KEY_TYPE_discard used to be used for extent whiteouts, but when handling
over overlapping extents was lifted above the core btree code it became
unused. This patch updates various code to reflect that.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
bcachefs has been aggressively migrating filesystems and btree nodes to
the new format for quite some time - this shouldn't affect anyone
anymore, and lets us delete a _lot_ of code. Also, it frees up
KEY_TYPE_discard for a new whiteout key type for snapshots.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This adds a new data job type to scan for btree nodes in the old extent
format, and rewrite them.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Also, make journal writes obey foreground_target and metadata_target.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This is so that when we discover btree topology issues, we can just
update the pointer to a btree node and signal btree read path that the
min/max keys in the node header should be updated from the node pointer.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
A btree node merge operation deletes a key in the parent node; if when
inserting into the parent node we split the parent node, we can end up
with a whiteout in the parent node that we don't want.
The existing code drops them before doing the split, because they can
screw up picking the pivot, but we forgot about the unwritten writeouts
area - that needs to be cleared out too.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This reverts part of the change from "bcachefs: Don't use
BTREE_INSERT_USE_RESERVE so much" - it turns out we still should be
reserving open buckets for btree node allocations, because otherwise
data bucket allocations (especially with erasure coding enabled) can use
up all our open buckets and we won't be able to do the metadata update
that lets us release those open bucket references. Oops.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
With various newer key types - stripe keys, inline data extents - the
old approach of calculating the maximum size of the value is becoming
more and more error prone. Better to switch to bkey_on_stack, which can
dynamically allocate if necessary to handle any size bkey.
In particular we also want to get rid of BKEY_EXTENT_VAL_U64s_MAX.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Previously, we were using BTREE_INSERT_RESERVE in a lot of places where
it no longer makes sense.
- we now have more open_buckets than we used to, and the reserves work
better, so we shouldn't need to use BTREE_INSERT_RESERVE just because
we're holding open_buckets pinned anymore.
- We have the btree key cache for updates to the alloc btree, meaning
we no longer need the btree reserve to ensure the allocator can make
forward progress.
This means that we should only need a reserve for btree updates to
ensure that copygc can make forward progress.
Since it's now just for copygc, we can also fold RESERVE_BTREE into
RESERVE_MOVINGGC (the allocator's freelist reserve).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This is needed to fix a bug where we're overflowing iterators within a
btree transaction, because we're updating the stripes btree (to update
block counts) and the stripes btree trigger is unnecessarily updating
the alloc btree - it doesn't need to update the alloc btree when the
pointers within a stripe aren't changing.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
If we have an error in the btree interior update path that prevents us
from journalling the update, we can't issue the corresponding btree node
write - we didn't get a journal sequence number that would cause it to
be ignored in recovery.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
For the new nodes an interior btree update makes reachable, updates to
those nodes may be journalled after the btree update starts but before
the transactional part - where we make those nodes reachable. Those
updates need to be kept in the journal until after the btree update
completes, hence we should always get a journal pin at the start of the
interior update.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The interior btree node update path has changed, this is no longer
needed.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
tracking down a bug where we see a btree node pointer in the wrong node
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
this will reduce transaction restarts, from observation of tracepoints.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This lets us improve journal reclaim, so that it now tries to make sure
no more than 3/4s of the btree node cache and btree key cache are dirty
- ensuring the shrinkers can free memory.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This only did anything in two places, and those can just be replaced
wiht bkey_cmp_left_packed()).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
printbufs know how big the buffer is that was allocated, so we can get
rid of the random PAGE_SIZEs all over the place.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We were missing a 'goto retry' and continuing on with an error pointer.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Now that updates to interior nodes are journalled, we shouldn't be
checking topology of interior nodes until we've finished replaying
updates to that node.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This fixes a bug where recovery fails when one of the devices is read
only.
Also - consolidate the "must rewrite this node to insert it" behind a
new btree node flag.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Whenever we're doing an update that has pointers, that generally means
we need to do the update in order to release open bucket references - so
we should be using the btree open bucket reserve.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This introduces a new kind of btree iterator, cached iterators, which
point to keys cached in a hash table. The cache also acts as a write
cache - in the update path, we journal the update but defer updating the
btree until the cached entry is flushed by journal reclaim.
Cache coherency is for now up to the users to handle, which isn't ideal
but should be good enough for now.
These new iterators will be used for updating inodes and alloc info (the
alloc and stripes btrees).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Btree node lock ordering is based on the logical key. However, 'struct
btree' may be reused for a different btree node under memory pressure.
This patch uses the new six lock callback to check if a btree node is no
longer the node we wanted to lock before blocking.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This is better than skipping the journal pre-reservation if we already
have one - we should still acount for the journal reservation we're
going to have to get.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Also, in the btree_update_start() path, if we already have a journal
pre-reservation we don't want to take another - that's a deadlock.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We now update the alloc info (bucket sector counts) atomically with
journalling the update to the interior btree nodes, and we also set new
btree roots atomically with the journalled part of the btree update.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Deadlock on shutdown:
btree_update_nodes_written() unblocks btree nodes from being written;
after doing so, it has to check if they were marked as needing to be
written and if so kick off those writes - if that doesn't happen, we'll
never release journal pins and shutdown will get stuck when flushing the
journal.
There was an error path where this didn't happen, because in the error
path we don't actually want those btree nodes write to happen; however,
we still have to kick off the write path so the journal pins get
released. The btree write path checks if we're in a journal error state
and doesn't do the actual write if we are.
Also - there was another deadlock because btree_update_nodes_written()
was taking the btree update off of the unwritten_list too soon - before
getting a journal reservation, which could fail and have to be retried.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We also can't be blocking on btree node write locks while holding
btree_interior_update_lock.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Transaction restart tracing should probably be overhaulled at some
point.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Can't take read locks on btree nodes while holding
btree_interior_update_lock. Also, fix a bug where we were leaking
journal prereservations.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Not legal to block on a journal prereservation with btree locks held.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
btree_update_nodes_written() was leaking a btree node lock on failure to
get a journal reservation.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This fixes a lockdep splat - allocating memory can call
bch2_clear_page_bits() which takes mark_lock.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Previously, BTREE_ID_INODES was special - inodes were indexed by the
inode field, which meant the offset field of struct bpos wasn't used,
which led to special cases in e.g. the btree iterator code.
Now, inodes in the inodes btree are indexed by the offset field.
Also: prevously min_key was special for extents btrees, min_key for
extents would equal max_key for the previous node. Now, min_key =
bkey_successor() of the previous node, same as non extent btrees.
This means we can completely get rid of
btree_type_sucessor/predecessor.
Also make some improvements to the metadata IO validate/compat code.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The locking was wrong, and we could get a use after free in the error
path where we weren't taking the entrie being freed off the unwritten
list.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Previously, the btree has always been self contained and internally
consistent on disk without anything from the journal - the journal just
contained pointers to the btree roots.
However, this meant that btree node split or compact operations - i.e.
anything that changes btree node topology and involves updates to
interior nodes - would require that interior btree node to be written
immediately, which means emitting a btree node write that's mostly empty
(using 4k of space on disk if the filesystemm blocksize is 4k to only
write perhaps ~100 bytes of new keys).
More importantly, this meant most btree node writes had to be FUA, and
consumer drives have a history of slow and/or buggy FUA support - other
filesystes have been bit by this.
This patch changes the interior btree update path to journal updates to
interior nodes, after the writes for the new btree nodes have completed.
Best of all, it turns out to simplify the interior node update path
somewhat.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
More aggressively checking iterator invariants, and fixing the resulting
bugs. Also greatly simplifying iter_next() and iter_next_slot() - they
were hyper optimized before, but the optimizations were getting too
brittle.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>