diff --git a/crypto/jitterentropy.c b/crypto/jitterentropy.c index 8f5283f28ed3..93bff3213823 100644 --- a/crypto/jitterentropy.c +++ b/crypto/jitterentropy.c @@ -117,6 +117,22 @@ struct rand_data { #define JENT_EHEALTH 9 /* Health test failed during initialization */ #define JENT_ERCT 10 /* RCT failed during initialization */ +/* + * The output n bits can receive more than n bits of min entropy, of course, + * but the fixed output of the conditioning function can only asymptotically + * approach the output size bits of min entropy, not attain that bound. Random + * maps will tend to have output collisions, which reduces the creditable + * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound). + * + * The value "64" is justified in Appendix A.4 of the current 90C draft, + * and aligns with NIST's in "epsilon" definition in this document, which is + * that a string can be considered "full entropy" if you can bound the min + * entropy in each bit of output to at least 1-epsilon, where epsilon is + * required to be <= 2^(-32). + */ +#define JENT_ENTROPY_SAFETY_FACTOR 64 + +#include #include "jitterentropy.h" /*************************************************************************** @@ -542,7 +558,10 @@ static int jent_measure_jitter(struct rand_data *ec) */ static void jent_gen_entropy(struct rand_data *ec) { - unsigned int k = 0; + unsigned int k = 0, safety_factor = 0; + + if (fips_enabled) + safety_factor = JENT_ENTROPY_SAFETY_FACTOR; /* priming of the ->prev_time value */ jent_measure_jitter(ec); @@ -556,7 +575,7 @@ static void jent_gen_entropy(struct rand_data *ec) * We multiply the loop value with ->osr to obtain the * oversampling rate requested by the caller */ - if (++k >= (DATA_SIZE_BITS * ec->osr)) + if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr)) break; } }