mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-28 16:53:49 +00:00
lib: add generic polynomial calculation
Some temperature and voltage sensors use a polynomial to convert between raw data points and actual temperature or voltage. The polynomial is usually the result of a curve fitting of the diode characteristic. The BT1 PVT hwmon driver already uses such a polynonmial calculation which is rather generic. Move it to lib/ so other drivers can reuse it. Signed-off-by: Michael Walle <michael@walle.cc> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20220401214032.3738095-2-michael@walle.cc Signed-off-by: Guenter Roeck <linux@roeck-us.net>
This commit is contained in:
parent
9054416afc
commit
cd705ea857
35
include/linux/polynomial.h
Normal file
35
include/linux/polynomial.h
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef _POLYNOMIAL_H
|
||||||
|
#define _POLYNOMIAL_H
|
||||||
|
|
||||||
|
/*
|
||||||
|
* struct polynomial_term - one term descriptor of a polynomial
|
||||||
|
* @deg: degree of the term.
|
||||||
|
* @coef: multiplication factor of the term.
|
||||||
|
* @divider: distributed divider per each degree.
|
||||||
|
* @divider_leftover: divider leftover, which couldn't be redistributed.
|
||||||
|
*/
|
||||||
|
struct polynomial_term {
|
||||||
|
unsigned int deg;
|
||||||
|
long coef;
|
||||||
|
long divider;
|
||||||
|
long divider_leftover;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* struct polynomial - a polynomial descriptor
|
||||||
|
* @total_divider: total data divider.
|
||||||
|
* @terms: polynomial terms, last term must have degree of 0
|
||||||
|
*/
|
||||||
|
struct polynomial {
|
||||||
|
long total_divider;
|
||||||
|
struct polynomial_term terms[];
|
||||||
|
};
|
||||||
|
|
||||||
|
long polynomial_calc(const struct polynomial *poly, long data);
|
||||||
|
|
||||||
|
#endif
|
@ -737,3 +737,6 @@ config PLDMFW
|
|||||||
|
|
||||||
config ASN1_ENCODER
|
config ASN1_ENCODER
|
||||||
tristate
|
tristate
|
||||||
|
|
||||||
|
config POLYNOMIAL
|
||||||
|
tristate
|
||||||
|
@ -263,6 +263,8 @@ obj-$(CONFIG_MEMREGION) += memregion.o
|
|||||||
obj-$(CONFIG_STMP_DEVICE) += stmp_device.o
|
obj-$(CONFIG_STMP_DEVICE) += stmp_device.o
|
||||||
obj-$(CONFIG_IRQ_POLL) += irq_poll.o
|
obj-$(CONFIG_IRQ_POLL) += irq_poll.o
|
||||||
|
|
||||||
|
obj-$(CONFIG_POLYNOMIAL) += polynomial.o
|
||||||
|
|
||||||
# stackdepot.c should not be instrumented or call instrumented functions.
|
# stackdepot.c should not be instrumented or call instrumented functions.
|
||||||
# Prevent the compiler from calling builtins like memcmp() or bcmp() from this
|
# Prevent the compiler from calling builtins like memcmp() or bcmp() from this
|
||||||
# file.
|
# file.
|
||||||
|
108
lib/polynomial.c
Normal file
108
lib/polynomial.c
Normal file
@ -0,0 +1,108 @@
|
|||||||
|
// SPDX-License-Identifier: GPL-2.0-only
|
||||||
|
/*
|
||||||
|
* Generic polynomial calculation using integer coefficients.
|
||||||
|
*
|
||||||
|
* Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
|
||||||
|
*
|
||||||
|
* Authors:
|
||||||
|
* Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
|
||||||
|
* Serge Semin <Sergey.Semin@baikalelectronics.ru>
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <linux/kernel.h>
|
||||||
|
#include <linux/module.h>
|
||||||
|
#include <linux/polynomial.h>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Originally this was part of drivers/hwmon/bt1-pvt.c.
|
||||||
|
* There the following conversion is used and should serve as an example here:
|
||||||
|
*
|
||||||
|
* The original translation formulae of the temperature (in degrees of Celsius)
|
||||||
|
* to PVT data and vice-versa are following:
|
||||||
|
*
|
||||||
|
* N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
|
||||||
|
* 1.7204e2
|
||||||
|
* T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
|
||||||
|
* 3.1020e-1*(N^1) - 4.838e1
|
||||||
|
*
|
||||||
|
* where T = [-48.380, 147.438]C and N = [0, 1023].
|
||||||
|
*
|
||||||
|
* They must be accordingly altered to be suitable for the integer arithmetics.
|
||||||
|
* The technique is called 'factor redistribution', which just makes sure the
|
||||||
|
* multiplications and divisions are made so to have a result of the operations
|
||||||
|
* within the integer numbers limit. In addition we need to translate the
|
||||||
|
* formulae to accept millidegrees of Celsius. Here what they look like after
|
||||||
|
* the alterations:
|
||||||
|
*
|
||||||
|
* N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
|
||||||
|
* 17204e2) / 1e4
|
||||||
|
* T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
|
||||||
|
* 48380
|
||||||
|
* where T = [-48380, 147438] mC and N = [0, 1023].
|
||||||
|
*
|
||||||
|
* static const struct polynomial poly_temp_to_N = {
|
||||||
|
* .total_divider = 10000,
|
||||||
|
* .terms = {
|
||||||
|
* {4, 18322, 10000, 10000},
|
||||||
|
* {3, 2343, 10000, 10},
|
||||||
|
* {2, 87018, 10000, 10},
|
||||||
|
* {1, 39269, 1000, 1},
|
||||||
|
* {0, 1720400, 1, 1}
|
||||||
|
* }
|
||||||
|
* };
|
||||||
|
*
|
||||||
|
* static const struct polynomial poly_N_to_temp = {
|
||||||
|
* .total_divider = 1,
|
||||||
|
* .terms = {
|
||||||
|
* {4, -16743, 1000, 1},
|
||||||
|
* {3, 81542, 1000, 1},
|
||||||
|
* {2, -182010, 1000, 1},
|
||||||
|
* {1, 310200, 1000, 1},
|
||||||
|
* {0, -48380, 1, 1}
|
||||||
|
* }
|
||||||
|
* };
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* polynomial_calc - calculate a polynomial using integer arithmetic
|
||||||
|
*
|
||||||
|
* @poly: pointer to the descriptor of the polynomial
|
||||||
|
* @data: input value of the polynimal
|
||||||
|
*
|
||||||
|
* Calculate the result of a polynomial using only integer arithmetic. For
|
||||||
|
* this to work without too much loss of precision the coefficients has to
|
||||||
|
* be altered. This is called factor redistribution.
|
||||||
|
*
|
||||||
|
* Returns the result of the polynomial calculation.
|
||||||
|
*/
|
||||||
|
long polynomial_calc(const struct polynomial *poly, long data)
|
||||||
|
{
|
||||||
|
const struct polynomial_term *term = poly->terms;
|
||||||
|
long total_divider = poly->total_divider ?: 1;
|
||||||
|
long tmp, ret = 0;
|
||||||
|
int deg;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Here is the polynomial calculation function, which performs the
|
||||||
|
* redistributed terms calculations. It's pretty straightforward.
|
||||||
|
* We walk over each degree term up to the free one, and perform
|
||||||
|
* the redistributed multiplication of the term coefficient, its
|
||||||
|
* divider (as for the rationale fraction representation), data
|
||||||
|
* power and the rational fraction divider leftover. Then all of
|
||||||
|
* this is collected in a total sum variable, which value is
|
||||||
|
* normalized by the total divider before being returned.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
tmp = term->coef;
|
||||||
|
for (deg = 0; deg < term->deg; ++deg)
|
||||||
|
tmp = mult_frac(tmp, data, term->divider);
|
||||||
|
ret += tmp / term->divider_leftover;
|
||||||
|
} while ((term++)->deg);
|
||||||
|
|
||||||
|
return ret / total_divider;
|
||||||
|
}
|
||||||
|
EXPORT_SYMBOL_GPL(polynomial_calc);
|
||||||
|
|
||||||
|
MODULE_DESCRIPTION("Generic polynomial calculations");
|
||||||
|
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user