set_tag() already ignores the tag for the generic mode, so just call it
as is. Add a check for the generic mode to assign_tag(), and simplify its
call in ____kasan_kmalloc().
Link: https://lkml.kernel.org/r/121eeab245f98555862b289d2ba9269c868fbbcf.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I18905ca78fb4a3d60e1a34a4ca00247272480438
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Declare the kasan_enabled static key in include/linux/kasan.h and in
include/linux/mm.h and check it in all kasan annotations. This allows to
avoid any slowdown caused by function calls when kasan_enabled is
disabled.
Link: https://lkml.kernel.org/r/9f90e3c0aa840dbb4833367c2335193299f69023.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I2589451d3c96c97abbcbf714baabe6161c6f153e
Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hardware tag-based KASAN mode is intended to eventually be used in
production as a security mitigation. Therefore there's a need for finer
control over KASAN features and for an existence of a kill switch.
This change adds a few boot parameters for hardware tag-based KASAN that
allow to disable or otherwise control particular KASAN features.
The features that can be controlled are:
1. Whether KASAN is enabled at all.
2. Whether KASAN collects and saves alloc/free stacks.
3. Whether KASAN panics on a detected bug or not.
With this change a new boot parameter kasan.mode allows to choose one of
three main modes:
- kasan.mode=off - KASAN is disabled, no tag checks are performed
- kasan.mode=prod - only essential production features are enabled
- kasan.mode=full - all KASAN features are enabled
The chosen mode provides default control values for the features mentioned
above. However it's also possible to override the default values by
providing:
- kasan.stacktrace=off/on - enable alloc/free stack collection
(default: on for mode=full, otherwise off)
- kasan.fault=report/panic - only report tag fault or also panic
(default: report)
If kasan.mode parameter is not provided, it defaults to full when
CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise.
It is essential that switching between these modes doesn't require
rebuilding the kernel with different configs, as this is required by
the Android GKI (Generic Kernel Image) initiative [1].
[1] https://source.android.com/devices/architecture/kernel/generic-kernel-image
[andreyknvl@google.com: don't use read-only static keys]
Link: https://lkml.kernel.org/r/f2ded589eba1597f7360a972226083de9afd86e2.1607537948.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/cb093613879d8d8841173f090133eddeb4c35f1f.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/If7d37003875b2ed3e0935702c8015c223d6416a4
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using kasan_reset_tag() currently results in a function call. As it's
called quite often from the allocator code, this leads to a noticeable
slowdown. Move it to include/linux/kasan.h and turn it into a static
inline function. Also remove the now unneeded reset_tag() internal KASAN
macro and use kasan_reset_tag() instead.
Link: https://lkml.kernel.org/r/6940383a3a9dfb416134d338d8fac97a9ebb8686.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I4d2061acfe91d480a75df00b07c22d8494ef14b5
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no need for __kasan_unpoison_stack() helper, as it's only
currently used in a single place. Removing it also removes unneeded
arithmetic.
No functional changes.
Link: https://lkml.kernel.org/r/93e78948704a42ea92f6248ff8a725613d721161.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ie5ba549d445292fe629b4a96735e4034957bcc50
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a config option CONFIG_KASAN_STACK that has to be enabled for
KASAN to use stack instrumentation and perform validity checks for
stack variables.
There's no need to unpoison stack when CONFIG_KASAN_STACK is not enabled.
Only call kasan_unpoison_task_stack[_below]() when CONFIG_KASAN_STACK is
enabled.
Note, that CONFIG_KASAN_STACK is an option that is currently always
defined when CONFIG_KASAN is enabled, and therefore has to be tested
with #if instead of #ifdef.
Link: https://lkml.kernel.org/r/d09dd3f8abb388da397fd11598c5edeaa83fe559.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/If8a891e9fe01ea543e00b576852685afec0887e3
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: boot parameters for hardware tag-based mode", v4.
=== Overview
Hardware tag-based KASAN mode [1] is intended to eventually be used in
production as a security mitigation. Therefore there's a need for finer
control over KASAN features and for an existence of a kill switch.
This patchset adds a few boot parameters for hardware tag-based KASAN that
allow to disable or otherwise control particular KASAN features, as well
as provides some initial optimizations for running KASAN in production.
There's another planned patchset what will further optimize hardware
tag-based KASAN, provide proper benchmarking and tests, and will fully
enable tag-based KASAN for production use.
Hardware tag-based KASAN relies on arm64 Memory Tagging Extension (MTE)
[2] to perform memory and pointer tagging. Please see [3] and [4] for
detailed analysis of how MTE helps to fight memory safety problems.
The features that can be controlled are:
1. Whether KASAN is enabled at all.
2. Whether KASAN collects and saves alloc/free stacks.
3. Whether KASAN panics on a detected bug or not.
The patch titled "kasan: add and integrate kasan boot parameters" of this
series adds a few new boot parameters.
kasan.mode allows to choose one of three main modes:
- kasan.mode=off - KASAN is disabled, no tag checks are performed
- kasan.mode=prod - only essential production features are enabled
- kasan.mode=full - all KASAN features are enabled
The chosen mode provides default control values for the features mentioned
above. However it's also possible to override the default values by
providing:
- kasan.stacktrace=off/on - enable stacks collection
(default: on for mode=full, otherwise off)
- kasan.fault=report/panic - only report tag fault or also panic
(default: report)
If kasan.mode parameter is not provided, it defaults to full when
CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise.
It is essential that switching between these modes doesn't require
rebuilding the kernel with different configs, as this is required by
the Android GKI (Generic Kernel Image) initiative.
=== Benchmarks
For now I've only performed a few simple benchmarks such as measuring
kernel boot time and slab memory usage after boot. There's an upcoming
patchset which will optimize KASAN further and include more detailed
benchmarking results.
The benchmarks were performed in QEMU and the results below exclude the
slowdown caused by QEMU memory tagging emulation (as it's different from
the slowdown that will be introduced by hardware and is therefore
irrelevant).
KASAN_HW_TAGS=y + kasan.mode=off introduces no performance or memory
impact compared to KASAN_HW_TAGS=n.
kasan.mode=prod (manually excluding tagging) introduces 3% of performance
and no memory impact (except memory used by hardware to store tags)
compared to kasan.mode=off.
kasan.mode=full has about 40% performance and 30% memory impact over
kasan.mode=prod. Both come from alloc/free stack collection.
=== Notes
This patchset is available here:
https://github.com/xairy/linux/tree/up-boot-mte-v4
This patchset is based on v11 of "kasan: add hardware tag-based mode for
arm64" patchset [1].
For testing in QEMU hardware tag-based KASAN requires:
1. QEMU built from master [6] (use "-machine virt,mte=on -cpu max" arguments
to run).
2. GCC version 10.
[1] https://lore.kernel.org/linux-arm-kernel/cover.1606161801.git.andreyknvl@google.com/T/#t
[2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
[3] https://arxiv.org/pdf/1802.09517.pdf
[4] https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
[5] https://source.android.com/devices/architecture/kernel/generic-kernel-image
[6] https://github.com/qemu/qemu
=== Tags
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
This patch (of 19):
Move get_free_info() call into quarantine_put() to simplify the call site.
No functional changes.
Link: https://lkml.kernel.org/r/cover.1606162397.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/312d0a3ef92cc6dc4fa5452cbc1714f9393ca239.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Iab0f04e7ebf8d83247024b7190c67c3c34c7940f
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide implementation of KASAN functions required for the hardware
tag-based mode. Those include core functions for memory and pointer
tagging (tags_hw.c) and bug reporting (report_tags_hw.c). Also adapt
common KASAN code to support the new mode.
Link: https://lkml.kernel.org/r/cfd0fbede579a6b66755c98c88c108e54f9c56bf.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparatory commit for the upcoming addition of a new hardware
tag-based (MTE-based) KASAN mode.
Hardware tag-based KASAN won't use kasan_depth. Only define and use it
when one of the software KASAN modes are enabled.
No functional changes for software modes.
Link: https://lkml.kernel.org/r/e16f15aeda90bc7fb4dfc2e243a14b74cc5c8219.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparatory commit for the upcoming addition of a new hardware
tag-based (MTE-based) KASAN mode.
For software KASAN modes the check is based on the value in the shadow
memory. Hardware tag-based KASAN won't be using shadow, so hide the
implementation of the check in check_invalid_free().
Also simplify the code for software tag-based mode.
No functional changes for software modes.
Link: https://lkml.kernel.org/r/d01534a4b977f97d87515dc590e6348e1406de81.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparatory commit for the upcoming addition of a new hardware
tag-based (MTE-based) KASAN mode.
The new mode won't be using shadow memory. Move all shadow-related code
to shadow.c, which is only enabled for software KASAN modes that use
shadow memory.
No functional changes for software modes.
Link: https://lkml.kernel.org/r/17d95cfa7d5cf9c4fcd9bf415f2a8dea911668df.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparatory commit for the upcoming addition of a new hardware
tag-based (MTE-based) KASAN mode.
The new mode won't be using shadow memory, but will still use the concept
of memory granules. Each memory granule maps to a single metadata entry:
8 bytes per one shadow byte for generic mode, 16 bytes per one shadow byte
for software tag-based mode, and 16 bytes per one allocation tag for
hardware tag-based mode.
Rename KASAN_SHADOW_SCALE_SIZE to KASAN_GRANULE_SIZE, and
KASAN_SHADOW_MASK to KASAN_GRANULE_MASK.
Also use MASK when used as a mask, otherwise use SIZE.
No functional changes.
Link: https://lkml.kernel.org/r/939b5754e47f528a6e6a6f28ffc5815d8d128033.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparatory commit for the upcoming addition of a new hardware
tag-based (MTE-based) KASAN mode.
Group all vmalloc-related function declarations in include/linux/kasan.h,
and their implementations in mm/kasan/common.c.
No functional changes.
Link: https://lkml.kernel.org/r/80a6fdd29b039962843bd6cf22ce2643a7c8904e.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: add hardware tag-based mode for arm64", v11.
This patchset adds a new hardware tag-based mode to KASAN [1]. The new
mode is similar to the existing software tag-based KASAN, but relies on
arm64 Memory Tagging Extension (MTE) [2] to perform memory and pointer
tagging (instead of shadow memory and compiler instrumentation).
This patchset is co-developed and tested by
Vincenzo Frascino <vincenzo.frascino@arm.com>.
This patchset is available here:
https://github.com/xairy/linux/tree/up-kasan-mte-v11
For testing in QEMU hardware tag-based KASAN requires:
1. QEMU built from master [4] (use "-machine virt,mte=on -cpu max" arguments
to run).
2. GCC version 10.
[1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
[2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
[3] git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux for-next/mte
[4] https://github.com/qemu/qemu
====== Overview
The underlying ideas of the approach used by hardware tag-based KASAN are:
1. By relying on the Top Byte Ignore (TBI) arm64 CPU feature, pointer tags
are stored in the top byte of each kernel pointer.
2. With the Memory Tagging Extension (MTE) arm64 CPU feature, memory tags
for kernel memory allocations are stored in a dedicated memory not
accessible via normal instuctions.
3. On each memory allocation, a random tag is generated, embedded it into
the returned pointer, and the corresponding memory is tagged with the
same tag value.
4. With MTE the CPU performs a check on each memory access to make sure
that the pointer tag matches the memory tag.
5. On a tag mismatch the CPU generates a tag fault, and a KASAN report is
printed.
Same as other KASAN modes, hardware tag-based KASAN is intended as a
debugging feature at this point.
====== Rationale
There are two main reasons for this new hardware tag-based mode:
1. Previously implemented software tag-based KASAN is being successfully
used on dogfood testing devices due to its low memory overhead (as
initially planned). The new hardware mode keeps the same low memory
overhead, and is expected to have significantly lower performance
impact, due to the tag checks being performed by the hardware.
Therefore the new mode can be used as a better alternative in dogfood
testing for hardware that supports MTE.
2. The new mode lays the groundwork for the planned in-kernel MTE-based
memory corruption mitigation to be used in production.
====== Technical details
Considering the implementation perspective, hardware tag-based KASAN is
almost identical to the software mode. The key difference is using MTE
for assigning and checking tags.
Compared to the software mode, the hardware mode uses 4 bits per tag, as
dictated by MTE. Pointer tags are stored in bits [56:60), the top 4 bits
have the normal value 0xF. Having less distict tags increases the
probablity of false negatives (from ~1/256 to ~1/16) in certain cases.
Only synchronous exceptions are set up and used by hardware tag-based KASAN.
====== Benchmarks
Note: all measurements have been performed with software emulation of Memory
Tagging Extension, performance numbers for hardware tag-based KASAN on the
actual hardware are expected to be better.
Boot time [1]:
* 2.8 sec for clean kernel
* 5.7 sec for hardware tag-based KASAN
* 11.8 sec for software tag-based KASAN
* 11.6 sec for generic KASAN
Slab memory usage after boot [2]:
* 7.0 kb for clean kernel
* 9.7 kb for hardware tag-based KASAN
* 9.7 kb for software tag-based KASAN
* 41.3 kb for generic KASAN
Measurements have been performed with:
* defconfig-based configs
* Manually built QEMU master
* QEMU arguments: -machine virt,mte=on -cpu max
* CONFIG_KASAN_STACK_ENABLE disabled
* CONFIG_KASAN_INLINE enabled
* clang-10 as the compiler and gcc-10 as the assembler
[1] Time before the ext4 driver is initialized.
[2] Measured as `cat /proc/meminfo | grep Slab`.
====== Notes
The cover letter for software tag-based KASAN patchset can be found here:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0116523cfffa62aeb5aa3b85ce7419f3dae0c1b8
===== Tags
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
This patch (of 41):
Don't mention "GNU General Public License version 2" text explicitly, as
it's already covered by the SPDX-License-Identifier.
Link: https://lkml.kernel.org/r/cover.1606161801.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/6ea9f5f4aa9dbbffa0d0c0a780b37699a4531034.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kasan_unpoison_stack_above_sp_to() is defined in kasan code but never
used. The function was introduced as part of the commit:
commit 9f7d416c36124667 ("kprobes: Unpoison stack in jprobe_return() for KASAN")
... where it was necessary because x86's jprobe_return() would leave
stale shadow on the stack, and was an oddity in that regard.
Since then, jprobes were removed entirely, and as of commit:
commit 80006dbee674f9fa ("kprobes/x86: Remove jprobe implementation")
... there have been no callers of this function.
Remove the declaration and the implementation.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20200706143505.23299-1-vincenzo.frascino@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move free track from kasan_alloc_meta to kasan_free_meta in order to make
struct kasan_alloc_meta and kasan_free_meta size are both 16 bytes. It is
a good size because it is the minimal redzone size and a good number of
alignment.
For free track, we make some modifications as shown below:
1) Remove the free_track from struct kasan_alloc_meta.
2) Add the free_track into struct kasan_free_meta.
3) Add a macro KASAN_KMALLOC_FREETRACK in order to check whether
it can print free stack in KASAN report.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=198437
[walter-zh.wu@mediatek.com: build fix]
Link: http://lkml.kernel.org/r/20200710162440.23887-1-walter-zh.wu@mediatek.com
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Link: http://lkml.kernel.org/r/20200601051022.1230-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: memorize and print call_rcu stack", v8.
This patchset improves KASAN reports by making them to have call_rcu()
call stack information. It is useful for programmers to solve
use-after-free or double-free memory issue.
The KASAN report was as follows(cleaned up slightly):
BUG: KASAN: use-after-free in kasan_rcu_reclaim+0x58/0x60
Freed by task 0:
kasan_save_stack+0x24/0x50
kasan_set_track+0x24/0x38
kasan_set_free_info+0x18/0x20
__kasan_slab_free+0x10c/0x170
kasan_slab_free+0x10/0x18
kfree+0x98/0x270
kasan_rcu_reclaim+0x1c/0x60
Last call_rcu():
kasan_save_stack+0x24/0x50
kasan_record_aux_stack+0xbc/0xd0
call_rcu+0x8c/0x580
kasan_rcu_uaf+0xf4/0xf8
Generic KASAN will record the last two call_rcu() call stacks and print up
to 2 call_rcu() call stacks in KASAN report. it is only suitable for
generic KASAN.
This feature considers the size of struct kasan_alloc_meta and
kasan_free_meta, we try to optimize the structure layout and size, lets it
get better memory consumption.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=198437
[2]https://groups.google.com/forum/#!searchin/kasan-dev/better$20stack$20traces$20for$20rcu%7Csort:date/kasan-dev/KQsjT_88hDE/7rNUZprRBgAJ
This patch (of 4):
This feature will record the last two call_rcu() call stacks and prints up
to 2 call_rcu() call stacks in KASAN report.
When call_rcu() is called, we store the call_rcu() call stack into slub
alloc meta-data, so that the KASAN report can print rcu stack.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=198437
[2]https://groups.google.com/forum/#!searchin/kasan-dev/better$20stack$20traces$20for$20rcu%7Csort:date/kasan-dev/KQsjT_88hDE/7rNUZprRBgAJ
[walter-zh.wu@mediatek.com: build fix]
Link: http://lkml.kernel.org/r/20200710162401.23816-1-walter-zh.wu@mediatek.com
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Link: http://lkml.kernel.org/r/20200710162123.23713-1-walter-zh.wu@mediatek.com
Link: http://lkml.kernel.org/r/20200601050847.1096-1-walter-zh.wu@mediatek.com
Link: http://lkml.kernel.org/r/20200601050927.1153-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kasan_report() functions belongs to report.c, as it's a common
functions that does error reporting.
Reported-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Leon Romanovsky <leon@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Leon Romanovsky <leonro@mellanox.com>
Link: http://lkml.kernel.org/r/78a81fde6eeda9db72a7fd55fbc33173a515e4b1.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filter_irq_stacks() can be used by other tools (e.g. KMSAN), so it needs
to be moved to a common location. lib/stackdepot.c seems a good place, as
filter_irq_stacks() is usually applied to the output of
stack_trace_save().
This patch has been previously mailed as part of KMSAN RFC patch series.
[glider@google.co: nds32: linker script: add SOFTIRQENTRY_TEXT\
Link: http://lkml.kernel.org/r/20200311121002.241430-1-glider@google.com
[glider@google.com: add IRQENTRY_TEXT and SOFTIRQENTRY_TEXT to linker script]
Link: http://lkml.kernel.org/r/20200311121124.243352-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Link: http://lkml.kernel.org/r/20200220141916.55455-3-glider@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix the missing underflow in memory operation function", v4.
The patchset helps to produce a KASAN report when size is negative in
memory operation functions. It is helpful for programmer to solve an
undefined behavior issue. Patch 1 based on Dmitry's review and
suggestion, patch 2 is a test in order to verify the patch 1.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=199341
[2]https://lore.kernel.org/linux-arm-kernel/20190927034338.15813-1-walter-zh.wu@mediatek.com/
This patch (of 2):
KASAN missed detecting size is a negative number in memset(), memcpy(),
and memmove(), it will cause out-of-bounds bug. So needs to be detected
by KASAN.
If size is a negative number, then it has a reason to be defined as
out-of-bounds bug type. Casting negative numbers to size_t would indeed
turn up as a large size_t and its value will be larger than ULONG_MAX/2,
so that this can qualify as out-of-bounds.
KASAN report is shown below:
BUG: KASAN: out-of-bounds in kmalloc_memmove_invalid_size+0x70/0xa0
Read of size 18446744073709551608 at addr ffffff8069660904 by task cat/72
CPU: 2 PID: 72 Comm: cat Not tainted 5.4.0-rc1-next-20191004ajb-00001-gdb8af2f372b2-dirty #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x288
show_stack+0x14/0x20
dump_stack+0x10c/0x164
print_address_description.isra.9+0x68/0x378
__kasan_report+0x164/0x1a0
kasan_report+0xc/0x18
check_memory_region+0x174/0x1d0
memmove+0x34/0x88
kmalloc_memmove_invalid_size+0x70/0xa0
[1] https://bugzilla.kernel.org/show_bug.cgi?id=199341
[cai@lca.pw: fix -Wdeclaration-after-statement warn]
Link: http://lkml.kernel.org/r/1583509030-27939-1-git-send-email-cai@lca.pw
[peterz@infradead.org: fix objtool warning]
Link: http://lkml.kernel.org/r/20200305095436.GV2596@hirez.programming.kicks-ass.net
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Link: http://lkml.kernel.org/r/20191112065302.7015-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If archs don't have memmove then the C implementation from lib/string.c is used,
and then it's instrumented by compiler. So there is no need to add KASAN's
memmove to manual checks.
Signed-off-by: Nick Hu <nickhu@andestech.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
With CONFIG_KASAN_VMALLOC=y any use of memory obtained via vm_map_ram()
will crash because there is no shadow backing that memory.
Instead of sprinkling additional kasan_populate_vmalloc() calls all over
the vmalloc code, move it into alloc_vmap_area(). This will fix
vm_map_ram() and simplify the code a bit.
[aryabinin@virtuozzo.com: v2]
Link: http://lkml.kernel.org/r/20191205095942.1761-1-aryabinin@virtuozzo.comLink: http://lkml.kernel.org/r/20191204204534.32202-1-aryabinin@virtuozzo.com
Fixes: 3c5c3cfb9ef4 ("kasan: support backing vmalloc space with real shadow memory")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I hit the following compile error in arch/x86/
mm/kasan/common.c: In function kasan_populate_vmalloc:
mm/kasan/common.c:797:2: error: implicit declaration of function flush_cache_vmap; did you mean flush_rcu_work? [-Werror=implicit-function-declaration]
flush_cache_vmap(shadow_start, shadow_end);
^~~~~~~~~~~~~~~~
flush_rcu_work
cc1: some warnings being treated as errors
Link: http://lkml.kernel.org/r/1575363013-43761-1-git-send-email-zhongjiang@huawei.com
Fixes: 3c5c3cfb9ef4 ("kasan: support backing vmalloc space with real shadow memory")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: support backing vmalloc space with real shadow
memory", v11.
Currently, vmalloc space is backed by the early shadow page. This means
that kasan is incompatible with VMAP_STACK.
This series provides a mechanism to back vmalloc space with real,
dynamically allocated memory. I have only wired up x86, because that's
the only currently supported arch I can work with easily, but it's very
easy to wire up other architectures, and it appears that there is some
work-in-progress code to do this on arm64 and s390.
This has been discussed before in the context of VMAP_STACK:
- https://bugzilla.kernel.org/show_bug.cgi?id=202009
- https://lkml.org/lkml/2018/7/22/198
- https://lkml.org/lkml/2019/7/19/822
In terms of implementation details:
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=1)
This is unfortunate but given that this is a debug feature only, not the
end of the world. The benchmarks are also a stress-test for the vmalloc
subsystem: they're not indicative of an overall 2x slowdown!
This patch (of 4):
Hook into vmalloc and vmap, and dynamically allocate real shadow memory
to back the mappings.
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
To avoid the difficulties around swapping mappings around, this code
expects that the part of the shadow region that covers the vmalloc space
will not be covered by the early shadow page, but will be left unmapped.
This will require changes in arch-specific code.
This allows KASAN with VMAP_STACK, and may be helpful for architectures
that do not have a separate module space (e.g. powerpc64, which I am
currently working on). It also allows relaxing the module alignment
back to PAGE_SIZE.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=3D1)
This is unfortunate but given that this is a debug feature only, not the
end of the world.
The full benchmark results are:
Performance
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test 662004 11404956 17.23 19144610 28.92 1.68
full_fit_alloc_test 710950 12029752 16.92 13184651 18.55 1.10
long_busy_list_alloc_test 9431875 43990172 4.66 82970178 8.80 1.89
random_size_alloc_test 5033626 23061762 4.58 47158834 9.37 2.04
fix_align_alloc_test 1252514 15276910 12.20 31266116 24.96 2.05
random_size_align_alloc_te 1648501 14578321 8.84 25560052 15.51 1.75
align_shift_alloc_test 147 830 5.65 5692 38.72 6.86
pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12
Total Cycles 119240774314 763211341128 6.40 1390338696894 11.66 1.82
Sequential, 2 cpus
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test 1423150 14276550 10.03 27733022 19.49 1.94
full_fit_alloc_test 1754219 14722640 8.39 15030786 8.57 1.02
long_busy_list_alloc_test 11451858 52154973 4.55 107016027 9.34 2.05
random_size_alloc_test 5989020 26735276 4.46 68885923 11.50 2.58
fix_align_alloc_test 2050976 20166900 9.83 50491675 24.62 2.50
random_size_align_alloc_te 2858229 17971700 6.29 38730225 13.55 2.16
align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08
pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43
Total Cycles 54181269392 308723699764 5.70 650772566394 12.01 2.11
fix_size_alloc_test 1420404 14289308 10.06 27790035 19.56 1.94
full_fit_alloc_test 1736145 14806234 8.53 15274301 8.80 1.03
long_busy_list_alloc_test 11404638 52270785 4.58 107550254 9.43 2.06
random_size_alloc_test 6017006 26650625 4.43 68696127 11.42 2.58
fix_align_alloc_test 2045504 20280985 9.91 50414862 24.65 2.49
random_size_align_alloc_te 2845338 17931018 6.30 38510276 13.53 2.15
align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57
pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10
Total Cycles 54040011688 309102805492 5.72 651325675652 12.05 2.11
[dja@axtens.net: fixups]
Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net
Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009
Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net
Signed-off-by: Mark Rutland <mark.rutland@arm.com> [shadow rework]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make working with compound pages easier", v2.
These three patches add three helpers and convert the appropriate
places to use them.
This patch (of 3):
It's unnecessarily hard to find out the size of a potentially huge page.
Replace 'PAGE_SIZE << compound_order(page)' with page_size(page).
Link: http://lkml.kernel.org/r/20190721104612.19120-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memory corruption identification at bug report for software tag-based
mode. The report shows whether it is "use-after-free" or "out-of-bound"
error instead of "invalid-access" error. This will make it easier for
programmers to see the memory corruption problem.
We extend the slab to store five old free pointer tag and free backtrace,
we can check if the tagged address is in the slab record and make a good
guess if the object is more like "use-after-free" or "out-of-bound".
therefore every slab memory corruption can be identified whether it's
"use-after-free" or "out-of-bound".
[aryabinin@virtuozzo.com: simplify & clenup code]
Link: https://lkml.kernel.org/r/3318f9d7-a760-3cc8-b700-f06108ae745f@virtuozzo.com]
Link: http://lkml.kernel.org/r/20190821180332.11450-1-aryabinin@virtuozzo.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code like this:
ptr = kmalloc(size, GFP_KERNEL);
page = virt_to_page(ptr);
offset = offset_in_page(ptr);
kfree(page_address(page) + offset);
may produce false-positive invalid-free reports on the kernel with
CONFIG_KASAN_SW_TAGS=y.
In the example above we lose the original tag assigned to 'ptr', so
kfree() gets the pointer with 0xFF tag. In kfree() we check that 0xFF
tag is different from the tag in shadow hence print false report.
Instead of just comparing tags, do the following:
1) Check that shadow doesn't contain KASAN_TAG_INVALID. Otherwise it's
double-free and it doesn't matter what tag the pointer have.
2) If pointer tag is different from 0xFF, make sure that tag in the
shadow is the same as in the pointer.
Link: http://lkml.kernel.org/r/20190819172540.19581-1-aryabinin@virtuozzo.com
Fixes: 7f94ffbc4c6a ("kasan: add hooks implementation for tag-based mode")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Walter Wu <walter-zh.wu@mediatek.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes {,__}kasan_check_{read,write} functions to return a boolean
denoting if the access was valid or not.
[sfr@canb.auug.org.au: include types.h for "bool"]
Link: http://lkml.kernel.org/r/20190705184949.13cdd021@canb.auug.org.au
Link: http://lkml.kernel.org/r/20190626142014.141844-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/kasan: Add object validation in ksize()", v3.
This patch (of 5):
This introduces __kasan_check_{read,write}. __kasan_check functions may
be used from anywhere, even compilation units that disable instrumentation
selectively.
This change eliminates the need for the __KASAN_INTERNAL definition.
[elver@google.com: v5]
Link: http://lkml.kernel.org/r/20190708170706.174189-2-elver@google.com
Link: http://lkml.kernel.org/r/20190626142014.141844-2-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When building with -Wuninitialized and CONFIG_KASAN_SW_TAGS unset, Clang
warns:
mm/kasan/common.c:484:40: warning: variable 'tag' is uninitialized when
used here [-Wuninitialized]
kasan_unpoison_shadow(set_tag(object, tag), size);
^~~
set_tag ignores tag in this configuration but clang doesn't realize it at
this point in its pipeline, as it points to arch_kasan_set_tag as being
the point where it is used, which will later be expanded to (void
*)(object) without a use of tag. Initialize tag to 0xff, as it removes
this warning and doesn't change the meaning of the code.
Link: https://github.com/ClangBuiltLinux/linux/issues/465
Link: http://lkml.kernel.org/r/20190502163057.6603-1-natechancellor@gmail.com
Fixes: 7f94ffbc4c6a ("kasan: add hooks implementation for tag-based mode")
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull stack trace updates from Ingo Molnar:
"So Thomas looked at the stacktrace code recently and noticed a few
weirdnesses, and we all know how such stories of crummy kernel code
meeting German engineering perfection end: a 45-patch series to clean
it all up! :-)
Here's the changes in Thomas's words:
'Struct stack_trace is a sinkhole for input and output parameters
which is largely pointless for most usage sites. In fact if embedded
into other data structures it creates indirections and extra storage
overhead for no benefit.
Looking at all usage sites makes it clear that they just require an
interface which is based on a storage array. That array is either on
stack, global or embedded into some other data structure.
Some of the stack depot usage sites are outright wrong, but
fortunately the wrongness just causes more stack being used for
nothing and does not have functional impact.
Another oddity is the inconsistent termination of the stack trace
with ULONG_MAX. It's pointless as the number of entries is what
determines the length of the stored trace. In fact quite some call
sites remove the ULONG_MAX marker afterwards with or without nasty
comments about it. Not all architectures do that and those which do,
do it inconsistenly either conditional on nr_entries == 0 or
unconditionally.
The following series cleans that up by:
1) Removing the ULONG_MAX termination in the architecture code
2) Removing the ULONG_MAX fixups at the call sites
3) Providing plain storage array based interfaces for stacktrace
and stackdepot.
4) Cleaning up the mess at the callsites including some related
cleanups.
5) Removing the struct stack_trace based interfaces
This is not changing the struct stack_trace interfaces at the
architecture level, but it removes the exposure to the generic
code'"
* 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/stacktrace: Use common infrastructure
stacktrace: Provide common infrastructure
lib/stackdepot: Remove obsolete functions
stacktrace: Remove obsolete functions
livepatch: Simplify stack trace retrieval
tracing: Remove the last struct stack_trace usage
tracing: Simplify stack trace retrieval
tracing: Make ftrace_trace_userstack() static and conditional
tracing: Use percpu stack trace buffer more intelligently
tracing: Simplify stacktrace retrieval in histograms
lockdep: Simplify stack trace handling
lockdep: Remove save argument from check_prev_add()
lockdep: Remove unused trace argument from print_circular_bug()
drm: Simplify stacktrace handling
dm persistent data: Simplify stack trace handling
dm bufio: Simplify stack trace retrieval
btrfs: ref-verify: Simplify stack trace retrieval
dma/debug: Simplify stracktrace retrieval
fault-inject: Simplify stacktrace retrieval
mm/page_owner: Simplify stack trace handling
...
KASAN inserts extra code for every LOAD/STORE emitted by te compiler.
Much of this code is simple and safe to run with AC=1, however the
kasan_report() function, called on error, is most certainly not safe
to call with AC=1.
Therefore wrap kasan_report() in user_access_{save,restore}; which for
x86 SMAP, saves/restores EFLAGS and clears AC before calling the real
function.
Also ensure all the functions are without __fentry__ hook. The
function tracer is also not safe.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Building little-endian allmodconfig kernels on arm64 started failing
with the generated atomic.h implementation, since we now try to call
kasan helpers from the EFI stub:
aarch64-linux-gnu-ld: drivers/firmware/efi/libstub/arm-stub.stub.o: in function `atomic_set':
include/generated/atomic-instrumented.h:44: undefined reference to `__efistub_kasan_check_write'
I suspect that we get similar problems in other files that explicitly
disable KASAN for some reason but call atomic_t based helper functions.
We can fix this by checking the predefined __SANITIZE_ADDRESS__ macro
that the compiler sets instead of checking CONFIG_KASAN, but this in
turn requires a small hack in mm/kasan/common.c so we do see the extern
declaration there instead of the inline function.
Link: http://lkml.kernel.org/r/20181211133453.2835077-1-arnd@arndb.de
Fixes: b1864b828644 ("locking/atomics: build atomic headers as required")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>,
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an object is kmalloc()'ed, two hooks are called: kasan_slab_alloc()
and kasan_kmalloc(). Right now we assign a tag twice, once in each of the
hooks. Fix it by assigning a tag only in the former hook.
Link: http://lkml.kernel.org/r/ce8c6431da735aa7ec051fd6497153df690eb021.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now tag-based KASAN can retag the memory that is reallocated via
krealloc and return a differently tagged pointer even if the same slab
object gets used and no reallocated technically happens.
There are a few issues with this approach. One is that krealloc callers
can't rely on comparing the return value with the passed argument to
check whether reallocation happened. Another is that if a caller knows
that no reallocation happened, that it can access object memory through
the old pointer, which leads to false positives. Look at
nf_ct_ext_add() to see an example.
Fix this by keeping the same tag if the memory don't actually gets
reallocated during krealloc.
Link: http://lkml.kernel.org/r/bb2a71d17ed072bcc528cbee46fcbd71a6da3be4.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of changing cache->align to be aligned to KASAN_SHADOW_SCALE_SIZE
in kasan_cache_create() we can reuse the ARCH_SLAB_MINALIGN macro.
Link: http://lkml.kernel.org/r/52ddd881916bcc153a9924c154daacde78522227.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Suggested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a "SPDX-License-Identifier: GPL-2.0" mark to all source
files under mm/kasan.
Link: http://lkml.kernel.org/r/bce2d1e618afa5142e81961ab8fa4b4165337380.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds __must_check annotations to kasan hooks that return a
pointer to make sure that a tagged pointer always gets propagated.
Link: http://lkml.kernel.org/r/03b269c5e453945f724bfca3159d4e1333a8fb1c.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tag-based KASAN doesn't check memory accesses through pointers tagged with
0xff. When page_address is used to get pointer to memory that corresponds
to some page, the tag of the resulting pointer gets set to 0xff, even
though the allocated memory might have been tagged differently.
For slab pages it's impossible to recover the correct tag to return from
page_address, since the page might contain multiple slab objects tagged
with different values, and we can't know in advance which one of them is
going to get accessed. For non slab pages however, we can recover the tag
in page_address, since the whole page was marked with the same tag.
This patch adds tagging to non slab memory allocated with pagealloc. To
set the tag of the pointer returned from page_address, the tag gets stored
to page->flags when the memory gets allocated.
Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds tag-based KASAN specific hooks implementation and
adjusts common generic and tag-based KASAN ones.
1. When a new slab cache is created, tag-based KASAN rounds up the size of
the objects in this cache to KASAN_SHADOW_SCALE_SIZE (== 16).
2. On each kmalloc tag-based KASAN generates a random tag, sets the shadow
memory, that corresponds to this object to this tag, and embeds this
tag value into the top byte of the returned pointer.
3. On each kfree tag-based KASAN poisons the shadow memory with a random
tag to allow detection of use-after-free bugs.
The rest of the logic of the hook implementation is very much similar to
the one provided by generic KASAN. Tag-based KASAN saves allocation and
free stack metadata to the slab object the same way generic KASAN does.
Link: http://lkml.kernel.org/r/bda78069e3b8422039794050ddcb2d53d053ed41.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A tag-based KASAN shadow memory cell contains a memory tag, that
corresponds to the tag in the top byte of the pointer, that points to that
memory. The native top byte value of kernel pointers is 0xff, so with
tag-based KASAN we need to initialize shadow memory to 0xff.
[cai@lca.pw: arm64: skip kmemleak for KASAN again\
Link: http://lkml.kernel.org/r/20181226020550.63712-1-cai@lca.pw
Link: http://lkml.kernel.org/r/5cc1b789aad7c99cf4f3ec5b328b147ad53edb40.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>