Nothing calls unregister_ftrace_function_probe(). Remove it as well as the
flag PROBE_TEST_DATA, as this function was the only one to set it.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As the data pointer for individual ips will soon be removed and no longer
passed to the callback function probe handlers, convert the rest of the function
trigger counters over to the new ftrace_func_mapper helper functions.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As the data pointer for individual ips will soon be removed and no longer
passed to the callback function probe handlers, convert the snapshot
trigger counter over to the new ftrace_func_mapper helper functions.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In order to move the ops to the function probes directly, they need a way to
map function ips to their own data without depending on the infrastructure
of the function probes, as the data field will be going away.
New helper functions are added that are based on the ftrace_hash code.
ftrace_func_mapper functions are there to let the probes map ips to their
data. These can be allocated by the probe ops, and referenced in the
function callbacks.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In preparation to cleaning up the probe function registration code, the
"data" parameter will eventually be removed from the probe->func() call.
Instead it will receive its own "ops" function, in which it can set up its
own data that it needs to map.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As nothing outside the tracing directory uses the function command mechanism,
I'm moving the prototypes out of the include/linux/ftrace.h and into the
local kernel/trace/trace.h header. I plan on making them hook to the
trace_array structure which is local to kernel/trace, and I do not want to
expose it to the rest of the kernel. This requires that the command functions
must also be local to tracing. But luckily nothing else uses them.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As nothing outside the tracing directory uses the function probes mechanism,
I'm moving the prototypes out of the include/linux/ftrace.h and into the
local kernel/trace/trace.h header. I plan on making them hook to the
trace_array structure which is local to kernel/trace, and I do not want to
expose it to the rest of the kernel. This requires that the probe functions
must also be local to tracing. But luckily nothing else uses them.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The set_ftrace_file lists both functions that are filtered, as well as
function probes (triggers) that are attached to a function, like traceon or
stacktrace, etc. The reading of this file is not as trivial as most pseudo
files are, and there's been various bugs that have appeared in the past
when there's a mix of probes and functions listed. There's also a difference
when reading the file using dd with a block size of 1.
This test performs the following:
o Resets set_ftrace_filter
o Makes sure only "#### all functions enabled ####" is listed
(All checks uses cat, and dd with bs=1 and bs=100)
o Adds a traceon trigger to schedule
o Checks if only "#### all function enabled ####" and the trigger is there.
o Adds tracing of schedule
o Checks if only schedule and the trigger is there
o Adds tracing of do_IRQ as well
o Checks if only schedule, do_IRQ and the trigger is there
o Adds a traceon trigger to do_IRQ
o Checks if only schedule, do_IRQ and both triggers are there
o Removes tracing of do_IRQ
o Checks if only schedule and both triggers are there
o Removes tracing of schedule
o Checks if only "#### all functions enabled ####" and both triggers are there
o Removes the triggers
o Checks if only "#### all functions enabled ####" is there
o Adds tracing of schedule
o Checks if only schedule is there
o Adds tracing of do_IRQ
o Checks if only schedule and do_IRQ are there
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This adds a test to test the function tiggers traceon and traceoff to make
sure that it starts and stops tracing when a function is hit.
The test performs the following:
o Enables all events
o Writes schedule:traceoff into set_ftrace_filter
o Makes sure the tigger exists in the file
o Makes sure the trace file no longer grows
o Makes sure that tracing_on is now zero
o Clears the trace file
o Makes sure it's still empty
o Removes the trigger
o Makes sure tracing is still off (tracing_on is zero)
o Writes schedule:traceon into set_ftrace_filter
o Makes sure the trace file is no longer empty
o Makes sure that tracing_on file is set to one
o Removes the trigger
o Makes sure the trigger is no longer there
o Writes schedule:traceoff:3 into set_ftrace_filter
o Makes sure that tracing_on turns off
. Writes 1 into tracing_on
. Makes sure that it turns off 2 more times
o Writes 1 into tracing_on
o Makes sure that tracing_on is still a one
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This adds a test to enable and disable trace events via the function
triggers. It tests enabling and disabling the sched:sched_switch event via
the the event_enable and event_disable function triggers attached to the
schedule() kernel function.
The test does the following:
o disable all events
o disables or enables the sched_switch event
o writes schedule:event_enable/disable:sched:sched_switch into set_ftrace_filter
o 5 times it checks to make sure:
. Writes 0/1 into the sched_switch/enable
. Checks that the sched_switch/enable goes back to 1/0
o Resets the events
o writes schedule:event_enable/disable:sched:sched_switch:3 into set_ftrace_filter
o Does a loop of 3 to see that sched_switch/enable file gets updated
o Makes sure the sched_switch/enable stops getting updated
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Just writing into the set_ftrace_filter file does not reset triggers, even
though it can reset the function list. Triggers require writing the trigger
name with a "!" prepended. It's worse that it requires the number if the
trigger has a count associated to it.
Add a reset_ftrace_filter function to the ftrace self tests to allow for the
tests to have a generic way to clear them. It also resets any functions that
are listed in that file as well.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In my virtual machine setup, running ftracetest failed on creating
LOG_DIR on a read-only filesystem. It'd be convenient to provide an
option to specify a different directory as log directory.
Link: http://lkml.kernel.org/r/20170417024430.21194-4-namhyung@kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The function-fork option is same as event-fork that it tracks task
fork/exit and set the pid filter properly. This can be useful if user
wants to trace selected tasks including their children only.
Link: http://lkml.kernel.org/r/20170417024430.21194-3-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The trace_event benchmark thread runs in kernel space in an infinite loop
while also calling cond_resched() in case anything else wants to schedule
in. Unfortunately, on a PREEMPT kernel, that makes it a nop, in which case,
this will never voluntarily schedule. That will cause synchronize_rcu_tasks()
to forever block on this thread, while it is running.
This is exactly what cond_resched_rcu_qs() is for. Use that instead.
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
t_hash_start() does not increment *pos, where as t_next() must. But when
t_next() does increment *pos, it must still pass in the original *pos to
t_hash_start() otherwise it will skip the first instance:
# cd /sys/kernel/debug/tracing
# echo schedule:traceoff > set_ftrace_filter
# echo do_IRQ:traceoff > set_ftrace_filter
# echo call_rcu > set_ftrace_filter
# cat set_ftrace_filter
call_rcu
schedule:traceoff:unlimited
do_IRQ:traceoff:unlimited
The above called t_hash_start() from t_start() as there was only one
function (call_rcu), but if we add another function:
# echo xfrm_policy_destroy_rcu >> set_ftrace_filter
# cat set_ftrace_filter
call_rcu
xfrm_policy_destroy_rcu
do_IRQ:traceoff:unlimited
The "schedule:traceoff" disappears.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Stack tracing discovered that there's a small location inside the RCU
infrastructure where calling rcu_irq_enter() does not work. As trace events
use rcu_irq_enter() it must make sure that it is functionable. A check
against rcu_irq_enter_disabled() is added with a WARN_ON_ONCE() as no trace
event should ever be used in that part of RCU. If the warning is triggered,
then the trace event is ignored.
Restructure the __DO_TRACE() a bit to get rid of the prercu and postrcu,
and just have an rcucheck that does the work from within the _DO_TRACE()
macro. gcc optimization will compile out the rcucheck=0 case.
Link: http://lkml.kernel.org/r/20170405093207.404f8deb@gandalf.local.home
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tracing uses rcu_irq_enter() as a way to make sure that RCU is watching when
it needs to use rcu_read_lock() and friends. This is because tracing can
happen as RCU is about to enter user space, or about to go idle, and RCU
does not watch for RCU read side critical sections as it makes the
transition.
There is a small location within the RCU infrastructure that rcu_irq_enter()
itself will not work. If tracing were to occur in that section it will break
if it tries to use rcu_irq_enter().
Originally, this happens with the stack_tracer, because it will call
save_stack_trace when it encounters stack usage that is greater than any
stack usage it had encountered previously. There was a case where that
happened in the RCU section where rcu_irq_enter() did not work, and lockdep
complained loudly about it. To fix it, stack tracing added a call to be
disabled and RCU would disable stack tracing during the critical section
that rcu_irq_enter() was inoperable. This solution worked, but there are
other cases that use rcu_irq_enter() and it would be a good idea to let RCU
give a way to let others know that rcu_irq_enter() will not work. For
example, in trace events.
Another helpful aspect of this change is that it also moves the per cpu
variable called in the RCU critical section into a cache locale along with
other RCU per cpu variables used in that same location.
I'm keeping the stack_trace_disable() code, as that still could be used in
the future by places that really need to disable it. And since it's only a
static inline, it wont take up any kernel text if it is not used.
Link: http://lkml.kernel.org/r/20170405093207.404f8deb@gandalf.local.home
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The tracing subsystem started using rcu_irq_entry() and rcu_irq_exit()
(with my blessing) to allow the current _rcuidle alternative tracepoint
name to be dispensed with while still maintaining good performance.
Unfortunately, this causes RCU's dyntick-idle entry code's tracing to
appear to RCU like an interrupt that occurs where RCU is not designed
to handle interrupts.
This commit fixes this problem by moving the zeroing of ->dynticks_nesting
after the offending trace_rcu_dyntick() statement, which narrows the
window of vulnerability to a pair of adjacent statements that are now
marked with comments to that effect.
Link: http://lkml.kernel.org/r/20170405093207.404f8deb@gandalf.local.home
Link: http://lkml.kernel.org/r/20170405193928.GM1600@linux.vnet.ibm.com
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In order to eliminate a function call, make "trace_active" into
"disable_stack_tracer" and convert stack_tracer_disable() and friends into
static inline functions.
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
There are certain parts of the kernel that cannot let stack tracing
proceed (namely in RCU), because the stack tracer uses RCU, and parts of RCU
internals cannot handle having RCU read side locks taken.
Add stack_tracer_disable() and stack_tracer_enable() functions to let RCU
stop stack tracing on the current CPU when it is in those critical sections.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The updates to the trace_active per cpu variable can be updated with the
__this_cpu_*() functions as it only gets updated on the CPU that the variable
is on.
Thanks to Paul McKenney for suggesting __this_cpu_* instead of this_cpu_*.
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The function tracer needs to be more careful than other subsystems when it
comes to freeing data. Especially if that data is actually executable code.
When a single function is traced, a trampoline can be dynamically allocated
which is called to jump to the function trace callback. When the callback is
no longer needed, the dynamic allocated trampoline needs to be freed. This
is where the issues arise. The dynamically allocated trampoline must not be
used again. As function tracing can trace all subsystems, including
subsystems that are used to serialize aspects of freeing (namely RCU), it
must take extra care when doing the freeing.
Before synchronize_rcu_tasks() was around, there was no way for the function
tracer to know that nothing was using the dynamically allocated trampoline
when CONFIG_PREEMPT was enabled. That's because a task could be indefinitely
preempted while sitting on the trampoline. Now with synchronize_rcu_tasks(),
it will wait till all tasks have either voluntarily scheduled (not on the
trampoline) or goes into userspace (not on the trampoline). Then it is safe
to free the trampoline even with CONFIG_PREEMPT set.
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When a kretprobe is installed on a kernel function, there is a maximum
limit of how many calls in parallel it can catch (aka "maxactive"). A
kernel module could call register_kretprobe() and initialize maxactive
(see example in samples/kprobes/kretprobe_example.c).
But that is not exposed to userspace and it is currently not possible to
choose maxactive when writing to /sys/kernel/debug/tracing/kprobe_events
The default maxactive can be as low as 1 on single-core with a
non-preemptive kernel. This is too low and we need to increase it not
only for recursive functions, but for functions that sleep or resched.
This patch updates the format of the command that can be written to
kprobe_events so that maxactive can be optionally specified.
I need this for a bpf program attached to the kretprobe of
inet_csk_accept, which can sleep for a long time.
This patch includes a basic selftest:
> # ./ftracetest -v test.d/kprobe/
> === Ftrace unit tests ===
> [1] Kprobe dynamic event - adding and removing [PASS]
> [2] Kprobe dynamic event - busy event check [PASS]
> [3] Kprobe dynamic event with arguments [PASS]
> [4] Kprobes event arguments with types [PASS]
> [5] Kprobe dynamic event with function tracer [PASS]
> [6] Kretprobe dynamic event with arguments [PASS]
> [7] Kretprobe dynamic event with maxactive [PASS]
>
> # of passed: 7
> # of failed: 0
> # of unresolved: 0
> # of untested: 0
> # of unsupported: 0
> # of xfailed: 0
> # of undefined(test bug): 0
BugLink: https://github.com/iovisor/bcc/issues/1072
Link: http://lkml.kernel.org/r/1491215782-15490-1-git-send-email-alban@kinvolk.io
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Relying on free_reserved_area() to call ftrace to free init memory proved to
not be sufficient. The issue is that on x86, when debug_pagealloc is
enabled, the init memory is not freed, but simply set as not present. Since
ftrace was uninformed of this, starting function tracing still tries to
update pages that are not present according to the page tables, causing
ftrace to bug, as well as killing the kernel itself.
Instead of relying on free_reserved_area(), have init/main.c call ftrace
directly just before it frees the init memory. Then it needs to use
__init_begin and __init_end to know where the init memory location is.
Looking at all archs (and testing what I can), it appears that this should
work for each of them.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
I noticed that if I use dd to read the set_ftrace_filter file that the first
hash command is repeated.
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo do_IRQ >> set_ftrace_filter
# echo schedule:traceoff >> set_ftrace_filter
# echo do_IRQ:traceoff >> set_ftrace_filter
# cat set_ftrace_filter
schedule
do_IRQ
schedule:traceoff:unlimited
do_IRQ:traceoff:unlimited
# dd if=set_ftrace_filter bs=1
schedule
do_IRQ
schedule:traceoff:unlimited
schedule:traceoff:unlimited
do_IRQ:traceoff:unlimited
98+0 records in
98+0 records out
98 bytes copied, 0.00265011 s, 37.0 kB/s
This is due to the way t_start() calls t_next() as well as the seq_file
calls t_next() and the state is slightly different between the two. Namely,
t_start() will call t_next() with a local "pos" variable.
By separating out the function listing from t_next() into its own function,
we can have better control of outputting the functions and the hash of
triggers. This simplifies the code.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If all functions are enabled, there's a comment displayed in the file to
denote that:
# cd /sys/kernel/debug/tracing
# cat set_ftrace_filter
#### all functions enabled ####
If a function trigger is set, those are displayed as well:
# echo schedule:traceoff >> /debug/tracing/set_ftrace_filter
# cat set_ftrace_filter
#### all functions enabled ####
schedule:traceoff:unlimited
But if you read that file with dd, the output can change:
# dd if=/debug/tracing/set_ftrace_filter bs=1
#### all functions enabled ####
32+0 records in
32+0 records out
32 bytes copied, 7.0237e-05 s, 456 kB/s
This is because the "pos" variable is updated for the comment, but func_pos
is not. "func_pos" is used by the triggers (or hashes) to know how many
functions were printed and it bases its index from the pos - func_pos.
func_pos should be 1 to count for the comment printed. But since it is not,
t_hash_start() thinks that one trigger was already printed.
The cat gets to t_hash_start() via t_next() and not t_start() which updates
both pos and func_pos.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The loop in t_start() of calling t_next() will call t_hash_start() if the
pos is beyond the functions and enters the hash items. There's no reason to
check if p is NULL and call t_hash_start(), as that would be redundant.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Instead of testing if the hash to use is the filter_hash or the notrace_hash
at each iteration, do the test at open, and set the iter->hash to point to
the corresponding filter or notrace hash. Then use that directly instead of
testing which hash needs to be used each iteration.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The return status check of __seq_open_private() is rather strange:
iter = __seq_open_private();
if (iter) {
/* do stuff */
}
return iter ? 0 : -ENOMEM;
It makes much more sense to do the return of failure right away:
iter = __seq_open_private();
if (!iter)
return -ENOMEM;
/* do stuff */
return 0;
This clean up will make updates to this code a bit nicer.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Moving enabling of function tracing to early boot, even before scheduling is
enabled, means that it is not safe to enable interrupts. When function
tracing was enabled at boot up, it use to happen after scheduling and the
other CPUs were brought up. That required running a sync across all CPUs
when modifying the function hook locations in the code. To do the
synchronization, interrupts had to be enabled. Now function tracing can be
started before the other CPUs are brought up, and enabling interrupts in
that case is dangerous. As only tho boot CPU is active, there is no reason
to run the synchronization. If the online CPU count is one, do not bother
doing the synchronization. This removes the need to enable interrupts.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently trace_handle_return() looks like this:
static inline enum print_line_t trace_handle_return(struct trace_seq *s)
{
return trace_seq_has_overflowed(s) ?
TRACE_TYPE_PARTIAL_LINE : TRACE_TYPE_HANDLED;
}
Where trace_seq_overflowed(s) is:
static inline bool trace_seq_has_overflowed(struct trace_seq *s)
{
return s->full || seq_buf_has_overflowed(&s->seq);
}
And seq_buf_has_overflowed(&s->seq) is:
static inline bool
seq_buf_has_overflowed(struct seq_buf *s)
{
return s->len > s->size;
}
Making trace_handle_return() into:
return (s->full || (s->seq->len > s->seq->size)) ?
TRACE_TYPE_PARTIAL_LINE :
TRACE_TYPE_HANDLED;
One would think this is not an issue to keep as an inline. But because this
is used in the TRACE_EVENT() macro, it is extended for every tracepoint in
the system. Taking a look at a single tracepoint x86_irq_vector (was the
first one I randomly chosen). As trace_handle_return is used in the
TRACE_EVENT() macro of trace_raw_output_##call() we disassemble
trace_raw_output_x86_irq_vector and do a diff:
- is the original
+ is the out-of-line code
I removed identical lines that were different just due to different
addresses.
--- /tmp/irq-vec-orig 2017-03-16 09:12:48.569384851 -0400
+++ /tmp/irq-vec-ool 2017-03-16 09:13:39.378153385 -0400
@@ -6,27 +6,23 @@
53 push %rbx
48 89 fb mov %rdi,%rbx
4c 8b a7 c0 20 00 00 mov 0x20c0(%rdi),%r12
e8 f7 72 13 00 callq ffffffff81155c80 <trace_raw_output_prep>
83 f8 01 cmp $0x1,%eax
74 05 je ffffffff8101e993 <trace_raw_output_x86_irq_vector+0x23>
5b pop %rbx
41 5c pop %r12
5d pop %rbp
c3 retq
41 8b 54 24 08 mov 0x8(%r12),%edx
- 48 8d bb 98 10 00 00 lea 0x1098(%rbx),%rdi
+ 48 81 c3 98 10 00 00 add $0x1098,%rbx
- 48 c7 c6 7b 8a a0 81 mov $0xffffffff81a08a7b,%rsi
+ 48 c7 c6 ab 8a a0 81 mov $0xffffffff81a08aab,%rsi
- e8 c5 85 13 00 callq ffffffff81156f70 <trace_seq_printf>
=== here's the start of the main difference ===
+ 48 89 df mov %rbx,%rdi
+ e8 62 7e 13 00 callq ffffffff81156810 <trace_seq_printf>
- 8b 93 b8 20 00 00 mov 0x20b8(%rbx),%edx
- 31 c0 xor %eax,%eax
- 85 d2 test %edx,%edx
- 75 11 jne ffffffff8101e9c8 <trace_raw_output_x86_irq_vector+0x58>
- 48 8b 83 a8 20 00 00 mov 0x20a8(%rbx),%rax
- 48 39 83 a0 20 00 00 cmp %rax,0x20a0(%rbx)
- 0f 93 c0 setae %al
+ 48 89 df mov %rbx,%rdi
+ e8 4a c5 12 00 callq ffffffff8114af00 <trace_handle_return>
5b pop %rbx
- 0f b6 c0 movzbl %al,%eax
=== end ===
41 5c pop %r12
5d pop %rbp
c3 retq
If you notice, the original has 22 bytes of text more than the out of line
version. As this is for every TRACE_EVENT() defined in the system, this can
become quite large.
text data bss dec hex filename
8690305 5450490 1298432 15439227 eb957b vmlinux-orig
8681725 5450490 1298432 15430647 eb73f7 vmlinux-handle
This change has a total of 8580 bytes in savings.
$ objdump -dr /tmp/vmlinux-orig | grep '^[0-9a-f]* <trace_raw_output' | wc -l
324
That's 324 tracepoints. But this does not include modules (which contain
many more tracepoints). For an allyesconfig build:
$ objdump -dr vmlinux-allyes-orig | grep '^[0-9a-f]* <trace_raw_output' | wc -l
1401
That's 1401 tracepoints giving us:
text data bss dec hex filename
137920629 140221067 53264384 331406080 13c0db00 vmlinux-allyes-orig
137827709 140221067 53264384 331313160 13bf7008 vmlinux-allyes-handle
92920 bytes in savings!!!
Link: http://lkml.kernel.org/r/20170315021431.13107-2-andi@firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Adding a hook into free_reserve_area() that informs ftrace that boot up init
text is being free, lets ftrace safely remove those init functions from its
records, which keeps ftrace from trying to modify text that no longer
exists.
Note, this still does not allow for tracing .init text of modules, as
modules require different work for freeing its init code.
Link: http://lkml.kernel.org/r/1488502497.7212.24.camel@linux.intel.com
Cc: linux-mm@kvack.org
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Requested-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Register the function tracer right after the tracing buffers are initialized
in early boot up. This will allow function tracing to begin early if it is
enabled via the kernel command line.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As tracing can now be enabled very early in boot up, even before some
critical system services (like scheduling), do not run the tracer selftests
until after early_initcall() is performed. If a tracer is registered before
such time, it is saved off in a list and the test is run when the system is
able to handle more diverse functions.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Initialize the ftrace records immediately after memory initialization, as
that is all that is required for the records to be created. This will allow
for future work to get function tracing started earlier in the boot process.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Create an early_trace_init() function that will initialize the buffers and
allow for ealier use of trace_printk(). This will also allow for future work
to have function tracing start earlier at boot up.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This BUG_ON() triggered for me once at shutdown, and I don't see a
reason for the check. The code correctly checks whether the swap slot
cache is usable or not, so an uninitialized swap slot cache is not
actually problematic afaik.
I've temporarily just switched the BUG_ON() to a WARN_ON_ONCE(), since
I'm not sure why that seemingly pointless check was there. I suspect
the real fix is to just remove it entirely, but for now we'll warn about
it but not bring the machine down.
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Wire up statx() syscall
- Don't print a warning on memory hotplug when HPT resizing isn't available
Thanks to:
David Gibson, Chandan Rajendra.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYzjnLAAoJEFHr6jzI4aWAwcAQAIeOYvCaoxQg6IEFoWJVc+hv
YfMy86TotkWFojQDV6OUddlz7S14AypjniegVq9aWOPIVwGqmDfp+W8qRfhUh3ab
S+uorqmXzAFhIUpzVpVpX/nnK6C3eFQdaKCLOxM0Ev413AWUMu70cPmXlCR+x0Kx
GxeV+nfIfBdyIL4yhK/aDHSItfUwNTmTPSyaUj17/cwLu7DwMjcwKWjrCYCzgBZW
1hQeWo+yrfvJ1U4yMEGdnDfuTPnWQZsHMw3qSuPzPCnVMgV6YS3HC7/ZEUvBSSBJ
Bwr6vVEsniLkHDgyFu3665y4abfvqw2iojXKuTpUQMp40T3RCZlT1FQoMvIoJQGC
FSMUsqnEudjliURi92zq4ImSbPbezB2bG3EsK1jKOOQ9gGbQa2qjXc2CSJiCtZwE
zsUCcwRFo8Pl1D/KYMTl52nQG3oOMQV/2ceX73HxajsdShXcyJxFEpMPv6aEKi1E
YT5i2KUXq3sfFPNWe/4gtfOYX9j+tSqi+CRvnwDNZG+a3XLUk/VRptCeIyntH965
8GYs28CxLz1qljBeAA7czo+1gpNhl1h6FNl1nhqyWRM6jdcLucMeEml0RYCYPmnk
+jLO6CkYYpIraM0mRqAolM7fYAtm6dOphaeeezCJIMvD/NTdk+pH86JoA64GQZvE
v1HXCc4lYyUFlvASrCNl
=TfiW
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.11-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull more powerpc fixes from Michael Ellerman:
"A couple of minor powerpc fixes for 4.11:
- wire up statx() syscall
- don't print a warning on memory hotplug when HPT resizing isn't
available
Thanks to: David Gibson, Chandan Rajendra"
* tag 'powerpc-4.11-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/pseries: Don't give a warning when HPT resizing isn't available
powerpc: Wire up statx() syscall
Pull parisc fixes from Helge Deller:
- Mikulas Patocka added support for R_PARISC_SECREL32 relocations in
modules with CONFIG_MODVERSIONS.
- Dave Anglin optimized the cache flushing for vmap ranges.
- Arvind Yadav provided a fix for a potential NULL pointer dereference
in the parisc perf code (and some code cleanups).
- I wired up the new statx system call, fixed some compiler warnings
with the access_ok() macro and fixed shutdown code to really halt a
system at shutdown instead of crashing & rebooting.
* 'parisc-4.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Fix system shutdown halt
parisc: perf: Fix potential NULL pointer dereference
parisc: Avoid compiler warnings with access_ok()
parisc: Wire up statx system call
parisc: Optimize flush_kernel_vmap_range and invalidate_kernel_vmap_range
parisc: support R_PARISC_SECREL32 relocation in modules
Pull SCSI target fixes from Nicholas Bellinger:
"The bulk of the changes are in qla2xxx target driver code to address
various issues found during Cavium/QLogic's internal testing (stable
CC's included), along with a few other stability and smaller
miscellaneous improvements.
There are also a couple of different patch sets from Mike Christie,
which have been a result of his work to use target-core ALUA logic
together with tcm-user backend driver.
Finally, a patch to address some long standing issues with
pass-through SCSI export of TYPE_TAPE + TYPE_MEDIUM_CHANGER devices,
which will make folks using physical (or virtual) magnetic tape happy"
* git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (28 commits)
qla2xxx: Update driver version to 9.00.00.00-k
qla2xxx: Fix delayed response to command for loop mode/direct connect.
qla2xxx: Change scsi host lookup method.
qla2xxx: Add DebugFS node to display Port Database
qla2xxx: Use IOCB interface to submit non-critical MBX.
qla2xxx: Add async new target notification
qla2xxx: Export DIF stats via debugfs
qla2xxx: Improve T10-DIF/PI handling in driver.
qla2xxx: Allow relogin to proceed if remote login did not finish
qla2xxx: Fix sess_lock & hardware_lock lock order problem.
qla2xxx: Fix inadequate lock protection for ABTS.
qla2xxx: Fix request queue corruption.
qla2xxx: Fix memory leak for abts processing
qla2xxx: Allow vref count to timeout on vport delete.
tcmu: Convert cmd_time_out into backend device attribute
tcmu: make cmd timeout configurable
tcmu: add helper to check if dev was configured
target: fix race during implicit transition work flushes
target: allow userspace to set state to transitioning
target: fix ALUA transition timeout handling
...
Pull device-dax fixes from Dan Williams:
"The device-dax driver was not being careful to handle falling back to
smaller fault-granularity sizes.
The driver already fails fault attempts that are smaller than the
device's alignment, but it also needs to handle the cases where a
larger page mapping could be established. For simplicity of the
immediate fix the implementation just signals VM_FAULT_FALLBACK until
fault-size == device-alignment.
One fix is for -stable to address pmd-to-pte fallback from the
original implementation, another fix is for the new (introduced in
4.11-rc1) pud-to-pmd regression, and a typo fix comes along for the
ride.
These have received a build success notification from the kbuild
robot"
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
device-dax: fix debug output typo
device-dax: fix pud fault fallback handling
device-dax: fix pmd/pte fault fallback handling
Current driver wait for FW to be in the ready state before
processing in-coming commands. For Arbitrated Loop or
Point-to- Point (not switch), FW Ready state can take a while.
FW will transition to ready state after all Nports have been
logged in. In the mean time, certain initiators have completed
the login and starts IO. Driver needs to start processing all
queues if FW is already started.
Signed-off-by: Quinn Tran <quinn.tran@cavium.com>
Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
For target mode, when new scsi command arrive, driver first performs
a look up of the SCSI Host. The current look up method is based on
the ALPA portion of the NPort ID. For Cisco switch, the ALPA can
not be used as the index. Instead, the new search method is based
on the full value of the Nport_ID via btree lib.
Signed-off-by: Quinn Tran <quinn.tran@cavium.com>
Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
The Mailbox interface is currently over subscribed. We like
to reserve the Mailbox interface for the chip managment and
link initialization. Any non essential Mailbox command will
be routed through the IOCB interface. The IOCB interface is
able to absorb more commands.
Following commands are being routed through IOCB interface
- Get ID List (007Ch)
- Get Port DB (0064h)
- Get Link Priv Stats (006Dh)
Signed-off-by: Quinn Tran <quinn.tran@cavium.com>
Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>