mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-10 07:10:27 +00:00
sched: Dynamically allocate sched_domain/sched_group data-structures
Instead of relying on static allocations for the sched_domain and sched_group trees, dynamically allocate and RCU free them. Allocating this dynamically also allows for some build_sched_groups() simplification since we can now (like with other simplifications) rely on the sched_domain tree instead of hard-coded knowledge. One tricky to note is that detach_destroy_domains() needs to hold rcu_read_lock() over the entire tear-down, per-cpu is not sufficient since that can lead to partial sched_group existance (could possibly be solved by doing the tear-down backwards but this is much more robust). A concequence of the above is that we can no longer print the sched_domain debug stuff from cpu_attach_domain() since that might now run with preemption disabled (due to classic RCU etc.) and sched_domain_debug() does some GFP_KERNEL allocations. Another thing to note is that we now fully rely on normal RCU and not RCU-sched, this is because with the new and exiting RCU flavours we grew over the years BH doesn't necessarily hold off RCU-sched grace periods (-rt is known to break this). This would in fact already cause us grief since we do sched_domain/sched_group iterations from softirq context. This patch is somewhat larger than I would like it to be, but I didn't find any means of shrinking/splitting this. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20110407122942.245307941@chello.nl Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
a9c9a9b6bf
commit
dce840a087
@ -868,6 +868,7 @@ static inline int sd_power_saving_flags(void)
|
||||
|
||||
struct sched_group {
|
||||
struct sched_group *next; /* Must be a circular list */
|
||||
atomic_t ref;
|
||||
|
||||
/*
|
||||
* CPU power of this group, SCHED_LOAD_SCALE being max power for a
|
||||
@ -973,6 +974,10 @@ struct sched_domain {
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
char *name;
|
||||
#endif
|
||||
union {
|
||||
void *private; /* used during construction */
|
||||
struct rcu_head rcu; /* used during destruction */
|
||||
};
|
||||
|
||||
unsigned int span_weight;
|
||||
/*
|
||||
|
495
kernel/sched.c
495
kernel/sched.c
@ -417,6 +417,7 @@ struct rt_rq {
|
||||
*/
|
||||
struct root_domain {
|
||||
atomic_t refcount;
|
||||
struct rcu_head rcu;
|
||||
cpumask_var_t span;
|
||||
cpumask_var_t online;
|
||||
|
||||
@ -571,7 +572,7 @@ static inline int cpu_of(struct rq *rq)
|
||||
|
||||
#define rcu_dereference_check_sched_domain(p) \
|
||||
rcu_dereference_check((p), \
|
||||
rcu_read_lock_sched_held() || \
|
||||
rcu_read_lock_held() || \
|
||||
lockdep_is_held(&sched_domains_mutex))
|
||||
|
||||
/*
|
||||
@ -6572,12 +6573,11 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void free_rootdomain(struct root_domain *rd)
|
||||
static void free_rootdomain(struct rcu_head *rcu)
|
||||
{
|
||||
synchronize_sched();
|
||||
struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
|
||||
|
||||
cpupri_cleanup(&rd->cpupri);
|
||||
|
||||
free_cpumask_var(rd->rto_mask);
|
||||
free_cpumask_var(rd->online);
|
||||
free_cpumask_var(rd->span);
|
||||
@ -6618,7 +6618,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
|
||||
if (old_rd)
|
||||
free_rootdomain(old_rd);
|
||||
call_rcu_sched(&old_rd->rcu, free_rootdomain);
|
||||
}
|
||||
|
||||
static int init_rootdomain(struct root_domain *rd)
|
||||
@ -6669,6 +6669,25 @@ static struct root_domain *alloc_rootdomain(void)
|
||||
return rd;
|
||||
}
|
||||
|
||||
static void free_sched_domain(struct rcu_head *rcu)
|
||||
{
|
||||
struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
|
||||
if (atomic_dec_and_test(&sd->groups->ref))
|
||||
kfree(sd->groups);
|
||||
kfree(sd);
|
||||
}
|
||||
|
||||
static void destroy_sched_domain(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
call_rcu(&sd->rcu, free_sched_domain);
|
||||
}
|
||||
|
||||
static void destroy_sched_domains(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
for (; sd; sd = sd->parent)
|
||||
destroy_sched_domain(sd, cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
|
||||
* hold the hotplug lock.
|
||||
@ -6689,20 +6708,25 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
|
||||
tmp->parent = parent->parent;
|
||||
if (parent->parent)
|
||||
parent->parent->child = tmp;
|
||||
destroy_sched_domain(parent, cpu);
|
||||
} else
|
||||
tmp = tmp->parent;
|
||||
}
|
||||
|
||||
if (sd && sd_degenerate(sd)) {
|
||||
tmp = sd;
|
||||
sd = sd->parent;
|
||||
destroy_sched_domain(tmp, cpu);
|
||||
if (sd)
|
||||
sd->child = NULL;
|
||||
}
|
||||
|
||||
sched_domain_debug(sd, cpu);
|
||||
/* sched_domain_debug(sd, cpu); */
|
||||
|
||||
rq_attach_root(rq, rd);
|
||||
tmp = rq->sd;
|
||||
rcu_assign_pointer(rq->sd, sd);
|
||||
destroy_sched_domains(tmp, cpu);
|
||||
}
|
||||
|
||||
/* cpus with isolated domains */
|
||||
@ -6718,56 +6742,6 @@ static int __init isolated_cpu_setup(char *str)
|
||||
|
||||
__setup("isolcpus=", isolated_cpu_setup);
|
||||
|
||||
/*
|
||||
* init_sched_build_groups takes the cpumask we wish to span, and a pointer
|
||||
* to a function which identifies what group(along with sched group) a CPU
|
||||
* belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
|
||||
* (due to the fact that we keep track of groups covered with a struct cpumask).
|
||||
*
|
||||
* init_sched_build_groups will build a circular linked list of the groups
|
||||
* covered by the given span, and will set each group's ->cpumask correctly,
|
||||
* and ->cpu_power to 0.
|
||||
*/
|
||||
static void
|
||||
init_sched_build_groups(const struct cpumask *span,
|
||||
const struct cpumask *cpu_map,
|
||||
int (*group_fn)(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg,
|
||||
struct cpumask *tmpmask),
|
||||
struct cpumask *covered, struct cpumask *tmpmask)
|
||||
{
|
||||
struct sched_group *first = NULL, *last = NULL;
|
||||
int i;
|
||||
|
||||
cpumask_clear(covered);
|
||||
|
||||
for_each_cpu(i, span) {
|
||||
struct sched_group *sg;
|
||||
int group = group_fn(i, cpu_map, &sg, tmpmask);
|
||||
int j;
|
||||
|
||||
if (cpumask_test_cpu(i, covered))
|
||||
continue;
|
||||
|
||||
cpumask_clear(sched_group_cpus(sg));
|
||||
sg->cpu_power = 0;
|
||||
|
||||
for_each_cpu(j, span) {
|
||||
if (group_fn(j, cpu_map, NULL, tmpmask) != group)
|
||||
continue;
|
||||
|
||||
cpumask_set_cpu(j, covered);
|
||||
cpumask_set_cpu(j, sched_group_cpus(sg));
|
||||
}
|
||||
if (!first)
|
||||
first = sg;
|
||||
if (last)
|
||||
last->next = sg;
|
||||
last = sg;
|
||||
}
|
||||
last->next = first;
|
||||
}
|
||||
|
||||
#define SD_NODES_PER_DOMAIN 16
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
@ -6858,153 +6832,95 @@ struct static_sched_domain {
|
||||
DECLARE_BITMAP(span, CONFIG_NR_CPUS);
|
||||
};
|
||||
|
||||
struct sd_data {
|
||||
struct sched_domain **__percpu sd;
|
||||
struct sched_group **__percpu sg;
|
||||
};
|
||||
|
||||
struct s_data {
|
||||
#ifdef CONFIG_NUMA
|
||||
int sd_allnodes;
|
||||
#endif
|
||||
cpumask_var_t nodemask;
|
||||
cpumask_var_t send_covered;
|
||||
cpumask_var_t tmpmask;
|
||||
struct sched_domain ** __percpu sd;
|
||||
struct sd_data sdd[SD_LV_MAX];
|
||||
struct root_domain *rd;
|
||||
};
|
||||
|
||||
enum s_alloc {
|
||||
sa_rootdomain,
|
||||
sa_sd,
|
||||
sa_tmpmask,
|
||||
sa_sd_storage,
|
||||
sa_send_covered,
|
||||
sa_nodemask,
|
||||
sa_none,
|
||||
};
|
||||
|
||||
/*
|
||||
* SMT sched-domains:
|
||||
* Assumes the sched_domain tree is fully constructed
|
||||
*/
|
||||
#ifdef CONFIG_SCHED_SMT
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
|
||||
|
||||
static int
|
||||
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg, struct cpumask *unused)
|
||||
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
|
||||
{
|
||||
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
|
||||
struct sched_domain *child = sd->child;
|
||||
|
||||
if (child)
|
||||
cpu = cpumask_first(sched_domain_span(child));
|
||||
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_groups, cpu).sg;
|
||||
*sg = *per_cpu_ptr(sdd->sg, cpu);
|
||||
|
||||
return cpu;
|
||||
}
|
||||
#endif /* CONFIG_SCHED_SMT */
|
||||
|
||||
/*
|
||||
* multi-core sched-domains:
|
||||
* build_sched_groups takes the cpumask we wish to span, and a pointer
|
||||
* to a function which identifies what group(along with sched group) a CPU
|
||||
* belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
|
||||
* (due to the fact that we keep track of groups covered with a struct cpumask).
|
||||
*
|
||||
* build_sched_groups will build a circular linked list of the groups
|
||||
* covered by the given span, and will set each group's ->cpumask correctly,
|
||||
* and ->cpu_power to 0.
|
||||
*/
|
||||
#ifdef CONFIG_SCHED_MC
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
|
||||
|
||||
static int
|
||||
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg, struct cpumask *mask)
|
||||
static void
|
||||
build_sched_groups(struct sched_domain *sd, struct cpumask *covered)
|
||||
{
|
||||
int group;
|
||||
#ifdef CONFIG_SCHED_SMT
|
||||
cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#else
|
||||
group = cpu;
|
||||
#endif
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_group_core, group).sg;
|
||||
return group;
|
||||
struct sched_group *first = NULL, *last = NULL;
|
||||
struct sd_data *sdd = sd->private;
|
||||
const struct cpumask *span = sched_domain_span(sd);
|
||||
int i;
|
||||
|
||||
cpumask_clear(covered);
|
||||
|
||||
for_each_cpu(i, span) {
|
||||
struct sched_group *sg;
|
||||
int group = get_group(i, sdd, &sg);
|
||||
int j;
|
||||
|
||||
if (cpumask_test_cpu(i, covered))
|
||||
continue;
|
||||
|
||||
cpumask_clear(sched_group_cpus(sg));
|
||||
sg->cpu_power = 0;
|
||||
|
||||
for_each_cpu(j, span) {
|
||||
if (get_group(j, sdd, NULL) != group)
|
||||
continue;
|
||||
|
||||
cpumask_set_cpu(j, covered);
|
||||
cpumask_set_cpu(j, sched_group_cpus(sg));
|
||||
}
|
||||
|
||||
if (!first)
|
||||
first = sg;
|
||||
if (last)
|
||||
last->next = sg;
|
||||
last = sg;
|
||||
}
|
||||
last->next = first;
|
||||
}
|
||||
#endif /* CONFIG_SCHED_MC */
|
||||
|
||||
/*
|
||||
* book sched-domains:
|
||||
*/
|
||||
#ifdef CONFIG_SCHED_BOOK
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
|
||||
|
||||
static int
|
||||
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg, struct cpumask *mask)
|
||||
{
|
||||
int group = cpu;
|
||||
#ifdef CONFIG_SCHED_MC
|
||||
cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#elif defined(CONFIG_SCHED_SMT)
|
||||
cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#endif
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_group_book, group).sg;
|
||||
return group;
|
||||
}
|
||||
#endif /* CONFIG_SCHED_BOOK */
|
||||
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
|
||||
|
||||
static int
|
||||
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg, struct cpumask *mask)
|
||||
{
|
||||
int group;
|
||||
#ifdef CONFIG_SCHED_BOOK
|
||||
cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#elif defined(CONFIG_SCHED_MC)
|
||||
cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#elif defined(CONFIG_SCHED_SMT)
|
||||
cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
|
||||
group = cpumask_first(mask);
|
||||
#else
|
||||
group = cpu;
|
||||
#endif
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_group_phys, group).sg;
|
||||
return group;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_group_node);
|
||||
|
||||
static int cpu_to_node_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg,
|
||||
struct cpumask *nodemask)
|
||||
{
|
||||
int group;
|
||||
|
||||
cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
|
||||
group = cpumask_first(nodemask);
|
||||
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_group_node, group).sg;
|
||||
return group;
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
|
||||
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
|
||||
|
||||
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
|
||||
struct sched_group **sg,
|
||||
struct cpumask *nodemask)
|
||||
{
|
||||
int group;
|
||||
|
||||
cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
|
||||
group = cpumask_first(nodemask);
|
||||
|
||||
if (sg)
|
||||
*sg = &per_cpu(sched_group_allnodes, group).sg;
|
||||
return group;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_NUMA */
|
||||
|
||||
/*
|
||||
* Initialize sched groups cpu_power.
|
||||
@ -7039,15 +6955,15 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
|
||||
# define SD_INIT_NAME(sd, type) do { } while (0)
|
||||
#endif
|
||||
|
||||
#define SD_INIT(sd, type) sd_init_##type(sd)
|
||||
|
||||
#define SD_INIT_FUNC(type) \
|
||||
static noinline void sd_init_##type(struct sched_domain *sd) \
|
||||
{ \
|
||||
memset(sd, 0, sizeof(*sd)); \
|
||||
*sd = SD_##type##_INIT; \
|
||||
sd->level = SD_LV_##type; \
|
||||
SD_INIT_NAME(sd, type); \
|
||||
#define SD_INIT_FUNC(type) \
|
||||
static noinline struct sched_domain *sd_init_##type(struct s_data *d, int cpu) \
|
||||
{ \
|
||||
struct sched_domain *sd = *per_cpu_ptr(d->sdd[SD_LV_##type].sd, cpu); \
|
||||
*sd = SD_##type##_INIT; \
|
||||
sd->level = SD_LV_##type; \
|
||||
SD_INIT_NAME(sd, type); \
|
||||
sd->private = &d->sdd[SD_LV_##type]; \
|
||||
return sd; \
|
||||
}
|
||||
|
||||
SD_INIT_FUNC(CPU)
|
||||
@ -7103,13 +7019,22 @@ static void set_domain_attribute(struct sched_domain *sd,
|
||||
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
|
||||
const struct cpumask *cpu_map)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
switch (what) {
|
||||
case sa_rootdomain:
|
||||
free_rootdomain(d->rd); /* fall through */
|
||||
free_rootdomain(&d->rd->rcu); /* fall through */
|
||||
case sa_sd:
|
||||
free_percpu(d->sd); /* fall through */
|
||||
case sa_tmpmask:
|
||||
free_cpumask_var(d->tmpmask); /* fall through */
|
||||
case sa_sd_storage:
|
||||
for (i = 0; i < SD_LV_MAX; i++) {
|
||||
for_each_cpu(j, cpu_map) {
|
||||
kfree(*per_cpu_ptr(d->sdd[i].sd, j));
|
||||
kfree(*per_cpu_ptr(d->sdd[i].sg, j));
|
||||
}
|
||||
free_percpu(d->sdd[i].sd);
|
||||
free_percpu(d->sdd[i].sg);
|
||||
} /* fall through */
|
||||
case sa_send_covered:
|
||||
free_cpumask_var(d->send_covered); /* fall through */
|
||||
case sa_nodemask:
|
||||
@ -7122,25 +7047,70 @@ static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
|
||||
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
|
||||
const struct cpumask *cpu_map)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
memset(d, 0, sizeof(*d));
|
||||
|
||||
if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
|
||||
return sa_none;
|
||||
if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
|
||||
return sa_nodemask;
|
||||
if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
|
||||
return sa_send_covered;
|
||||
for (i = 0; i < SD_LV_MAX; i++) {
|
||||
d->sdd[i].sd = alloc_percpu(struct sched_domain *);
|
||||
if (!d->sdd[i].sd)
|
||||
return sa_sd_storage;
|
||||
|
||||
d->sdd[i].sg = alloc_percpu(struct sched_group *);
|
||||
if (!d->sdd[i].sg)
|
||||
return sa_sd_storage;
|
||||
|
||||
for_each_cpu(j, cpu_map) {
|
||||
struct sched_domain *sd;
|
||||
struct sched_group *sg;
|
||||
|
||||
sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
|
||||
GFP_KERNEL, cpu_to_node(j));
|
||||
if (!sd)
|
||||
return sa_sd_storage;
|
||||
|
||||
*per_cpu_ptr(d->sdd[i].sd, j) = sd;
|
||||
|
||||
sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
||||
GFP_KERNEL, cpu_to_node(j));
|
||||
if (!sg)
|
||||
return sa_sd_storage;
|
||||
|
||||
*per_cpu_ptr(d->sdd[i].sg, j) = sg;
|
||||
}
|
||||
}
|
||||
d->sd = alloc_percpu(struct sched_domain *);
|
||||
if (!d->sd) {
|
||||
printk(KERN_WARNING "Cannot alloc per-cpu pointers\n");
|
||||
return sa_tmpmask;
|
||||
}
|
||||
if (!d->sd)
|
||||
return sa_sd_storage;
|
||||
d->rd = alloc_rootdomain();
|
||||
if (!d->rd) {
|
||||
printk(KERN_WARNING "Cannot alloc root domain\n");
|
||||
if (!d->rd)
|
||||
return sa_sd;
|
||||
}
|
||||
return sa_rootdomain;
|
||||
}
|
||||
|
||||
/*
|
||||
* NULL the sd_data elements we've used to build the sched_domain and
|
||||
* sched_group structure so that the subsequent __free_domain_allocs()
|
||||
* will not free the data we're using.
|
||||
*/
|
||||
static void claim_allocations(int cpu, struct sched_domain *sd)
|
||||
{
|
||||
struct sd_data *sdd = sd->private;
|
||||
struct sched_group *sg = sd->groups;
|
||||
|
||||
WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
|
||||
*per_cpu_ptr(sdd->sd, cpu) = NULL;
|
||||
|
||||
if (cpu == cpumask_first(sched_group_cpus(sg))) {
|
||||
WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
|
||||
*per_cpu_ptr(sdd->sg, cpu) = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
|
||||
const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
|
||||
{
|
||||
@ -7151,24 +7121,20 @@ static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
|
||||
d->sd_allnodes = 0;
|
||||
if (cpumask_weight(cpu_map) >
|
||||
SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
|
||||
sd = &per_cpu(allnodes_domains, i).sd;
|
||||
SD_INIT(sd, ALLNODES);
|
||||
sd = sd_init_ALLNODES(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
cpumask_copy(sched_domain_span(sd), cpu_map);
|
||||
cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
d->sd_allnodes = 1;
|
||||
}
|
||||
parent = sd;
|
||||
|
||||
sd = &per_cpu(node_domains, i).sd;
|
||||
SD_INIT(sd, NODE);
|
||||
sd = sd_init_NODE(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
|
||||
sd->parent = parent;
|
||||
if (parent)
|
||||
parent->child = sd;
|
||||
cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
|
||||
cpu_to_node_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
#endif
|
||||
return sd;
|
||||
}
|
||||
@ -7178,14 +7144,12 @@ static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
|
||||
struct sched_domain *parent, int i)
|
||||
{
|
||||
struct sched_domain *sd;
|
||||
sd = &per_cpu(phys_domains, i).sd;
|
||||
SD_INIT(sd, CPU);
|
||||
sd = sd_init_CPU(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
cpumask_copy(sched_domain_span(sd), d->nodemask);
|
||||
sd->parent = parent;
|
||||
if (parent)
|
||||
parent->child = sd;
|
||||
cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
return sd;
|
||||
}
|
||||
|
||||
@ -7195,13 +7159,11 @@ static struct sched_domain *__build_book_sched_domain(struct s_data *d,
|
||||
{
|
||||
struct sched_domain *sd = parent;
|
||||
#ifdef CONFIG_SCHED_BOOK
|
||||
sd = &per_cpu(book_domains, i).sd;
|
||||
SD_INIT(sd, BOOK);
|
||||
sd = sd_init_BOOK(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
|
||||
sd->parent = parent;
|
||||
parent->child = sd;
|
||||
cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
#endif
|
||||
return sd;
|
||||
}
|
||||
@ -7212,13 +7174,11 @@ static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
|
||||
{
|
||||
struct sched_domain *sd = parent;
|
||||
#ifdef CONFIG_SCHED_MC
|
||||
sd = &per_cpu(core_domains, i).sd;
|
||||
SD_INIT(sd, MC);
|
||||
sd = sd_init_MC(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
|
||||
sd->parent = parent;
|
||||
parent->child = sd;
|
||||
cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
#endif
|
||||
return sd;
|
||||
}
|
||||
@ -7229,92 +7189,32 @@ static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
|
||||
{
|
||||
struct sched_domain *sd = parent;
|
||||
#ifdef CONFIG_SCHED_SMT
|
||||
sd = &per_cpu(cpu_domains, i).sd;
|
||||
SD_INIT(sd, SIBLING);
|
||||
sd = sd_init_SIBLING(d, i);
|
||||
set_domain_attribute(sd, attr);
|
||||
cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
|
||||
sd->parent = parent;
|
||||
parent->child = sd;
|
||||
cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
|
||||
#endif
|
||||
return sd;
|
||||
}
|
||||
|
||||
static void build_sched_groups(struct s_data *d, struct sched_domain *sd,
|
||||
const struct cpumask *cpu_map, int cpu)
|
||||
{
|
||||
switch (sd->level) {
|
||||
#ifdef CONFIG_SCHED_SMT
|
||||
case SD_LV_SIBLING: /* set up CPU (sibling) groups */
|
||||
if (cpu == cpumask_first(sched_domain_span(sd)))
|
||||
init_sched_build_groups(sched_domain_span(sd), cpu_map,
|
||||
&cpu_to_cpu_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
break;
|
||||
#endif
|
||||
#ifdef CONFIG_SCHED_MC
|
||||
case SD_LV_MC: /* set up multi-core groups */
|
||||
if (cpu == cpumask_first(sched_domain_span(sd)))
|
||||
init_sched_build_groups(sched_domain_span(sd), cpu_map,
|
||||
&cpu_to_core_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
break;
|
||||
#endif
|
||||
#ifdef CONFIG_SCHED_BOOK
|
||||
case SD_LV_BOOK: /* set up book groups */
|
||||
if (cpu == cpumask_first(sched_domain_span(sd)))
|
||||
init_sched_build_groups(sched_domain_span(sd), cpu_map,
|
||||
&cpu_to_book_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
break;
|
||||
#endif
|
||||
case SD_LV_CPU: /* set up physical groups */
|
||||
if (cpu == cpumask_first(sched_domain_span(sd)))
|
||||
init_sched_build_groups(sched_domain_span(sd), cpu_map,
|
||||
&cpu_to_phys_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
break;
|
||||
#ifdef CONFIG_NUMA
|
||||
case SD_LV_NODE:
|
||||
if (cpu == cpumask_first(sched_domain_span(sd)))
|
||||
init_sched_build_groups(sched_domain_span(sd), cpu_map,
|
||||
&cpu_to_node_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
|
||||
case SD_LV_ALLNODES:
|
||||
if (cpu == cpumask_first(cpu_map))
|
||||
init_sched_build_groups(cpu_map, cpu_map,
|
||||
&cpu_to_allnodes_group,
|
||||
d->send_covered, d->tmpmask);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Build sched domains for a given set of cpus and attach the sched domains
|
||||
* to the individual cpus
|
||||
*/
|
||||
static int __build_sched_domains(const struct cpumask *cpu_map,
|
||||
struct sched_domain_attr *attr)
|
||||
static int build_sched_domains(const struct cpumask *cpu_map,
|
||||
struct sched_domain_attr *attr)
|
||||
{
|
||||
enum s_alloc alloc_state = sa_none;
|
||||
struct sched_domain *sd;
|
||||
struct s_data d;
|
||||
struct sched_domain *sd, *tmp;
|
||||
int i;
|
||||
#ifdef CONFIG_NUMA
|
||||
d.sd_allnodes = 0;
|
||||
#endif
|
||||
|
||||
alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
|
||||
if (alloc_state != sa_rootdomain)
|
||||
goto error;
|
||||
|
||||
/*
|
||||
* Set up domains for cpus specified by the cpu_map.
|
||||
*/
|
||||
/* Set up domains for cpus specified by the cpu_map. */
|
||||
for_each_cpu(i, cpu_map) {
|
||||
cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
|
||||
cpu_map);
|
||||
@ -7326,10 +7226,19 @@ static int __build_sched_domains(const struct cpumask *cpu_map,
|
||||
sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
|
||||
|
||||
*per_cpu_ptr(d.sd, i) = sd;
|
||||
}
|
||||
|
||||
for (tmp = sd; tmp; tmp = tmp->parent) {
|
||||
tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
|
||||
build_sched_groups(&d, tmp, cpu_map, i);
|
||||
/* Build the groups for the domains */
|
||||
for_each_cpu(i, cpu_map) {
|
||||
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
|
||||
sd->span_weight = cpumask_weight(sched_domain_span(sd));
|
||||
get_group(i, sd->private, &sd->groups);
|
||||
atomic_inc(&sd->groups->ref);
|
||||
|
||||
if (i != cpumask_first(sched_domain_span(sd)))
|
||||
continue;
|
||||
|
||||
build_sched_groups(sd, d.send_covered);
|
||||
}
|
||||
}
|
||||
|
||||
@ -7338,18 +7247,21 @@ static int __build_sched_domains(const struct cpumask *cpu_map,
|
||||
if (!cpumask_test_cpu(i, cpu_map))
|
||||
continue;
|
||||
|
||||
sd = *per_cpu_ptr(d.sd, i);
|
||||
for (; sd; sd = sd->parent)
|
||||
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
|
||||
claim_allocations(i, sd);
|
||||
init_sched_groups_power(i, sd);
|
||||
}
|
||||
}
|
||||
|
||||
/* Attach the domains */
|
||||
rcu_read_lock();
|
||||
for_each_cpu(i, cpu_map) {
|
||||
sd = *per_cpu_ptr(d.sd, i);
|
||||
cpu_attach_domain(sd, d.rd, i);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
__free_domain_allocs(&d, sa_tmpmask, cpu_map);
|
||||
__free_domain_allocs(&d, sa_sd, cpu_map);
|
||||
return 0;
|
||||
|
||||
error:
|
||||
@ -7357,11 +7269,6 @@ error:
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int build_sched_domains(const struct cpumask *cpu_map)
|
||||
{
|
||||
return __build_sched_domains(cpu_map, NULL);
|
||||
}
|
||||
|
||||
static cpumask_var_t *doms_cur; /* current sched domains */
|
||||
static int ndoms_cur; /* number of sched domains in 'doms_cur' */
|
||||
static struct sched_domain_attr *dattr_cur;
|
||||
@ -7425,31 +7332,24 @@ static int init_sched_domains(const struct cpumask *cpu_map)
|
||||
doms_cur = &fallback_doms;
|
||||
cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
|
||||
dattr_cur = NULL;
|
||||
err = build_sched_domains(doms_cur[0]);
|
||||
err = build_sched_domains(doms_cur[0], NULL);
|
||||
register_sched_domain_sysctl();
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void destroy_sched_domains(const struct cpumask *cpu_map,
|
||||
struct cpumask *tmpmask)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Detach sched domains from a group of cpus specified in cpu_map
|
||||
* These cpus will now be attached to the NULL domain
|
||||
*/
|
||||
static void detach_destroy_domains(const struct cpumask *cpu_map)
|
||||
{
|
||||
/* Save because hotplug lock held. */
|
||||
static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
|
||||
int i;
|
||||
|
||||
rcu_read_lock();
|
||||
for_each_cpu(i, cpu_map)
|
||||
cpu_attach_domain(NULL, &def_root_domain, i);
|
||||
synchronize_sched();
|
||||
destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/* handle null as "default" */
|
||||
@ -7538,8 +7438,7 @@ match1:
|
||||
goto match2;
|
||||
}
|
||||
/* no match - add a new doms_new */
|
||||
__build_sched_domains(doms_new[i],
|
||||
dattr_new ? dattr_new + i : NULL);
|
||||
build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
|
||||
match2:
|
||||
;
|
||||
}
|
||||
|
@ -1622,6 +1622,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
|
||||
/*
|
||||
* Otherwise, iterate the domains and find an elegible idle cpu.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
for_each_domain(target, sd) {
|
||||
if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
|
||||
break;
|
||||
@ -1641,6 +1642,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
|
||||
cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
|
||||
break;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
return target;
|
||||
}
|
||||
@ -1673,6 +1675,7 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
|
||||
new_cpu = prev_cpu;
|
||||
}
|
||||
|
||||
rcu_read_lock();
|
||||
for_each_domain(cpu, tmp) {
|
||||
if (!(tmp->flags & SD_LOAD_BALANCE))
|
||||
continue;
|
||||
@ -1723,9 +1726,10 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
|
||||
|
||||
if (affine_sd) {
|
||||
if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
|
||||
return select_idle_sibling(p, cpu);
|
||||
else
|
||||
return select_idle_sibling(p, prev_cpu);
|
||||
prev_cpu = cpu;
|
||||
|
||||
new_cpu = select_idle_sibling(p, prev_cpu);
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
while (sd) {
|
||||
@ -1766,6 +1770,8 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
|
||||
}
|
||||
/* while loop will break here if sd == NULL */
|
||||
}
|
||||
unlock:
|
||||
rcu_read_unlock();
|
||||
|
||||
return new_cpu;
|
||||
}
|
||||
@ -3462,6 +3468,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
|
||||
raw_spin_unlock(&this_rq->lock);
|
||||
|
||||
update_shares(this_cpu);
|
||||
rcu_read_lock();
|
||||
for_each_domain(this_cpu, sd) {
|
||||
unsigned long interval;
|
||||
int balance = 1;
|
||||
@ -3483,6 +3490,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
|
||||
break;
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
raw_spin_lock(&this_rq->lock);
|
||||
|
||||
@ -3531,6 +3539,7 @@ static int active_load_balance_cpu_stop(void *data)
|
||||
double_lock_balance(busiest_rq, target_rq);
|
||||
|
||||
/* Search for an sd spanning us and the target CPU. */
|
||||
rcu_read_lock();
|
||||
for_each_domain(target_cpu, sd) {
|
||||
if ((sd->flags & SD_LOAD_BALANCE) &&
|
||||
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
|
||||
@ -3546,6 +3555,7 @@ static int active_load_balance_cpu_stop(void *data)
|
||||
else
|
||||
schedstat_inc(sd, alb_failed);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
double_unlock_balance(busiest_rq, target_rq);
|
||||
out_unlock:
|
||||
busiest_rq->active_balance = 0;
|
||||
@ -3672,6 +3682,7 @@ static int find_new_ilb(int cpu)
|
||||
{
|
||||
struct sched_domain *sd;
|
||||
struct sched_group *ilb_group;
|
||||
int ilb = nr_cpu_ids;
|
||||
|
||||
/*
|
||||
* Have idle load balancer selection from semi-idle packages only
|
||||
@ -3687,20 +3698,25 @@ static int find_new_ilb(int cpu)
|
||||
if (cpumask_weight(nohz.idle_cpus_mask) < 2)
|
||||
goto out_done;
|
||||
|
||||
rcu_read_lock();
|
||||
for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
|
||||
ilb_group = sd->groups;
|
||||
|
||||
do {
|
||||
if (is_semi_idle_group(ilb_group))
|
||||
return cpumask_first(nohz.grp_idle_mask);
|
||||
if (is_semi_idle_group(ilb_group)) {
|
||||
ilb = cpumask_first(nohz.grp_idle_mask);
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
ilb_group = ilb_group->next;
|
||||
|
||||
} while (ilb_group != sd->groups);
|
||||
}
|
||||
unlock:
|
||||
rcu_read_unlock();
|
||||
|
||||
out_done:
|
||||
return nr_cpu_ids;
|
||||
return ilb;
|
||||
}
|
||||
#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
|
||||
static inline int find_new_ilb(int call_cpu)
|
||||
@ -3845,6 +3861,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
|
||||
|
||||
update_shares(cpu);
|
||||
|
||||
rcu_read_lock();
|
||||
for_each_domain(cpu, sd) {
|
||||
if (!(sd->flags & SD_LOAD_BALANCE))
|
||||
continue;
|
||||
@ -3890,6 +3907,7 @@ out:
|
||||
if (!balance)
|
||||
break;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
/*
|
||||
* next_balance will be updated only when there is a need.
|
||||
|
Loading…
x
Reference in New Issue
Block a user