sched_core_dequeue(rq, p, flags);
@ -2025,8 +2038,12 @@ void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
psi_dequeue(p, flags & DEQUEUE_SLEEP);
}
/*
* Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
* and mark the task ->sched_delayed.
*/
uclamp_rq_dec(rq, p);
p->sched_class->dequeue_task(rq, p, flags);
return p->sched_class->dequeue_task(rq, p, flags);
}
void activate_task(struct rq *rq, struct task_struct *p, int flags)
@ -2044,12 +2061,25 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
/*
* Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
* dequeue_task() and cleared *after* enqueue_task().
*/
dequeue_task(rq, p, flags);
}
static void block_task(struct rq *rq, struct task_struct *p, int flags)
{
if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
__block_task(rq, p);
}
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
@ -3697,12 +3727,14 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags)
rq = __task_rq_lock(p, &rf);
if (task_on_rq_queued(p)) {
update_rq_clock(rq);
if (p->se.sched_delayed)
enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
if (!task_on_cpu(rq, p)) {
/*
* When on_rq && !on_cpu the task is preempted, see if
* it should preempt the task that is current now.
*/
update_rq_clock(rq);
wakeup_preempt(rq, p, wake_flags);
}
ttwu_do_wakeup(p);
@ -4091,11 +4123,16 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* case the whole 'p->on_rq && ttwu_runnable()' case below
* without taking any locks.
*
* Specifically, given current runs ttwu() we must be before
* schedule()'s block_task(), as such this must not observe
* sched_delayed.
*
* In particular:
* - we rely on Program-Order guarantees for all the ordering,
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
SCHED_WARN_ON(p->se.sched_delayed);
if (!ttwu_state_match(p, state, &success))
goto out;
@ -4384,9 +4421,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.nr_migrations = 0;
p->se.vruntime = 0;
p->se.vlag = 0;
p->se.slice = sysctl_sched_base_slice;
INIT_LIST_HEAD(&p->se.group_node);
/* A delayed task cannot be in clone(). */
SCHED_WARN_ON(p->se.sched_delayed);
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = NULL;
#endif
@ -4638,6 +4677,8 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
p->prio = p->normal_prio = p->static_prio;
set_load_weight(p, false);
p->se.custom_slice = 0;
p->se.slice = sysctl_sched_base_slice;
/*
* We don't need the reset flag anymore after the fork. It has
@ -6562,13 +6603,15 @@ static void __sched notrace __schedule(unsigned int sched_mode)
if (signal_pending_state(prev_state, prev)) {
WRITE_ONCE(prev->__state, TASK_RUNNING);
} else {
int flags = DEQUEUE_NOCLOCK;
prev->sched_contributes_to_load =
(prev_state & TASK_UNINTERRUPTIBLE) &&
!(prev_state & TASK_NOLOAD) &&
!(prev_state & TASK_FROZEN);
if (prev->sched_contributes_to_load)
rq->nr_uninterruptible++;
if (unlikely(is_special_task_state(prev_state)))
flags |= DEQUEUE_SPECIAL;
/*
* __schedule() ttwu()
@ -6581,12 +6624,7 @@ static void __sched notrace __schedule(unsigned int sched_mode)
*
* After this, schedule() must not care about p->state any more.
*/
deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
if (prev->in_iowait) {
atomic_inc(&rq->nr_iowait);
delayacct_blkio_start();
}
block_task(rq, prev, flags);
}
switch_count = &prev->nvcsw;
}
@ -8461,6 +8499,7 @@ void __init sched_init(void)
}
set_load_weight(&init_task, false);
init_task.se.slice = sysctl_sched_base_slice,
/*
* The boot idle thread does lazy MMU switching as well:
@ -8677,7 +8716,7 @@ void normalize_rt_tasks(void)
schedstat_set(p->stats.sleep_start, 0);
schedstat_set(p->stats.block_start, 0);
if (!dl_task(p) && !rt_task(p)) {
if (!rt_or_dl_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:

View File

@ -2162,7 +2162,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
enqueue_pushable_dl_task(rq, p);
}
static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
update_curr_dl(rq);
@ -2172,6 +2172,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
dequeue_dl_entity(&p->dl, flags);
if (!p->dl.dl_throttled && !dl_server(&p->dl))
dequeue_pushable_dl_task(rq, p);
return true;
}
/*
@ -2426,7 +2428,6 @@ static struct task_struct *__pick_next_task_dl(struct rq *rq, bool peek)
else
p = dl_se->server_pick_next(dl_se);
if (!p) {
WARN_ON_ONCE(1);
dl_se->dl_yielded = 1;
update_curr_dl_se(rq, dl_se, 0);
goto again;

View File

@ -338,7 +338,7 @@ enum dl_param {
DL_PERIOD,
};
static unsigned long fair_server_period_max = (1 << 22) * NSEC_PER_USEC; /* ~4 seconds */
static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */
static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */
static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf,
@ -739,11 +739,12 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
else
SEQ_printf(m, " %c", task_state_to_char(p));
SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
SPLIT_NS(p->se.deadline),
p->se.custom_slice ? 'S' : ' ',
SPLIT_NS(p->se.slice),
SPLIT_NS(p->se.sum_exec_runtime),
(long long)(p->nvcsw + p->nivcsw),

View File

@ -779,8 +779,22 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
}
/* ensure we never gain time by being placed backwards. */
u64_u32_store(cfs_rq->min_vruntime,
__update_min_vruntime(cfs_rq, vruntime));
cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
}
static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
{
struct sched_entity *root = __pick_root_entity(cfs_rq);
struct sched_entity *curr = cfs_rq->curr;
u64 min_slice = ~0ULL;
if (curr && curr->on_rq)
min_slice = curr->slice;
if (root)
min_slice = min(min_slice, root->min_slice);
return min_slice;
}
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
@ -799,19 +813,34 @@ static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node
}
}
static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
{
if (node) {
struct sched_entity *rse = __node_2_se(node);
if (rse->min_slice < se->min_slice)
se->min_slice = rse->min_slice;
}
}
/*
* se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
*/
static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
{
u64 old_min_vruntime = se->min_vruntime;
u64 old_min_slice = se->min_slice;
struct rb_node *node = &se->run_node;
se->min_vruntime = se->vruntime;
__min_vruntime_update(se, node->rb_right);
__min_vruntime_update(se, node->rb_left);
return se->min_vruntime == old_min_vruntime;
se->min_slice = se->slice;
__min_slice_update(se, node->rb_right);
__min_slice_update(se, node->rb_left);
return se->min_vruntime == old_min_vruntime &&
se->min_slice == old_min_slice;
}
RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
@ -824,6 +853,7 @@ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
avg_vruntime_add(cfs_rq, se);
se->min_vruntime = se->vruntime;
se->min_slice = se->slice;
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
__entity_less, &min_vruntime_cb);
}
@ -974,16 +1004,17 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
* XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
* this is probably good enough.
*/
static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if ((s64)(se->vruntime - se->deadline) < 0)
return;
return false;
/*
* For EEVDF the virtual time slope is determined by w_i (iow.
* nice) while the request time r_i is determined by
* sysctl_sched_base_slice.
*/
if (!se->custom_slice)
se->slice = sysctl_sched_base_slice;
/*
@ -994,10 +1025,7 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
/*
* The task has consumed its request, reschedule.
*/
if (cfs_rq->nr_running > 1) {
resched_curr(rq_of(cfs_rq));
clear_buddies(cfs_rq, se);
}
return true;
}
#include "pelt.h"
@ -1135,6 +1163,38 @@ static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
dl_server_update(p->dl_server, delta_exec);
}
static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
if (!sched_feat(PREEMPT_SHORT))
return false;
if (curr->vlag == curr->deadline)
return false;
return !entity_eligible(cfs_rq, curr);
}
static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
struct sched_entity *pse, struct sched_entity *se)
{
if (!sched_feat(PREEMPT_SHORT))
return false;
if (pse->slice >= se->slice)
return false;
if (!entity_eligible(cfs_rq, pse))
return false;
if (entity_before(pse, se))
return true;
if (!entity_eligible(cfs_rq, se))
return true;
return false;
}
/*
* Used by other classes to account runtime.
*/
@ -1158,6 +1218,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
struct sched_entity *curr = cfs_rq->curr;
struct rq *rq = rq_of(cfs_rq);
s64 delta_exec;
bool resched;
if (unlikely(!curr))
return;
@ -1167,7 +1228,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
return;
curr->vruntime += calc_delta_fair(delta_exec, curr);
update_deadline(cfs_rq, curr);
resched = update_deadline(cfs_rq, curr);
update_min_vruntime(cfs_rq);
if (entity_is_task(curr)) {
@ -1185,6 +1246,14 @@ static void update_curr(struct cfs_rq *cfs_rq)
}
account_cfs_rq_runtime(cfs_rq, delta_exec);
if (rq->nr_running == 1)
return;
if (resched || did_preempt_short(cfs_rq, curr)) {
resched_curr(rq);
clear_buddies(cfs_rq, curr);
}
}
static void update_curr_fair(struct rq *rq)
@ -5191,6 +5260,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
u64 vslice, vruntime = avg_vruntime(cfs_rq);
s64 lag = 0;
if (!se->custom_slice)
se->slice = sysctl_sched_base_slice;
vslice = calc_delta_fair(se->slice, se);
@ -5272,6 +5342,12 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
se->deadline += se->vruntime;
se->rel_deadline = 0;
return;
}
/*
* When joining the competition; the existing tasks will be,
* on average, halfway through their slice, as such start tasks
@ -5291,6 +5367,9 @@ static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
static inline bool cfs_bandwidth_used(void);
static void
requeue_delayed_entity(struct sched_entity *se);
static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
@ -5378,19 +5457,40 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void
static bool
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
int action = UPDATE_TG;
bool sleep = flags & DEQUEUE_SLEEP;
update_curr(cfs_rq);
if (flags & DEQUEUE_DELAYED) {
SCHED_WARN_ON(!se->sched_delayed);
} else {
bool delay = sleep;
/*
* DELAY_DEQUEUE relies on spurious wakeups, special task
* states must not suffer spurious wakeups, excempt them.
*/
if (flags & DEQUEUE_SPECIAL)
delay = false;
SCHED_WARN_ON(delay && se->sched_delayed);
if (sched_feat(DELAY_DEQUEUE) && delay &&
!entity_eligible(cfs_rq, se)) {
if (cfs_rq->next == se)
cfs_rq->next = NULL;
update_load_avg(cfs_rq, se, 0);
se->sched_delayed = 1;
return false;
}
}
int action = UPDATE_TG;
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
action |= DO_DETACH;
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
@ -5408,6 +5508,11 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
clear_buddies(cfs_rq, se);
update_entity_lag(cfs_rq, se);
if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
se->deadline -= se->vruntime;
se->rel_deadline = 1;
}
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
@ -5427,8 +5532,16 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
if (flags & DEQUEUE_DELAYED) {
se->sched_delayed = 0;
if (sched_feat(DELAY_ZERO) && se->vlag > 0)
se->vlag = 0;
}
if (cfs_rq->nr_running == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
return true;
}
static void
@ -5454,6 +5567,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
update_stats_curr_start(cfs_rq, se);
SCHED_WARN_ON(cfs_rq->curr);
cfs_rq->curr = se;
/*
@ -5474,6 +5588,8 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
@ -5482,16 +5598,26 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq)
pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
{
/*
* Enabling NEXT_BUDDY will affect latency but not fairness.
*/
if (sched_feat(NEXT_BUDDY) &&
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
/* ->next will never be delayed */
SCHED_WARN_ON(cfs_rq->next->sched_delayed);
return cfs_rq->next;
}
return pick_eevdf(cfs_rq);
struct sched_entity *se = pick_eevdf(cfs_rq);
if (se->sched_delayed) {
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
SCHED_WARN_ON(se->sched_delayed);
SCHED_WARN_ON(se->on_rq);
return NULL;
}
return se;
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
@ -5515,6 +5641,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
SCHED_WARN_ON(cfs_rq->curr != prev);
cfs_rq->curr = NULL;
}
@ -5812,11 +5939,21 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
int flags;
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
goto done;
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
/*
* Abuse SPECIAL to avoid delayed dequeue in this instance.
* This avoids teaching dequeue_entities() about throttled
* entities and keeps things relatively simple.
*/
flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
if (se->sched_delayed)
flags |= DEQUEUE_DELAYED;
dequeue_entity(qcfs_rq, se, flags);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
@ -5909,8 +6046,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
if (se->on_rq)
if (se->on_rq) {
SCHED_WARN_ON(se->sched_delayed);
break;
}
enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
if (cfs_rq_is_idle(group_cfs_rq(se)))
@ -6760,6 +6899,37 @@ static int sched_idle_cpu(int cpu)
}
#endif
static void
requeue_delayed_entity(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/*
* se->sched_delayed should imply: se->on_rq == 1.
* Because a delayed entity is one that is still on
* the runqueue competing until elegibility.
*/
SCHED_WARN_ON(!se->sched_delayed);
SCHED_WARN_ON(!se->on_rq);
if (sched_feat(DELAY_ZERO)) {
update_entity_lag(cfs_rq, se);
if (se->vlag > 0) {
cfs_rq->nr_running--;
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->vlag = 0;
place_entity(cfs_rq, se, 0);
if (se != cfs_rq->curr)
__enqueue_entity(cfs_rq, se);
cfs_rq->nr_running++;
}
}
update_load_avg(cfs_rq, se, 0);
se->sched_delayed = 0;
}
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
@ -6773,6 +6943,12 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
int idle_h_nr_running = task_has_idle_policy(p);
int task_new = !(flags & ENQUEUE_WAKEUP);
int rq_h_nr_running = rq->cfs.h_nr_running;
u64 slice = 0;
if (flags & ENQUEUE_DELAYED) {
requeue_delayed_entity(se);
return;
}
/*
* The code below (indirectly) updates schedutil which looks at
@ -6791,10 +6967,24 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
for_each_sched_entity(se) {
if (se->on_rq)
if (se->on_rq) {
if (se->sched_delayed)
requeue_delayed_entity(se);
break;
}
cfs_rq = cfs_rq_of(se);
/*
* Basically set the slice of group entries to the min_slice of
* their respective cfs_rq. This ensures the group can service
* its entities in the desired time-frame.
*/
if (slice) {
se->slice = slice;
se->custom_slice = 1;
}
enqueue_entity(cfs_rq, se, flags);
slice = cfs_rq_min_slice(cfs_rq);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@ -6816,6 +7006,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
se->slice = slice;
slice = cfs_rq_min_slice(cfs_rq);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@ -6863,37 +7056,59 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
static void set_next_buddy(struct sched_entity *se);
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
* Basically dequeue_task_fair(), except it can deal with dequeue_entity()
* failing half-way through and resume the dequeue later.
*
* Returns:
* -1 - dequeue delayed
* 0 - dequeue throttled
* 1 - dequeue complete
*/
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
int task_sleep = flags & DEQUEUE_SLEEP;
int idle_h_nr_running = task_has_idle_policy(p);
bool was_sched_idle = sched_idle_rq(rq);
int rq_h_nr_running = rq->cfs.h_nr_running;
bool task_sleep = flags & DEQUEUE_SLEEP;
bool task_delayed = flags & DEQUEUE_DELAYED;
struct task_struct *p = NULL;
int idle_h_nr_running = 0;
int h_nr_running = 0;
struct cfs_rq *cfs_rq;
u64 slice = 0;
util_est_dequeue(&rq->cfs, p);
if (entity_is_task(se)) {
p = task_of(se);
h_nr_running = 1;
idle_h_nr_running = task_has_idle_policy(p);
} else {
cfs_rq = group_cfs_rq(se);
slice = cfs_rq_min_slice(cfs_rq);
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
cfs_rq->h_nr_running--;
if (!dequeue_entity(cfs_rq, se, flags)) {
if (p && &p->se == se)
return -1;
break;
}
cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
return 0;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
slice = cfs_rq_min_slice(cfs_rq);
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
/*
@ -6905,6 +7120,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
break;
}
flags |= DEQUEUE_SLEEP;
flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
}
for_each_sched_entity(se) {
@ -6914,20 +7130,21 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
cfs_rq->h_nr_running--;
se->slice = slice;
slice = cfs_rq_min_slice(cfs_rq);
cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
return 0;
}
/* At this point se is NULL and we are at root level*/
sub_nr_running(rq, 1);
sub_nr_running(rq, h_nr_running);
if (rq_h_nr_running && !rq->cfs.h_nr_running)
dl_server_stop(&rq->fair_server);
@ -6936,9 +7153,37 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
dequeue_throttle:
util_est_update(&rq->cfs, p, task_sleep);
if (p && task_delayed) {
SCHED_WARN_ON(!task_sleep);
SCHED_WARN_ON(p->on_rq != 1);
/* Fix-up what dequeue_task_fair() skipped */
hrtick_update(rq);
/* Fix-up what block_task() skipped. */
__block_task(rq, p);
}
return 1;
}
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
*/
static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
util_est_dequeue(&rq->cfs, p);
if (dequeue_entities(rq, &p->se, flags) < 0) {
util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
return false;
}
util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
hrtick_update(rq);
return true;
}
#ifdef CONFIG_SMP
@ -8320,7 +8565,21 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
static void task_dead_fair(struct task_struct *p)
{
remove_entity_load_avg(&p->se);
struct sched_entity *se = &p->se;
if (se->sched_delayed) {
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
if (se->sched_delayed) {
update_rq_clock(rq);
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
}
task_rq_unlock(rq, p, &rf);
}
remove_entity_load_avg(se);
}
/*
@ -8356,7 +8615,7 @@ static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
if (rq->nr_running)
if (sched_fair_runnable(rq))
return 1;
return sched_balance_newidle(rq, rf) != 0;
@ -8442,7 +8701,17 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
cfs_rq = cfs_rq_of(se);
update_curr(cfs_rq);
/*
* XXX pick_eevdf(cfs_rq) != se ?
* If @p has a shorter slice than current and @p is eligible, override
* current's slice protection in order to allow preemption.
*
* Note that even if @p does not turn out to be the most eligible
* task at this moment, current's slice protection will be lost.
*/
if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
se->vlag = se->deadline + 1;
/*
* If @p has become the most eligible task, force preemption.
*/
if (pick_eevdf(cfs_rq) == pse)
goto preempt;
@ -8453,7 +8722,6 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
resched_curr(rq);
}
#ifdef CONFIG_SMP
static struct task_struct *pick_task_fair(struct rq *rq)
{
struct sched_entity *se;
@ -8465,20 +8733,16 @@ static struct task_struct *pick_task_fair(struct rq *rq)
return NULL;
do {
struct sched_entity *curr = cfs_rq->curr;
/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
if (curr) {
if (curr->on_rq)
/* Might not have done put_prev_entity() */
if (cfs_rq->curr && cfs_rq->curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
if (unlikely(check_cfs_rq_runtime(cfs_rq)))
goto again;
}
se = pick_next_entity(cfs_rq);
se = pick_next_entity(rq, cfs_rq);
if (!se)
goto again;
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
@ -8492,19 +8756,19 @@ static struct task_struct *pick_task_fair(struct rq *rq)
return task_of(se);
}
#endif
struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
if (!sched_fair_runnable(rq))
p = pick_task_fair(rq);
if (!p)
goto idle;
se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (!prev || prev->sched_class != &fair_sched_class)
@ -8516,52 +8780,14 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
*/
do {
struct sched_entity *curr = cfs_rq->curr;
/*
* Since we got here without doing put_prev_entity() we also
* have to consider cfs_rq->curr. If it is still a runnable
* entity, update_curr() will update its vruntime, otherwise
* forget we've ever seen it.
*/
if (curr) {
if (curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
/*
* This call to check_cfs_rq_runtime() will do the
* throttle and dequeue its entity in the parent(s).
* Therefore the nr_running test will indeed
* be correct.
*/
if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
cfs_rq = &rq->cfs;
if (!cfs_rq->nr_running)
goto idle;
goto simple;
}
}
se = pick_next_entity(cfs_rq);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
/*
*
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
struct cfs_rq *cfs_rq;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
@ -8587,13 +8813,8 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
if (prev)
put_prev_task(rq, prev);
do {
se = pick_next_entity(cfs_rq);
set_next_entity(cfs_rq, se);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
for_each_sched_entity(se)
set_next_entity(cfs_rq_of(se), se);
done: __maybe_unused;
#ifdef CONFIG_SMP
@ -12872,10 +13093,23 @@ static void attach_task_cfs_rq(struct task_struct *p)
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
/*
* Since this is called after changing class, this is a little weird
* and we cannot use DEQUEUE_DELAYED.
*/
if (p->se.sched_delayed) {
dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
p->se.sched_delayed = 0;
p->se.rel_deadline = 0;
if (sched_feat(DELAY_ZERO) && p->se.vlag > 0)
p->se.vlag = 0;
}
}
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
SCHED_WARN_ON(p->se.sched_delayed);
attach_task_cfs_rq(p);
set_task_max_allowed_capacity(p);
@ -12919,12 +13153,17 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
if (!first)
return;
SCHED_WARN_ON(se->sched_delayed);
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifdef CONFIG_SMP
raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
@ -13026,28 +13265,35 @@ void online_fair_sched_group(struct task_group *tg)
void unregister_fair_sched_group(struct task_group *tg)
{
unsigned long flags;
struct rq *rq;
int cpu;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(cpu) {
if (tg->se[cpu])
remove_entity_load_avg(tg->se[cpu]);
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
struct sched_entity *se = tg->se[cpu];
struct rq *rq = cpu_rq(cpu);
if (se) {
if (se->sched_delayed) {
guard(rq_lock_irqsave)(rq);
if (se->sched_delayed) {
update_rq_clock(rq);
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
}
list_del_leaf_cfs_rq(cfs_rq);
}
remove_entity_load_avg(se);
}
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
if (!tg->cfs_rq[cpu]->on_list)
continue;
rq = cpu_rq(cpu);
raw_spin_rq_lock_irqsave(rq, flags);
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
raw_spin_rq_unlock_irqrestore(rq, flags);
if (cfs_rq->on_list) {
guard(rq_lock_irqsave)(rq);
list_del_leaf_cfs_rq(cfs_rq);
}
}
}

View File

@ -5,8 +5,24 @@
* sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled.
*/
SCHED_FEAT(PLACE_LAG, true)
/*
* Give new tasks half a slice to ease into the competition.
*/
SCHED_FEAT(PLACE_DEADLINE_INITIAL, true)
/*
* Preserve relative virtual deadline on 'migration'.
*/
SCHED_FEAT(PLACE_REL_DEADLINE, true)
/*
* Inhibit (wakeup) preemption until the current task has either matched the
* 0-lag point or until is has exhausted it's slice.
*/
SCHED_FEAT(RUN_TO_PARITY, true)
/*
* Allow wakeup of tasks with a shorter slice to cancel RESPECT_SLICE for
* current.
*/
SCHED_FEAT(PREEMPT_SHORT, true)
/*
* Prefer to schedule the task we woke last (assuming it failed
@ -21,6 +37,18 @@ SCHED_FEAT(NEXT_BUDDY, false)
*/
SCHED_FEAT(CACHE_HOT_BUDDY, true)
/*
* Delay dequeueing tasks until they get selected or woken.
*
* By delaying the dequeue for non-eligible tasks, they remain in the
* competition and can burn off their negative lag. When they get selected
* they'll have positive lag by definition.
*
* DELAY_ZERO clips the lag on dequeue (or wakeup) to 0.
*/
SCHED_FEAT(DELAY_DEQUEUE, true)
SCHED_FEAT(DELAY_ZERO, true)
/*
* Allow wakeup-time preemption of the current task:
*/

View File

@ -484,13 +484,14 @@ struct task_struct *pick_next_task_idle(struct rq *rq)
* It is not legal to sleep in the idle task - print a warning
* message if some code attempts to do it:
*/
static void
static bool
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
{
raw_spin_rq_unlock_irq(rq);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
dump_stack();
raw_spin_rq_lock_irq(rq);
return true;
}
/*

View File

@ -1483,7 +1483,7 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
enqueue_pushable_task(rq, p);
}
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
@ -1491,6 +1491,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
dequeue_rt_entity(rt_se, flags);
dequeue_pushable_task(rq, p);
return true;
}
/*

View File

@ -68,6 +68,7 @@
#include <linux/wait_api.h>
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>
#include <linux/delayacct.h>
#include <trace/events/power.h>
#include <trace/events/sched.h>
@ -645,10 +646,6 @@ struct cfs_rq {
u64 min_vruntime_fi;
#endif
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
#endif
struct rb_root_cached tasks_timeline;
/*
@ -891,6 +888,9 @@ static inline void se_update_runnable(struct sched_entity *se)
static inline long se_runnable(struct sched_entity *se)
{
if (se->sched_delayed)
return false;
if (entity_is_task(se))
return !!se->on_rq;
else
@ -905,6 +905,9 @@ static inline void se_update_runnable(struct sched_entity *se) { }
static inline long se_runnable(struct sched_entity *se)
{
if (se->sched_delayed)
return false;
return !!se->on_rq;
}
@ -2317,11 +2320,13 @@ extern const u32 sched_prio_to_wmult[40];
*
*/
#define DEQUEUE_SLEEP 0x01
#define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */
#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
#define DEQUEUE_SPECIAL 0x10
#define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
#define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */
#define ENQUEUE_WAKEUP 0x01
#define ENQUEUE_RESTORE 0x02
@ -2337,6 +2342,7 @@ extern const u32 sched_prio_to_wmult[40];
#endif
#define ENQUEUE_INITIAL 0x80
#define ENQUEUE_MIGRATING 0x100
#define ENQUEUE_DELAYED 0x200
#define RETRY_TASK ((void *)-1UL)
@ -2355,7 +2361,7 @@ struct sched_class {
#endif
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*yield_task) (struct rq *rq);
bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
@ -2711,6 +2717,19 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
sched_update_tick_dependency(rq);
}
static inline void __block_task(struct rq *rq, struct task_struct *p)
{
WRITE_ONCE(p->on_rq, 0);
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
if (p->sched_contributes_to_load)
rq->nr_uninterruptible++;
if (p->in_iowait) {
atomic_inc(&rq->nr_iowait);
delayacct_blkio_start();
}
}
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
@ -3736,7 +3755,7 @@ extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *c
extern void __setscheduler_prio(struct task_struct *p, int prio);
extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags);
extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
extern void check_class_changing(struct rq *rq, struct task_struct *p,
const struct sched_class *prev_class);

View File

@ -57,10 +57,11 @@ enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
add_nr_running(rq, 1);
}
static void
static bool
dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
{
sub_nr_running(rq, 1);
return true;
}
static void yield_task_stop(struct rq *rq)

View File

@ -57,7 +57,7 @@ static int effective_prio(struct task_struct *p)
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
if (!rt_prio(p->prio))
if (!rt_or_dl_prio(p->prio))
return p->normal_prio;
return p->prio;
}
@ -420,10 +420,20 @@ static void __setscheduler_params(struct task_struct *p,
p->policy = policy;
if (dl_policy(policy))
if (dl_policy(policy)) {
__setparam_dl(p, attr);
else if (fair_policy(policy))
} else if (fair_policy(policy)) {
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
if (attr->sched_runtime) {
p->se.custom_slice = 1;
p->se.slice = clamp_t(u64, attr->sched_runtime,
NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
NSEC_PER_MSEC*100); /* HZ=100 / 10 */
} else {
p->se.custom_slice = 0;
p->se.slice = sysctl_sched_base_slice;
}
}
/*
* __sched_setscheduler() ensures attr->sched_priority == 0 when
@ -723,7 +733,9 @@ int __sched_setscheduler(struct task_struct *p,
* but store a possible modification of reset_on_fork.
*/
if (unlikely(policy == p->policy)) {
if (fair_policy(policy) && attr->sched_nice != task_nice(p))
if (fair_policy(policy) &&
(attr->sched_nice != task_nice(p) ||
(attr->sched_runtime != p->se.slice)))
goto change;
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
goto change;
@ -870,6 +882,9 @@ static int _sched_setscheduler(struct task_struct *p, int policy,
.sched_nice = PRIO_TO_NICE(p->static_prio),
};
if (p->se.custom_slice)
attr.sched_runtime = p->se.slice;
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
@ -1036,12 +1051,14 @@ static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *a
static void get_params(struct task_struct *p, struct sched_attr *attr)
{
if (task_has_dl_policy(p))
if (task_has_dl_policy(p)) {
__getparam_dl(p, attr);
else if (task_has_rt_policy(p))
} else if (task_has_rt_policy(p)) {
attr->sched_priority = p->rt_priority;
else
} else {
attr->sched_nice = task_nice(p);
attr->sched_runtime = p->se.slice;
}
}
/**

View File

@ -1975,7 +1975,7 @@ static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
* expiry.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
mode |= HRTIMER_MODE_HARD;
}
@ -2075,7 +2075,7 @@ long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
u64 slack;
slack = current->timer_slack_ns;
if (rt_task(current))
if (rt_or_dl_task(current))
slack = 0;
hrtimer_init_sleeper_on_stack(&t, clockid, mode);
@ -2280,7 +2280,7 @@ schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
* Override any slack passed by the user if under
* rt contraints.
*/
if (rt_task(current))
if (rt_or_dl_task(current))
delta = 0;
hrtimer_init_sleeper_on_stack(&t, clock_id, mode);

View File

@ -547,7 +547,7 @@ probe_wakeup(void *ignore, struct task_struct *p)
* - wakeup_dl handles tasks belonging to sched_dl class only.
*/
if (tracing_dl || (wakeup_dl && !dl_task(p)) ||
(wakeup_rt && !dl_task(p) && !rt_task(p)) ||
(wakeup_rt && !rt_or_dl_task(p)) ||
(!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio)))
return;

View File

@ -418,7 +418,7 @@ static void domain_dirty_limits(struct dirty_throttle_control *dtc)
bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
tsk = current;
if (rt_task(tsk)) {
if (rt_or_dl_task(tsk)) {
bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
}
@ -477,7 +477,7 @@ static unsigned long node_dirty_limit(struct pglist_data *pgdat)
else
dirty = vm_dirty_ratio * node_memory / 100;
if (rt_task(tsk))
if (rt_or_dl_task(tsk))
dirty += dirty / 4;
/*

View File

@ -4002,7 +4002,7 @@ gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
*/
if (alloc_flags & ALLOC_MIN_RESERVE)
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(current)) && in_task())
} else if (unlikely(rt_or_dl_task(current)) && in_task())
alloc_flags |= ALLOC_MIN_RESERVE;
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);