mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-10 15:19:51 +00:00
Merge branch 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (26 commits) posix timers: fix RLIMIT_CPU && fork() time: ntp: fix bug in ntp_update_offset() & do_adjtimex(), fix time: ntp: clean up second_overflow() time: ntp: simplify ntp_tick_adj calculations time: ntp: make 64-bit constants more robust time: ntp: refactor do_adjtimex() some more time: ntp: refactor do_adjtimex() time: ntp: fix bug in ntp_update_offset() & do_adjtimex() time: ntp: micro-optimize ntp_update_offset() time: ntp: simplify ntp_update_offset_fll() time: ntp: refactor and clean up ntp_update_offset() time: ntp: refactor up ntp_update_frequency() time: ntp: clean up ntp_update_frequency() time: ntp: simplify the MAX_TICKADJ_SCALED definition time: ntp: simplify the second_overflow() code flow time: ntp: clean up kernel/time/ntp.c x86: hpet: stop HPET_COUNTER when programming periodic mode x86: hpet: provide separate functions to stop and start the counter x86: hpet: print HPET registers during setup (if hpet=verbose is used) time: apply NTP frequency/tick changes immediately ...
This commit is contained in:
commit
6671de344c
@ -493,10 +493,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
Default: 64
|
||||
|
||||
hpet= [X86-32,HPET] option to control HPET usage
|
||||
Format: { enable (default) | disable | force }
|
||||
Format: { enable (default) | disable | force |
|
||||
verbose }
|
||||
disable: disable HPET and use PIT instead
|
||||
force: allow force enabled of undocumented chips (ICH4,
|
||||
VIA, nVidia)
|
||||
verbose: show contents of HPET registers during setup
|
||||
|
||||
com20020= [HW,NET] ARCnet - COM20020 chipset
|
||||
Format:
|
||||
|
@ -508,7 +508,7 @@ static void __spu_add_to_rq(struct spu_context *ctx)
|
||||
list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
|
||||
set_bit(ctx->prio, spu_prio->bitmap);
|
||||
if (!spu_prio->nr_waiting++)
|
||||
__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
|
||||
mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -80,6 +80,7 @@ static inline void hpet_clear_mapping(void)
|
||||
*/
|
||||
static int boot_hpet_disable;
|
||||
int hpet_force_user;
|
||||
static int hpet_verbose;
|
||||
|
||||
static int __init hpet_setup(char *str)
|
||||
{
|
||||
@ -88,6 +89,8 @@ static int __init hpet_setup(char *str)
|
||||
boot_hpet_disable = 1;
|
||||
if (!strncmp("force", str, 5))
|
||||
hpet_force_user = 1;
|
||||
if (!strncmp("verbose", str, 7))
|
||||
hpet_verbose = 1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
@ -119,6 +122,43 @@ int is_hpet_enabled(void)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(is_hpet_enabled);
|
||||
|
||||
static void _hpet_print_config(const char *function, int line)
|
||||
{
|
||||
u32 i, timers, l, h;
|
||||
printk(KERN_INFO "hpet: %s(%d):\n", function, line);
|
||||
l = hpet_readl(HPET_ID);
|
||||
h = hpet_readl(HPET_PERIOD);
|
||||
timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
|
||||
printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
|
||||
l = hpet_readl(HPET_CFG);
|
||||
h = hpet_readl(HPET_STATUS);
|
||||
printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
|
||||
l = hpet_readl(HPET_COUNTER);
|
||||
h = hpet_readl(HPET_COUNTER+4);
|
||||
printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
|
||||
|
||||
for (i = 0; i < timers; i++) {
|
||||
l = hpet_readl(HPET_Tn_CFG(i));
|
||||
h = hpet_readl(HPET_Tn_CFG(i)+4);
|
||||
printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
|
||||
i, l, h);
|
||||
l = hpet_readl(HPET_Tn_CMP(i));
|
||||
h = hpet_readl(HPET_Tn_CMP(i)+4);
|
||||
printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
|
||||
i, l, h);
|
||||
l = hpet_readl(HPET_Tn_ROUTE(i));
|
||||
h = hpet_readl(HPET_Tn_ROUTE(i)+4);
|
||||
printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
|
||||
i, l, h);
|
||||
}
|
||||
}
|
||||
|
||||
#define hpet_print_config() \
|
||||
do { \
|
||||
if (hpet_verbose) \
|
||||
_hpet_print_config(__FUNCTION__, __LINE__); \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
|
||||
* timer 0 and timer 1 in case of RTC emulation.
|
||||
@ -191,27 +231,37 @@ static struct clock_event_device hpet_clockevent = {
|
||||
.rating = 50,
|
||||
};
|
||||
|
||||
static void hpet_start_counter(void)
|
||||
static void hpet_stop_counter(void)
|
||||
{
|
||||
unsigned long cfg = hpet_readl(HPET_CFG);
|
||||
|
||||
cfg &= ~HPET_CFG_ENABLE;
|
||||
hpet_writel(cfg, HPET_CFG);
|
||||
hpet_writel(0, HPET_COUNTER);
|
||||
hpet_writel(0, HPET_COUNTER + 4);
|
||||
}
|
||||
|
||||
static void hpet_start_counter(void)
|
||||
{
|
||||
unsigned long cfg = hpet_readl(HPET_CFG);
|
||||
cfg |= HPET_CFG_ENABLE;
|
||||
hpet_writel(cfg, HPET_CFG);
|
||||
}
|
||||
|
||||
static void hpet_restart_counter(void)
|
||||
{
|
||||
hpet_stop_counter();
|
||||
hpet_start_counter();
|
||||
}
|
||||
|
||||
static void hpet_resume_device(void)
|
||||
{
|
||||
force_hpet_resume();
|
||||
}
|
||||
|
||||
static void hpet_restart_counter(void)
|
||||
static void hpet_resume_counter(void)
|
||||
{
|
||||
hpet_resume_device();
|
||||
hpet_start_counter();
|
||||
hpet_restart_counter();
|
||||
}
|
||||
|
||||
static void hpet_enable_legacy_int(void)
|
||||
@ -259,29 +309,23 @@ static int hpet_setup_msi_irq(unsigned int irq);
|
||||
static void hpet_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt, int timer)
|
||||
{
|
||||
unsigned long cfg, cmp, now;
|
||||
unsigned long cfg;
|
||||
uint64_t delta;
|
||||
|
||||
switch (mode) {
|
||||
case CLOCK_EVT_MODE_PERIODIC:
|
||||
hpet_stop_counter();
|
||||
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
|
||||
delta >>= evt->shift;
|
||||
now = hpet_readl(HPET_COUNTER);
|
||||
cmp = now + (unsigned long) delta;
|
||||
cfg = hpet_readl(HPET_Tn_CFG(timer));
|
||||
/* Make sure we use edge triggered interrupts */
|
||||
cfg &= ~HPET_TN_LEVEL;
|
||||
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
||||
HPET_TN_SETVAL | HPET_TN_32BIT;
|
||||
hpet_writel(cfg, HPET_Tn_CFG(timer));
|
||||
/*
|
||||
* The first write after writing TN_SETVAL to the
|
||||
* config register sets the counter value, the second
|
||||
* write sets the period.
|
||||
*/
|
||||
hpet_writel(cmp, HPET_Tn_CMP(timer));
|
||||
udelay(1);
|
||||
hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
|
||||
hpet_start_counter();
|
||||
hpet_print_config();
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_ONESHOT:
|
||||
@ -308,6 +352,7 @@ static void hpet_set_mode(enum clock_event_mode mode,
|
||||
irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
|
||||
enable_irq(hdev->irq);
|
||||
}
|
||||
hpet_print_config();
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -526,6 +571,7 @@ static void hpet_msi_capability_lookup(unsigned int start_timer)
|
||||
|
||||
num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
|
||||
num_timers++; /* Value read out starts from 0 */
|
||||
hpet_print_config();
|
||||
|
||||
hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
|
||||
if (!hpet_devs)
|
||||
@ -695,7 +741,7 @@ static struct clocksource clocksource_hpet = {
|
||||
.mask = HPET_MASK,
|
||||
.shift = HPET_SHIFT,
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
.resume = hpet_restart_counter,
|
||||
.resume = hpet_resume_counter,
|
||||
#ifdef CONFIG_X86_64
|
||||
.vread = vread_hpet,
|
||||
#endif
|
||||
@ -707,7 +753,7 @@ static int hpet_clocksource_register(void)
|
||||
cycle_t t1;
|
||||
|
||||
/* Start the counter */
|
||||
hpet_start_counter();
|
||||
hpet_restart_counter();
|
||||
|
||||
/* Verify whether hpet counter works */
|
||||
t1 = read_hpet();
|
||||
@ -793,6 +839,7 @@ int __init hpet_enable(void)
|
||||
* information and the number of channels
|
||||
*/
|
||||
id = hpet_readl(HPET_ID);
|
||||
hpet_print_config();
|
||||
|
||||
#ifdef CONFIG_HPET_EMULATE_RTC
|
||||
/*
|
||||
@ -845,6 +892,7 @@ static __init int hpet_late_init(void)
|
||||
return -ENODEV;
|
||||
|
||||
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
|
||||
hpet_print_config();
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
|
||||
|
@ -172,7 +172,8 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_4,
|
||||
ich_force_enable_hpet);
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_7,
|
||||
ich_force_enable_hpet);
|
||||
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x3a16, /* ICH10 */
|
||||
ich_force_enable_hpet);
|
||||
|
||||
static struct pci_dev *cached_dev;
|
||||
|
||||
|
@ -2715,7 +2715,7 @@ static void ipath_hol_signal_up(struct ipath_devdata *dd)
|
||||
* to prevent HoL blocking, then start the HoL timer that
|
||||
* periodically continues, then stop procs, so they can detect
|
||||
* link down if they want, and do something about it.
|
||||
* Timer may already be running, so use __mod_timer, not add_timer.
|
||||
* Timer may already be running, so use mod_timer, not add_timer.
|
||||
*/
|
||||
void ipath_hol_down(struct ipath_devdata *dd)
|
||||
{
|
||||
@ -2724,7 +2724,7 @@ void ipath_hol_down(struct ipath_devdata *dd)
|
||||
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
|
||||
dd->ipath_hol_timer.expires = jiffies +
|
||||
msecs_to_jiffies(ipath_hol_timeout_ms);
|
||||
__mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
|
||||
mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2763,7 +2763,7 @@ void ipath_hol_event(unsigned long opaque)
|
||||
else {
|
||||
dd->ipath_hol_timer.expires = jiffies +
|
||||
msecs_to_jiffies(ipath_hol_timeout_ms);
|
||||
__mod_timer(&dd->ipath_hol_timer,
|
||||
mod_timer(&dd->ipath_hol_timer,
|
||||
dd->ipath_hol_timer.expires);
|
||||
}
|
||||
}
|
||||
|
@ -86,8 +86,8 @@ static inline int timer_pending(const struct timer_list * timer)
|
||||
|
||||
extern void add_timer_on(struct timer_list *timer, int cpu);
|
||||
extern int del_timer(struct timer_list * timer);
|
||||
extern int __mod_timer(struct timer_list *timer, unsigned long expires);
|
||||
extern int mod_timer(struct timer_list *timer, unsigned long expires);
|
||||
extern int mod_timer_pending(struct timer_list *timer, unsigned long expires);
|
||||
|
||||
/*
|
||||
* The jiffies value which is added to now, when there is no timer
|
||||
@ -146,25 +146,7 @@ static inline void timer_stats_timer_clear_start_info(struct timer_list *timer)
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* add_timer - start a timer
|
||||
* @timer: the timer to be added
|
||||
*
|
||||
* The kernel will do a ->function(->data) callback from the
|
||||
* timer interrupt at the ->expires point in the future. The
|
||||
* current time is 'jiffies'.
|
||||
*
|
||||
* The timer's ->expires, ->function (and if the handler uses it, ->data)
|
||||
* fields must be set prior calling this function.
|
||||
*
|
||||
* Timers with an ->expires field in the past will be executed in the next
|
||||
* timer tick.
|
||||
*/
|
||||
static inline void add_timer(struct timer_list *timer)
|
||||
{
|
||||
BUG_ON(timer_pending(timer));
|
||||
__mod_timer(timer, timer->expires);
|
||||
}
|
||||
extern void add_timer(struct timer_list *timer);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
extern int try_to_del_timer_sync(struct timer_list *timer);
|
||||
|
@ -190,7 +190,7 @@ struct timex {
|
||||
* offset and maximum frequency tolerance.
|
||||
*/
|
||||
#define SHIFT_USEC 16 /* frequency offset scale (shift) */
|
||||
#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
|
||||
#define PPM_SCALE ((s64)NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
|
||||
#define PPM_SCALE_INV_SHIFT 19
|
||||
#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
|
||||
PPM_SCALE + 1)
|
||||
|
@ -1370,7 +1370,8 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
|
||||
if (task_cputime_expired(&group_sample, &sig->cputime_expires))
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
|
||||
return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -750,7 +750,7 @@ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
|
||||
* from the scheduler (trying to re-grab
|
||||
* rq->lock), so defer it.
|
||||
*/
|
||||
__mod_timer(&buf->timer, jiffies + 1);
|
||||
mod_timer(&buf->timer, jiffies + 1);
|
||||
}
|
||||
|
||||
old = buf->data;
|
||||
|
@ -68,6 +68,17 @@ void clockevents_set_mode(struct clock_event_device *dev,
|
||||
if (dev->mode != mode) {
|
||||
dev->set_mode(mode, dev);
|
||||
dev->mode = mode;
|
||||
|
||||
/*
|
||||
* A nsec2cyc multiplicator of 0 is invalid and we'd crash
|
||||
* on it, so fix it up and emit a warning:
|
||||
*/
|
||||
if (mode == CLOCK_EVT_MODE_ONESHOT) {
|
||||
if (unlikely(!dev->mult)) {
|
||||
dev->mult = 1;
|
||||
WARN_ON(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -168,15 +179,6 @@ void clockevents_register_device(struct clock_event_device *dev)
|
||||
BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
|
||||
BUG_ON(!dev->cpumask);
|
||||
|
||||
/*
|
||||
* A nsec2cyc multiplicator of 0 is invalid and we'd crash
|
||||
* on it, so fix it up and emit a warning:
|
||||
*/
|
||||
if (unlikely(!dev->mult)) {
|
||||
dev->mult = 1;
|
||||
WARN_ON(1);
|
||||
}
|
||||
|
||||
spin_lock(&clockevents_lock);
|
||||
|
||||
list_add(&dev->list, &clockevent_devices);
|
||||
|
@ -1,71 +1,129 @@
|
||||
/*
|
||||
* linux/kernel/time/ntp.c
|
||||
*
|
||||
* NTP state machine interfaces and logic.
|
||||
*
|
||||
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
||||
* Please see those files for relevant copyright info and historical
|
||||
* changelogs.
|
||||
*/
|
||||
|
||||
#include <linux/mm.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/timex.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/hrtimer.h>
|
||||
#include <linux/capability.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <asm/timex.h>
|
||||
#include <linux/hrtimer.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/timex.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/mm.h>
|
||||
|
||||
/*
|
||||
* Timekeeping variables
|
||||
* NTP timekeeping variables:
|
||||
*/
|
||||
unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
|
||||
unsigned long tick_nsec; /* ACTHZ period (nsec) */
|
||||
u64 tick_length;
|
||||
static u64 tick_length_base;
|
||||
|
||||
static struct hrtimer leap_timer;
|
||||
/* USER_HZ period (usecs): */
|
||||
unsigned long tick_usec = TICK_USEC;
|
||||
|
||||
#define MAX_TICKADJ 500 /* microsecs */
|
||||
#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
|
||||
NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
|
||||
/* ACTHZ period (nsecs): */
|
||||
unsigned long tick_nsec;
|
||||
|
||||
u64 tick_length;
|
||||
static u64 tick_length_base;
|
||||
|
||||
static struct hrtimer leap_timer;
|
||||
|
||||
#define MAX_TICKADJ 500LL /* usecs */
|
||||
#define MAX_TICKADJ_SCALED \
|
||||
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
|
||||
|
||||
/*
|
||||
* phase-lock loop variables
|
||||
*/
|
||||
/* TIME_ERROR prevents overwriting the CMOS clock */
|
||||
static int time_state = TIME_OK; /* clock synchronization status */
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
static long time_tai; /* TAI offset (s) */
|
||||
static s64 time_offset; /* time adjustment (ns) */
|
||||
static long time_constant = 2; /* pll time constant */
|
||||
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
|
||||
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
|
||||
static s64 time_freq; /* frequency offset (scaled ns/s)*/
|
||||
static long time_reftime; /* time at last adjustment (s) */
|
||||
long time_adjust;
|
||||
static long ntp_tick_adj;
|
||||
|
||||
/*
|
||||
* clock synchronization status
|
||||
*
|
||||
* (TIME_ERROR prevents overwriting the CMOS clock)
|
||||
*/
|
||||
static int time_state = TIME_OK;
|
||||
|
||||
/* clock status bits: */
|
||||
int time_status = STA_UNSYNC;
|
||||
|
||||
/* TAI offset (secs): */
|
||||
static long time_tai;
|
||||
|
||||
/* time adjustment (nsecs): */
|
||||
static s64 time_offset;
|
||||
|
||||
/* pll time constant: */
|
||||
static long time_constant = 2;
|
||||
|
||||
/* maximum error (usecs): */
|
||||
long time_maxerror = NTP_PHASE_LIMIT;
|
||||
|
||||
/* estimated error (usecs): */
|
||||
long time_esterror = NTP_PHASE_LIMIT;
|
||||
|
||||
/* frequency offset (scaled nsecs/secs): */
|
||||
static s64 time_freq;
|
||||
|
||||
/* time at last adjustment (secs): */
|
||||
static long time_reftime;
|
||||
|
||||
long time_adjust;
|
||||
|
||||
/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
|
||||
static s64 ntp_tick_adj;
|
||||
|
||||
/*
|
||||
* NTP methods:
|
||||
*/
|
||||
|
||||
/*
|
||||
* Update (tick_length, tick_length_base, tick_nsec), based
|
||||
* on (tick_usec, ntp_tick_adj, time_freq):
|
||||
*/
|
||||
static void ntp_update_frequency(void)
|
||||
{
|
||||
u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
|
||||
<< NTP_SCALE_SHIFT;
|
||||
second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
|
||||
second_length += time_freq;
|
||||
u64 second_length;
|
||||
u64 new_base;
|
||||
|
||||
tick_length_base = second_length;
|
||||
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
|
||||
<< NTP_SCALE_SHIFT;
|
||||
|
||||
tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
|
||||
tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
|
||||
second_length += ntp_tick_adj;
|
||||
second_length += time_freq;
|
||||
|
||||
tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
|
||||
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
|
||||
|
||||
/*
|
||||
* Don't wait for the next second_overflow, apply
|
||||
* the change to the tick length immediately:
|
||||
*/
|
||||
tick_length += new_base - tick_length_base;
|
||||
tick_length_base = new_base;
|
||||
}
|
||||
|
||||
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
|
||||
{
|
||||
time_status &= ~STA_MODE;
|
||||
|
||||
if (secs < MINSEC)
|
||||
return 0;
|
||||
|
||||
if (!(time_status & STA_FLL) && (secs <= MAXSEC))
|
||||
return 0;
|
||||
|
||||
time_status |= STA_MODE;
|
||||
|
||||
return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
|
||||
}
|
||||
|
||||
static void ntp_update_offset(long offset)
|
||||
{
|
||||
long mtemp;
|
||||
s64 freq_adj;
|
||||
s64 offset64;
|
||||
long secs;
|
||||
|
||||
if (!(time_status & STA_PLL))
|
||||
return;
|
||||
@ -84,24 +142,23 @@ static void ntp_update_offset(long offset)
|
||||
* Select how the frequency is to be controlled
|
||||
* and in which mode (PLL or FLL).
|
||||
*/
|
||||
if (time_status & STA_FREQHOLD || time_reftime == 0)
|
||||
time_reftime = xtime.tv_sec;
|
||||
mtemp = xtime.tv_sec - time_reftime;
|
||||
secs = xtime.tv_sec - time_reftime;
|
||||
if (unlikely(time_status & STA_FREQHOLD))
|
||||
secs = 0;
|
||||
|
||||
time_reftime = xtime.tv_sec;
|
||||
|
||||
freq_adj = (s64)offset * mtemp;
|
||||
freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
|
||||
time_status &= ~STA_MODE;
|
||||
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
|
||||
freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
|
||||
mtemp);
|
||||
time_status |= STA_MODE;
|
||||
}
|
||||
freq_adj += time_freq;
|
||||
freq_adj = min(freq_adj, MAXFREQ_SCALED);
|
||||
time_freq = max(freq_adj, -MAXFREQ_SCALED);
|
||||
offset64 = offset;
|
||||
freq_adj = (offset64 * secs) <<
|
||||
(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
|
||||
|
||||
time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
|
||||
freq_adj += ntp_update_offset_fll(offset64, secs);
|
||||
|
||||
freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
|
||||
|
||||
time_freq = max(freq_adj, -MAXFREQ_SCALED);
|
||||
|
||||
time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -111,15 +168,15 @@ static void ntp_update_offset(long offset)
|
||||
*/
|
||||
void ntp_clear(void)
|
||||
{
|
||||
time_adjust = 0; /* stop active adjtime() */
|
||||
time_status |= STA_UNSYNC;
|
||||
time_maxerror = NTP_PHASE_LIMIT;
|
||||
time_esterror = NTP_PHASE_LIMIT;
|
||||
time_adjust = 0; /* stop active adjtime() */
|
||||
time_status |= STA_UNSYNC;
|
||||
time_maxerror = NTP_PHASE_LIMIT;
|
||||
time_esterror = NTP_PHASE_LIMIT;
|
||||
|
||||
ntp_update_frequency();
|
||||
|
||||
tick_length = tick_length_base;
|
||||
time_offset = 0;
|
||||
tick_length = tick_length_base;
|
||||
time_offset = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
xtime.tv_sec--;
|
||||
wall_to_monotonic.tv_sec++;
|
||||
time_state = TIME_OOP;
|
||||
printk(KERN_NOTICE "Clock: "
|
||||
"inserting leap second 23:59:60 UTC\n");
|
||||
printk(KERN_NOTICE
|
||||
"Clock: inserting leap second 23:59:60 UTC\n");
|
||||
hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
|
||||
res = HRTIMER_RESTART;
|
||||
break;
|
||||
@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
time_tai--;
|
||||
wall_to_monotonic.tv_sec--;
|
||||
time_state = TIME_WAIT;
|
||||
printk(KERN_NOTICE "Clock: "
|
||||
"deleting leap second 23:59:59 UTC\n");
|
||||
printk(KERN_NOTICE
|
||||
"Clock: deleting leap second 23:59:59 UTC\n");
|
||||
break;
|
||||
case TIME_OOP:
|
||||
time_tai++;
|
||||
@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
*/
|
||||
void second_overflow(void)
|
||||
{
|
||||
s64 time_adj;
|
||||
s64 delta;
|
||||
|
||||
/* Bump the maxerror field */
|
||||
time_maxerror += MAXFREQ / NSEC_PER_USEC;
|
||||
@ -192,24 +249,30 @@ void second_overflow(void)
|
||||
* Compute the phase adjustment for the next second. The offset is
|
||||
* reduced by a fixed factor times the time constant.
|
||||
*/
|
||||
tick_length = tick_length_base;
|
||||
time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
|
||||
time_offset -= time_adj;
|
||||
tick_length += time_adj;
|
||||
tick_length = tick_length_base;
|
||||
|
||||
if (unlikely(time_adjust)) {
|
||||
if (time_adjust > MAX_TICKADJ) {
|
||||
time_adjust -= MAX_TICKADJ;
|
||||
tick_length += MAX_TICKADJ_SCALED;
|
||||
} else if (time_adjust < -MAX_TICKADJ) {
|
||||
time_adjust += MAX_TICKADJ;
|
||||
tick_length -= MAX_TICKADJ_SCALED;
|
||||
} else {
|
||||
tick_length += (s64)(time_adjust * NSEC_PER_USEC /
|
||||
NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
|
||||
time_adjust = 0;
|
||||
}
|
||||
delta = shift_right(time_offset, SHIFT_PLL + time_constant);
|
||||
time_offset -= delta;
|
||||
tick_length += delta;
|
||||
|
||||
if (!time_adjust)
|
||||
return;
|
||||
|
||||
if (time_adjust > MAX_TICKADJ) {
|
||||
time_adjust -= MAX_TICKADJ;
|
||||
tick_length += MAX_TICKADJ_SCALED;
|
||||
return;
|
||||
}
|
||||
|
||||
if (time_adjust < -MAX_TICKADJ) {
|
||||
time_adjust += MAX_TICKADJ;
|
||||
tick_length -= MAX_TICKADJ_SCALED;
|
||||
return;
|
||||
}
|
||||
|
||||
tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
|
||||
<< NTP_SCALE_SHIFT;
|
||||
time_adjust = 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_GENERIC_CMOS_UPDATE
|
||||
@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work)
|
||||
* This code is run on a timer. If the clock is set, that timer
|
||||
* may not expire at the correct time. Thus, we adjust...
|
||||
*/
|
||||
if (!ntp_synced())
|
||||
if (!ntp_synced()) {
|
||||
/*
|
||||
* Not synced, exit, do not restart a timer (if one is
|
||||
* running, let it run out).
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
getnstimeofday(&now);
|
||||
if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
|
||||
@ -270,7 +334,116 @@ static void notify_cmos_timer(void)
|
||||
static inline void notify_cmos_timer(void) { }
|
||||
#endif
|
||||
|
||||
/* adjtimex mainly allows reading (and writing, if superuser) of
|
||||
/*
|
||||
* Start the leap seconds timer:
|
||||
*/
|
||||
static inline void ntp_start_leap_timer(struct timespec *ts)
|
||||
{
|
||||
long now = ts->tv_sec;
|
||||
|
||||
if (time_status & STA_INS) {
|
||||
time_state = TIME_INS;
|
||||
now += 86400 - now % 86400;
|
||||
hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (time_status & STA_DEL) {
|
||||
time_state = TIME_DEL;
|
||||
now += 86400 - (now + 1) % 86400;
|
||||
hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Propagate a new txc->status value into the NTP state:
|
||||
*/
|
||||
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
|
||||
{
|
||||
if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
|
||||
time_state = TIME_OK;
|
||||
time_status = STA_UNSYNC;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we turn on PLL adjustments then reset the
|
||||
* reference time to current time.
|
||||
*/
|
||||
if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
|
||||
time_reftime = xtime.tv_sec;
|
||||
|
||||
/* only set allowed bits */
|
||||
time_status &= STA_RONLY;
|
||||
time_status |= txc->status & ~STA_RONLY;
|
||||
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
ntp_start_leap_timer(ts);
|
||||
break;
|
||||
case TIME_INS:
|
||||
case TIME_DEL:
|
||||
time_state = TIME_OK;
|
||||
ntp_start_leap_timer(ts);
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
break;
|
||||
case TIME_OOP:
|
||||
hrtimer_restart(&leap_timer);
|
||||
break;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Called with the xtime lock held, so we can access and modify
|
||||
* all the global NTP state:
|
||||
*/
|
||||
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
|
||||
{
|
||||
if (txc->modes & ADJ_STATUS)
|
||||
process_adj_status(txc, ts);
|
||||
|
||||
if (txc->modes & ADJ_NANO)
|
||||
time_status |= STA_NANO;
|
||||
|
||||
if (txc->modes & ADJ_MICRO)
|
||||
time_status &= ~STA_NANO;
|
||||
|
||||
if (txc->modes & ADJ_FREQUENCY) {
|
||||
time_freq = txc->freq * PPM_SCALE;
|
||||
time_freq = min(time_freq, MAXFREQ_SCALED);
|
||||
time_freq = max(time_freq, -MAXFREQ_SCALED);
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_MAXERROR)
|
||||
time_maxerror = txc->maxerror;
|
||||
|
||||
if (txc->modes & ADJ_ESTERROR)
|
||||
time_esterror = txc->esterror;
|
||||
|
||||
if (txc->modes & ADJ_TIMECONST) {
|
||||
time_constant = txc->constant;
|
||||
if (!(time_status & STA_NANO))
|
||||
time_constant += 4;
|
||||
time_constant = min(time_constant, (long)MAXTC);
|
||||
time_constant = max(time_constant, 0l);
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_TAI && txc->constant > 0)
|
||||
time_tai = txc->constant;
|
||||
|
||||
if (txc->modes & ADJ_OFFSET)
|
||||
ntp_update_offset(txc->offset);
|
||||
|
||||
if (txc->modes & ADJ_TICK)
|
||||
tick_usec = txc->tick;
|
||||
|
||||
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
|
||||
ntp_update_frequency();
|
||||
}
|
||||
|
||||
/*
|
||||
* adjtimex mainly allows reading (and writing, if superuser) of
|
||||
* kernel time-keeping variables. used by xntpd.
|
||||
*/
|
||||
int do_adjtimex(struct timex *txc)
|
||||
@ -291,11 +464,14 @@ int do_adjtimex(struct timex *txc)
|
||||
if (txc->modes && !capable(CAP_SYS_TIME))
|
||||
return -EPERM;
|
||||
|
||||
/* if the quartz is off by more than 10% something is VERY wrong! */
|
||||
/*
|
||||
* if the quartz is off by more than 10% then
|
||||
* something is VERY wrong!
|
||||
*/
|
||||
if (txc->modes & ADJ_TICK &&
|
||||
(txc->tick < 900000/USER_HZ ||
|
||||
txc->tick > 1100000/USER_HZ))
|
||||
return -EINVAL;
|
||||
return -EINVAL;
|
||||
|
||||
if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
|
||||
hrtimer_cancel(&leap_timer);
|
||||
@ -305,7 +481,6 @@ int do_adjtimex(struct timex *txc)
|
||||
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
|
||||
/* If there are input parameters, then process them */
|
||||
if (txc->modes & ADJ_ADJTIME) {
|
||||
long save_adjust = time_adjust;
|
||||
|
||||
@ -315,98 +490,24 @@ int do_adjtimex(struct timex *txc)
|
||||
ntp_update_frequency();
|
||||
}
|
||||
txc->offset = save_adjust;
|
||||
goto adj_done;
|
||||
}
|
||||
if (txc->modes) {
|
||||
long sec;
|
||||
} else {
|
||||
|
||||
if (txc->modes & ADJ_STATUS) {
|
||||
if ((time_status & STA_PLL) &&
|
||||
!(txc->status & STA_PLL)) {
|
||||
time_state = TIME_OK;
|
||||
time_status = STA_UNSYNC;
|
||||
}
|
||||
/* only set allowed bits */
|
||||
time_status &= STA_RONLY;
|
||||
time_status |= txc->status & ~STA_RONLY;
|
||||
/* If there are input parameters, then process them: */
|
||||
if (txc->modes)
|
||||
process_adjtimex_modes(txc, &ts);
|
||||
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
start_timer:
|
||||
sec = ts.tv_sec;
|
||||
if (time_status & STA_INS) {
|
||||
time_state = TIME_INS;
|
||||
sec += 86400 - sec % 86400;
|
||||
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
|
||||
} else if (time_status & STA_DEL) {
|
||||
time_state = TIME_DEL;
|
||||
sec += 86400 - (sec + 1) % 86400;
|
||||
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
|
||||
}
|
||||
break;
|
||||
case TIME_INS:
|
||||
case TIME_DEL:
|
||||
time_state = TIME_OK;
|
||||
goto start_timer;
|
||||
break;
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
break;
|
||||
case TIME_OOP:
|
||||
hrtimer_restart(&leap_timer);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_NANO)
|
||||
time_status |= STA_NANO;
|
||||
if (txc->modes & ADJ_MICRO)
|
||||
time_status &= ~STA_NANO;
|
||||
|
||||
if (txc->modes & ADJ_FREQUENCY) {
|
||||
time_freq = (s64)txc->freq * PPM_SCALE;
|
||||
time_freq = min(time_freq, MAXFREQ_SCALED);
|
||||
time_freq = max(time_freq, -MAXFREQ_SCALED);
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_MAXERROR)
|
||||
time_maxerror = txc->maxerror;
|
||||
if (txc->modes & ADJ_ESTERROR)
|
||||
time_esterror = txc->esterror;
|
||||
|
||||
if (txc->modes & ADJ_TIMECONST) {
|
||||
time_constant = txc->constant;
|
||||
if (!(time_status & STA_NANO))
|
||||
time_constant += 4;
|
||||
time_constant = min(time_constant, (long)MAXTC);
|
||||
time_constant = max(time_constant, 0l);
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_TAI && txc->constant > 0)
|
||||
time_tai = txc->constant;
|
||||
|
||||
if (txc->modes & ADJ_OFFSET)
|
||||
ntp_update_offset(txc->offset);
|
||||
if (txc->modes & ADJ_TICK)
|
||||
tick_usec = txc->tick;
|
||||
|
||||
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
|
||||
ntp_update_frequency();
|
||||
}
|
||||
|
||||
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
|
||||
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
|
||||
NTP_SCALE_SHIFT);
|
||||
if (!(time_status & STA_NANO))
|
||||
txc->offset /= NSEC_PER_USEC;
|
||||
if (!(time_status & STA_NANO))
|
||||
txc->offset /= NSEC_PER_USEC;
|
||||
}
|
||||
|
||||
adj_done:
|
||||
result = time_state; /* mostly `TIME_OK' */
|
||||
if (time_status & (STA_UNSYNC|STA_CLOCKERR))
|
||||
result = TIME_ERROR;
|
||||
|
||||
txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
|
||||
(s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
||||
PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
||||
txc->maxerror = time_maxerror;
|
||||
txc->esterror = time_esterror;
|
||||
txc->status = time_status;
|
||||
@ -425,6 +526,7 @@ adj_done:
|
||||
txc->calcnt = 0;
|
||||
txc->errcnt = 0;
|
||||
txc->stbcnt = 0;
|
||||
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
|
||||
txc->time.tv_sec = ts.tv_sec;
|
||||
@ -440,6 +542,8 @@ adj_done:
|
||||
static int __init ntp_tick_adj_setup(char *str)
|
||||
{
|
||||
ntp_tick_adj = simple_strtol(str, NULL, 0);
|
||||
ntp_tick_adj <<= NTP_SCALE_SHIFT;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
126
kernel/timer.c
126
kernel/timer.c
@ -589,11 +589,14 @@ static struct tvec_base *lock_timer_base(struct timer_list *timer,
|
||||
}
|
||||
}
|
||||
|
||||
int __mod_timer(struct timer_list *timer, unsigned long expires)
|
||||
static inline int
|
||||
__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
|
||||
{
|
||||
struct tvec_base *base, *new_base;
|
||||
unsigned long flags;
|
||||
int ret = 0;
|
||||
int ret;
|
||||
|
||||
ret = 0;
|
||||
|
||||
timer_stats_timer_set_start_info(timer);
|
||||
BUG_ON(!timer->function);
|
||||
@ -603,6 +606,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
|
||||
if (timer_pending(timer)) {
|
||||
detach_timer(timer, 0);
|
||||
ret = 1;
|
||||
} else {
|
||||
if (pending_only)
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
debug_timer_activate(timer);
|
||||
@ -629,12 +635,83 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
|
||||
|
||||
timer->expires = expires;
|
||||
internal_add_timer(base, timer);
|
||||
|
||||
out_unlock:
|
||||
spin_unlock_irqrestore(&base->lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(__mod_timer);
|
||||
/**
|
||||
* mod_timer_pending - modify a pending timer's timeout
|
||||
* @timer: the pending timer to be modified
|
||||
* @expires: new timeout in jiffies
|
||||
*
|
||||
* mod_timer_pending() is the same for pending timers as mod_timer(),
|
||||
* but will not re-activate and modify already deleted timers.
|
||||
*
|
||||
* It is useful for unserialized use of timers.
|
||||
*/
|
||||
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
|
||||
{
|
||||
return __mod_timer(timer, expires, true);
|
||||
}
|
||||
EXPORT_SYMBOL(mod_timer_pending);
|
||||
|
||||
/**
|
||||
* mod_timer - modify a timer's timeout
|
||||
* @timer: the timer to be modified
|
||||
* @expires: new timeout in jiffies
|
||||
*
|
||||
* mod_timer() is a more efficient way to update the expire field of an
|
||||
* active timer (if the timer is inactive it will be activated)
|
||||
*
|
||||
* mod_timer(timer, expires) is equivalent to:
|
||||
*
|
||||
* del_timer(timer); timer->expires = expires; add_timer(timer);
|
||||
*
|
||||
* Note that if there are multiple unserialized concurrent users of the
|
||||
* same timer, then mod_timer() is the only safe way to modify the timeout,
|
||||
* since add_timer() cannot modify an already running timer.
|
||||
*
|
||||
* The function returns whether it has modified a pending timer or not.
|
||||
* (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
|
||||
* active timer returns 1.)
|
||||
*/
|
||||
int mod_timer(struct timer_list *timer, unsigned long expires)
|
||||
{
|
||||
/*
|
||||
* This is a common optimization triggered by the
|
||||
* networking code - if the timer is re-modified
|
||||
* to be the same thing then just return:
|
||||
*/
|
||||
if (timer->expires == expires && timer_pending(timer))
|
||||
return 1;
|
||||
|
||||
return __mod_timer(timer, expires, false);
|
||||
}
|
||||
EXPORT_SYMBOL(mod_timer);
|
||||
|
||||
/**
|
||||
* add_timer - start a timer
|
||||
* @timer: the timer to be added
|
||||
*
|
||||
* The kernel will do a ->function(->data) callback from the
|
||||
* timer interrupt at the ->expires point in the future. The
|
||||
* current time is 'jiffies'.
|
||||
*
|
||||
* The timer's ->expires, ->function (and if the handler uses it, ->data)
|
||||
* fields must be set prior calling this function.
|
||||
*
|
||||
* Timers with an ->expires field in the past will be executed in the next
|
||||
* timer tick.
|
||||
*/
|
||||
void add_timer(struct timer_list *timer)
|
||||
{
|
||||
BUG_ON(timer_pending(timer));
|
||||
mod_timer(timer, timer->expires);
|
||||
}
|
||||
EXPORT_SYMBOL(add_timer);
|
||||
|
||||
/**
|
||||
* add_timer_on - start a timer on a particular CPU
|
||||
@ -666,44 +743,6 @@ void add_timer_on(struct timer_list *timer, int cpu)
|
||||
spin_unlock_irqrestore(&base->lock, flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* mod_timer - modify a timer's timeout
|
||||
* @timer: the timer to be modified
|
||||
* @expires: new timeout in jiffies
|
||||
*
|
||||
* mod_timer() is a more efficient way to update the expire field of an
|
||||
* active timer (if the timer is inactive it will be activated)
|
||||
*
|
||||
* mod_timer(timer, expires) is equivalent to:
|
||||
*
|
||||
* del_timer(timer); timer->expires = expires; add_timer(timer);
|
||||
*
|
||||
* Note that if there are multiple unserialized concurrent users of the
|
||||
* same timer, then mod_timer() is the only safe way to modify the timeout,
|
||||
* since add_timer() cannot modify an already running timer.
|
||||
*
|
||||
* The function returns whether it has modified a pending timer or not.
|
||||
* (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
|
||||
* active timer returns 1.)
|
||||
*/
|
||||
int mod_timer(struct timer_list *timer, unsigned long expires)
|
||||
{
|
||||
BUG_ON(!timer->function);
|
||||
|
||||
timer_stats_timer_set_start_info(timer);
|
||||
/*
|
||||
* This is a common optimization triggered by the
|
||||
* networking code - if the timer is re-modified
|
||||
* to be the same thing then just return:
|
||||
*/
|
||||
if (timer->expires == expires && timer_pending(timer))
|
||||
return 1;
|
||||
|
||||
return __mod_timer(timer, expires);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(mod_timer);
|
||||
|
||||
/**
|
||||
* del_timer - deactive a timer.
|
||||
* @timer: the timer to be deactivated
|
||||
@ -733,7 +772,6 @@ int del_timer(struct timer_list *timer)
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(del_timer);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
@ -767,7 +805,6 @@ out:
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(try_to_del_timer_sync);
|
||||
|
||||
/**
|
||||
@ -796,7 +833,6 @@ int del_timer_sync(struct timer_list *timer)
|
||||
cpu_relax();
|
||||
}
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(del_timer_sync);
|
||||
#endif
|
||||
|
||||
@ -1268,7 +1304,7 @@ signed long __sched schedule_timeout(signed long timeout)
|
||||
expire = timeout + jiffies;
|
||||
|
||||
setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
|
||||
__mod_timer(&timer, expire);
|
||||
__mod_timer(&timer, expire, false);
|
||||
schedule();
|
||||
del_singleshot_timer_sync(&timer);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user