If the entry is deleted from the IDR between the call to
radix_tree_iter_find() and rcu_dereference_raw(), idr_get_next()
will return NULL, which will end the iteration prematurely. We should
instead continue to the next entry in the IDR. This only happens if the
iteration is protected by the RCU lock. Most IDR users use a spinlock
or semaphore to exclude simultaneous modifications. It was noticed once
the PID allocator was converted to use the IDR, as it uses the RCU lock,
but there may be other users elsewhere in the kernel.
We can't use the normal pattern of calling radix_tree_deref_retry()
(which catches both a retry entry in a leaf node and a node entry in
the root) as the IDR supports storing entries which are unaligned,
which will trigger an infinite loop if they are encountered. Instead,
we have to explicitly check whether the entry is a retry entry.
Fixes: 0a835c4f090a ("Reimplement IDR and IDA using the radix tree")
Reported-by: Brendan Gregg <bgregg@netflix.com>
Tested-by: Brendan Gregg <bgregg@netflix.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The only user of this functionality was the workingset code, and it's
now been converted to the XArray. Remove __radix_tree_delete_node()
entirely as it was also only used by the workingset code.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Use the XA_TRACK_FREE ability to track which entries have a free bit,
similarly to how it uses the radix tree's IDR_FREE tag. This eliminates
the per-cpu ida_bitmap preload, and fixes the memory consumption
regression I introduced when making the IDR able to store any pointer.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
This is a direct replacement for struct radix_tree_root. Some of the
struct members have changed name; convert those, and use a #define so
that radix_tree users continue to work without change.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
An upcoming change to the encoding of internal entries will set the bottom
two bits to 0b10. Unfortunately, m68k only aligns some data structures
to 2 bytes, so the IDR will interpret them as internal entries and things
will go badly wrong.
Change the radix tree so that it stops either when the node indicates
that it's the bottom of the tree (shift == 0) or when the entry is not an
internal entry. This means we cannot insert an arbitrary kernel pointer
as a multiorder entry, but the IDR does not permit multiorder entries.
Annoyingly, this means the IDR can no longer take advantage of the radix
tree's ability to store a single entry at offset 0 without allocating
memory. A pointer which is 2-byte aligned cannot be stored directly in
the root as it would be indistinguishable from a node, so we must allocate
a node in order to store a 2-byte pointer at index 0. The idr_replace()
function does not take a GFP flags argument, so cannot allocate memory.
If a user inserts a 4-byte aligned pointer at index 0 and then replaces
it with a 2-byte aligned pointer, we must be able to store it.
Arbitrary pointer values are still not permitted; pointers of the
form 2 + (i * 4) for values of i between 0 and 1023 are reserved for
the implementation. These are not valid kernel pointers as they would
point into the zero page.
This change does cause a runtime memory consumption regression for
the IDA. I will recover that later.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
This calling convention makes more sense for the implementation as well
as the callers. It even shaves 32 bytes off the compiled code size.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Delete ida_pre_get(), ida_get_new(), ida_get_new_above() and ida_remove()
from the public API. Some of these functions still exist as internal
helpers, but they should not be called by consumers.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Add ida_alloc(), ida_alloc_min(), ida_alloc_max(), ida_alloc_range()
and ida_free(). The ida_alloc_max() and ida_alloc_range() functions
differ from ida_simple_get() in that they take an inclusive 'max'
parameter instead of an exclusive 'end' parameter. Callers are about
evenly split whether they'd like inclusive or exclusive parameters and
'max' is easier to document than 'end'.
Change the IDA allocation to first attempt to allocate a bit using
existing memory, and only allocate memory afterwards. Also change the
behaviour of 'min' > INT_MAX from being a BUG() to returning -ENOSPC.
Leave compatibility wrappers in place for ida_simple_get() and
ida_simple_remove() to avoid changing all callers.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The user has no need to handle locking between ida_simple_get() and
ida_simple_remove(). They shouldn't be forced to think about whether
ida_destroy() might be called at the same time as any of their other
IDA manipulation calls. Improve the documnetation while I'm in here.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Improve the scalability of the IDA by using the per-IDA xa_lock rather
than the global simple_ida_lock. IDAs are not typically used in
performance-sensitive locations, but since we have this lock anyway, we
can use it. It is also a step towards converting the IDA from the radix
tree to the XArray.
[akpm@linux-foundation.org: idr.c needs xarray.h]
Link: http://lkml.kernel.org/r/20180331125332.GF13332@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Khalid reported that the kernel selftests are currently failing:
selftests: test_bpf.sh
========================================
test_bpf: [FAIL]
not ok 1..8 selftests: test_bpf.sh [FAIL]
He bisected it to 6ce711f2750031d12cec91384ac5cfa0a485b60a ("idr: Make
1-based IDRs more efficient").
The root cause is doing a signed comparison in idr_alloc_u32() instead
of an unsigned comparison. I went looking for any similar problems and
found a couple (which would each result in the failure to warn in two
situations that aren't supposed to happen).
I knocked up a few test-cases to prove that I was right and added them
to the test-suite.
Reported-by: Khalid Aziz <khalid.aziz@oracle.com>
Tested-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
As far as I can tell, the only place the per-cpu ida_bitmap is populated
is in ida_pre_get. The pre-allocated element is stolen in two places in
ida_get_new_above, in both cases immediately followed by a memset(0).
Since ida_get_new_above is called with locks held, do the zeroing in
ida_pre_get, or rather let kmalloc() do it. Also, apparently gcc
generates ~44 bytes of code to do a memset(, 0, 128):
$ scripts/bloat-o-meter vmlinux.{0,1}
add/remove: 0/0 grow/shrink: 2/1 up/down: 5/-88 (-83)
Function old new delta
ida_pre_get 115 119 +4
vermagic 27 28 +1
ida_get_new_above 715 627 -88
Link: http://lkml.kernel.org/r/20180108225634.15340-1-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
About 20% of the IDR users in the kernel want the allocated IDs to start
at 1. The implementation currently searches all the way down the left
hand side of the tree, finds no free ID other than ID 0, walks all the
way back up, and then all the way down again. This patch 'rebases' the
ID so we fill the entire radix tree, rather than leave a gap at 0.
Chris Wilson says: "I did the quick hack of allocating index 0 of the
idr and that eradicated idr_get_free() from being at the top of the
profiles for the many-object stress tests. This improvement will be
much appreciated."
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Now that the IDR can be used to store large IDs, it is possible somebody
might only partially convert their old code and use the iterators which
can only handle IDs up to INT_MAX. It's probably unwise to show them a
truncated ID, so settle for spewing warnings to dmesg, and terminating
the iteration.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Most places in the kernel that we need to distinguish functions by the
type of their arguments, we use '_ul' as a suffix for the unsigned long
variant, not '_ext'. Also add kernel-doc.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
It has no more users, so remove it. Move idr_alloc() back into idr.c,
move the guts of idr_alloc_cmn() into idr_alloc_u32(), remove the
wrappers around idr_get_free_cmn() and rename it to idr_get_free().
While there is now no interface to allocate IDs larger than a u32,
the IDR internals remain ready to handle a larger ID should a need arise.
These changes make it possible to provide the guarantee that, if the
nextid pointer points into the object, the object's ID will be initialised
before a concurrent lookup can find the object.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
All current users of idr_alloc_ext() actually want to allocate a u32
and idr_alloc_u32() fits their needs better.
Like idr_get_next(), it uses a 'nextid' argument which serves as both
a pointer to the start ID and the assigned ID (instead of a separate
minimum and pointer-to-assigned-ID argument). It uses a 'max' argument
rather than 'end' because the semantics that idr_alloc has for 'end'
don't work well for unsigned types.
Since idr_alloc_u32() returns an errno instead of the allocated ID, mark
it as __must_check to help callers use it correctly. Include copious
kernel-doc. Chris Mi <chrism@mellanox.com> has promised to contribute
test-cases for idr_alloc_u32.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Changing idr_replace's 'id' argument to 'unsigned long' works for all
callers. Callers which passed a negative ID now get -ENOENT instead of
-EINVAL. No callers relied on this error value.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
During truncation, the mapping has already been checked for shmem and
dax so it's known that workingset_update_node is required.
This patch avoids the checks on mapping for each page being truncated.
In all other cases, a lookup helper is used to determine if
workingset_update_node() needs to be called. The one danger is that the
API is slightly harder to use as calling workingset_update_node directly
without checking for dax or shmem mappings could lead to surprises.
However, the API rarely needs to be used and hopefully the comment is
enough to give people the hint.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
oneirq-v1r1 pickhelper-v1r1
Min Time 141.00 ( 0.00%) 140.00 ( 0.71%)
1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%)
Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%)
Max Time 230.00 ( 0.00%) 205.00 ( 10.87%)
Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%)
Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%)
Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%)
Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%)
Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%)
Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%)
Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%)
Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%)
Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%)
As you'd expect, the gain is marginal but it can be detected. The
differences in bonnie are all within the noise which is not surprising
given the impact on the microbenchmark.
radix_tree_update_node_t is a callback for some radix operations that
optionally passes in a private field. The only user of the callback is
workingset_update_node and as it no longer requires a mapping, the
private field is removed.
Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
idr_replace() returns the old value on success, not 0.
Link: http://lkml.kernel.org/r/20170918162642.37511-1-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IDR only supports non-negative IDs. There used to be a 'WARN_ON_ONCE(id <
0)' in idr_replace(), but it was intentionally removed by commit
2e1c9b286765 ("idr: remove WARN_ON_ONCE() on negative IDs").
Then it was added back by commit 0a835c4f090a ("Reimplement IDR and IDA
using the radix tree"). However it seems that adding it back was a
mistake, given that some users such as drm_gem_handle_delete()
(DRM_IOCTL_GEM_CLOSE) pass in a value from userspace to idr_replace(),
allowing the WARN_ON_ONCE to be triggered. drm_gem_handle_delete()
actually just wants idr_replace() to return an error code if the ID is
not allocated, including in the case where the ID is invalid (negative).
So once again remove the bogus WARN_ON_ONCE().
This bug was found by syzkaller, which encountered the following
warning:
WARNING: CPU: 3 PID: 3008 at lib/idr.c:157 idr_replace+0x1d8/0x240 lib/idr.c:157
Kernel panic - not syncing: panic_on_warn set ...
CPU: 3 PID: 3008 Comm: syzkaller218828 Not tainted 4.13.0-rc4-next-20170811 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
fixup_bug+0x40/0x90 arch/x86/kernel/traps.c:190
do_trap_no_signal arch/x86/kernel/traps.c:224 [inline]
do_trap+0x260/0x390 arch/x86/kernel/traps.c:273
do_error_trap+0x120/0x390 arch/x86/kernel/traps.c:310
do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:323
invalid_op+0x1e/0x30 arch/x86/entry/entry_64.S:930
RIP: 0010:idr_replace+0x1d8/0x240 lib/idr.c:157
RSP: 0018:ffff8800394bf9f8 EFLAGS: 00010297
RAX: ffff88003c6c60c0 RBX: 1ffff10007297f43 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800394bfa78
RBP: ffff8800394bfae0 R08: ffffffff82856487 R09: 0000000000000000
R10: ffff8800394bf9a8 R11: ffff88006c8bae28 R12: ffffffffffffffff
R13: ffff8800394bfab8 R14: dffffc0000000000 R15: ffff8800394bfbc8
drm_gem_handle_delete+0x33/0xa0 drivers/gpu/drm/drm_gem.c:297
drm_gem_close_ioctl+0xa1/0xe0 drivers/gpu/drm/drm_gem.c:671
drm_ioctl_kernel+0x1e7/0x2e0 drivers/gpu/drm/drm_ioctl.c:729
drm_ioctl+0x72e/0xa50 drivers/gpu/drm/drm_ioctl.c:825
vfs_ioctl fs/ioctl.c:45 [inline]
do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:685
SYSC_ioctl fs/ioctl.c:700 [inline]
SyS_ioctl+0x8f/0xc0 fs/ioctl.c:691
entry_SYSCALL_64_fastpath+0x1f/0xbe
Here is a C reproducer:
#include <fcntl.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/ioctl.h>
#include <drm/drm.h>
int main(void)
{
int cardfd = open("/dev/dri/card0", O_RDONLY);
ioctl(cardfd, DRM_IOCTL_GEM_CLOSE,
&(struct drm_gem_close) { .handle = -1 } );
}
Link: http://lkml.kernel.org/r/20170906235306.20534-1-ebiggers3@gmail.com
Fixes: 0a835c4f090a ("Reimplement IDR and IDA using the radix tree")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: <stable@vger.kernel.org> [v4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following new APIs are added:
int idr_alloc_ext(struct idr *idr, void *ptr, unsigned long *index,
unsigned long start, unsigned long end, gfp_t gfp);
void *idr_remove_ext(struct idr *idr, unsigned long id);
void *idr_find_ext(const struct idr *idr, unsigned long id);
void *idr_replace_ext(struct idr *idr, void *ptr, unsigned long id);
void *idr_get_next_ext(struct idr *idr, unsigned long *nextid);
Signed-off-by: Chris Mi <chrism@mellanox.com>
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Where we use the radix tree iteration macros, we need to annotate 'slot'
with __rcu. Make sure we don't forget any new places in the future with
the same CFLAGS check used for radix-tree.c.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
We can use the root entry as a bitmap and save allocating a 128 byte
bitmap for an IDA that contains only a few entries (30 on a 32-bit
machine, 62 on a 64-bit machine). This costs about 300 bytes of kernel
text on x86-64, so as long as 3 IDAs fall into this category, this
is a net win for memory consumption.
Thanks to Rasmus Villemoes for his work documenting the problem and
collecting statistics on IDAs.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
When we preload the IDA, we allocate an IDA bitmap. Instead of storing
that preallocated bitmap in the IDA, we store it in a percpu variable.
Generally there are more IDAs in the system than CPUs, so this cuts down
on the number of preallocated bitmaps that are unused, and about half
of the IDA users did not call ida_destroy() so they were leaking IDA
bitmaps.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
The IDR is very similar to the radix tree. It has some functionality that
the radix tree did not have (alloc next free, cyclic allocation, a
callback-based for_each, destroy tree), which is readily implementable on
top of the radix tree. A few small changes were needed in order to use a
tag to represent nodes with free space below them. More extensive
changes were needed to support storing NULL as a valid entry in an IDR.
Plain radix trees still interpret NULL as a not-present entry.
The IDA is reimplemented as a client of the newly enhanced radix tree. As
in the current implementation, it uses a bitmap at the last level of the
tree.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
I wanted to wrap a bunch of ida_simple_get calls into their own locking,
until I dug around and read the original commit message. Stuff like
this should imo be added to the kernel doc, let's do that.
Link: http://lkml.kernel.org/r/20161027072216.20411-1-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
idr.c doesn't seem to use anything from hardirq.h (or anything included
from that). Removing it produces identical objdump -d output, and gives
44 fewer lines in the .idr.o.cmd dependency file.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fix spelling typo found in DocBook/kernel-api.xml.
It is because the file is generated from the source comments,
I have to fix the comments in source codes.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
I'm working on address sanitizer project for kernel. Recently we
started experiments with stack instrumentation, to detect out-of-bounds
read/write bugs on stack.
Just after booting I've hit out-of-bounds read on stack in idr_for_each
(and in __idr_remove_all as well):
struct idr_layer **paa = &pa[0];
while (id >= 0 && id <= max) {
...
while (n < fls(id)) {
n += IDR_BITS;
p = *--paa; <--- here we are reading pa[-1] value.
}
}
Despite the fact that after this dereference we are exiting out of loop
and never use p, such behaviour is undefined and should be avoided.
Fix this by moving pointer derference to the beggining of the loop,
right before we will use it.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexey Preobrazhensky <preobr@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If "idr->hint == p" is true, it also implies "idr->hint" is true(not NULL).
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After idr subsystem is changed to RCU-awared, the free layer will not go
to the free list. The free list will not be filled up when
idr_remove(). So we don't need to shink it too.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the smaller id is not found, idr_replace() returns -ENOENT. But
when the id is bigger enough, idr_replace() returns -EINVAL, actually
there is no difference between these two kinds of ids.
These are all unallocated id, the return values of the idr_replace() for
these ids should be the same: -ENOENT.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the ida has at least one existing id, and when an unallocated ID
which meets a certain condition is passed to the ida_remove(), the
system will crash because it hits NULL pointer dereference.
The condition is that the unallocated ID shares the same lowest idr
layer with the existing ID, but the idr slot would be different if the
unallocated ID were to be allocated.
In this case the matching idr slot for the unallocated_id is NULL,
causing @bitmap to be NULL which the function dereferences without
checking crashing the kernel.
See the test code:
static void test3(void)
{
int id;
DEFINE_IDA(test_ida);
printk(KERN_INFO "Start test3\n");
if (ida_pre_get(&test_ida, GFP_KERNEL) < 0) return;
if (ida_get_new(&test_ida, &id) < 0) return;
ida_remove(&test_ida, 4000); /* bug: null deference here */
printk(KERN_INFO "End of test3\n");
}
It happens only when the caller tries to free an unallocated ID which is
the caller's fault. It is not a bug. But it is better to add the
proper check and complain rather than crashing the kernel.
[tj@kernel.org: updated patch description]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If unallocated_id = (ANY * idr_max(idp->layers) + existing_id) is passed
to idr_remove(). The existing_id will be removed unexpectedly.
The following test shows this unexpected id-removal:
static void test4(void)
{
int id;
DEFINE_IDR(test_idr);
printk(KERN_INFO "Start test4\n");
id = idr_alloc(&test_idr, (void *)1, 42, 43, GFP_KERNEL);
BUG_ON(id != 42);
idr_remove(&test_idr, 42 + IDR_SIZE);
TEST_BUG_ON(idr_find(&test_idr, 42) != (void *)1);
idr_destroy(&test_idr);
printk(KERN_INFO "End of test4\n");
}
ida_remove() shares the similar problem.
It happens only when the caller tries to free an unallocated ID which is
the caller's fault. It is not a bug. But it is better to add the
proper check and complain rather than removing an existing_id silently.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
idr_replace() open-codes the logic to calculate the maximum valid ID
given the height of the idr tree; unfortunately, the open-coded logic
doesn't account for the fact that the top layer may have unused slots
and over-shifts the limit to zero when the tree is at its maximum
height.
The following test code shows it fails to replace the value for
id=((1<<27)+42):
static void test5(void)
{
int id;
DEFINE_IDR(test_idr);
#define TEST5_START ((1<<27)+42) /* use the highest layer */
printk(KERN_INFO "Start test5\n");
id = idr_alloc(&test_idr, (void *)1, TEST5_START, 0, GFP_KERNEL);
BUG_ON(id != TEST5_START);
TEST_BUG_ON(idr_replace(&test_idr, (void *)2, TEST5_START) != (void *)1);
idr_destroy(&test_idr);
printk(KERN_INFO "End of test5\n");
}
Fix the bug by using idr_max() which correctly takes into account the
maximum allowed shift.
sub_alloc() shares the same problem and may incorrectly fail with
-EAGAIN; however, this bug doesn't affect correct operation because
idr_get_empty_slot(), which already uses idr_max(), retries with the
increased @id in such cases.
[tj@kernel.org: Updated patch description.]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace rcu_assign_pointer(x, NULL) with RCU_INIT_POINTER(x, NULL)
The rcu_assign_pointer() ensures that the initialization of a structure
is carried out before storing a pointer to that structure. And in the
case of the NULL pointer, there is no structure to initialize.
So, rcu_assign_pointer(p, NULL) can be safely converted to
RCU_INIT_POINTER(p, NULL)
Signed-off-by: Monam Agarwal <monamagarwal123@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove no longer used deprecated code, and make local functions
static.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Jean Delvare <jdelvare@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Jeff Layton <jlayton@redhat.com>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: George Spelvin <linux@horizon.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We print a dump stack after idr_remove warning. This is useful to find
the faulty piece of code. Let's do the same for ida_remove, as it would
be equally useful there.
[akpm@linux-foundation.org: convert the open-coded printk+dump_stack into WARN()]
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Tejun points out, there are several users of the IDR facility that
attempt to use it in a cyclic fashion. These users are likely to see
-ENOSPC errors after the counter wraps one or more times however.
This patchset adds a new idr_alloc_cyclic routine and converts several
of these users to it. Many of these users are in obscure parts of the
kernel, and I don't have a good way to test some of them. The change is
pretty straightforward though, so hopefully it won't be an issue.
There is one other cyclic user of idr_alloc that I didn't touch in
ipc/util.c. That one is doing some strange stuff that I didn't quite
understand, but it looks like it should probably be converted later
somehow.
This patch:
Thus spake Tejun Heo:
Ooh, BTW, the cyclic allocation is broken. It's prone to -ENOSPC
after the first wraparound. There are several cyclic users in the
kernel and I think it probably would be best to implement cyclic
support in idr.
This patch does that by adding new idr_alloc_cyclic function that such
users in the kernel can use. With this, there's no need for a caller to
keep track of the last value used as that's now tracked internally. This
should prevent the ENOSPC problems that can hit when the "last allocated"
counter exceeds INT_MAX.
Later patches will convert existing cyclic users to the new interface.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Eric Paris <eparis@parisplace.org>
Cc: Jack Morgenstein <jackm@dev.mellanox.co.il>
Cc: John McCutchan <john@johnmccutchan.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Robert Love <rlove@rlove.org>
Cc: Roland Dreier <roland@purestorage.com>
Cc: Sridhar Samudrala <sri@us.ibm.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Tom Tucker <tom@opengridcomputing.com>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_NOIO is often used for idr_alloc() inside preloaded section as the
allocation mask doesn't really matter. If the idr tree needs to be
expanded, idr_alloc() first tries to allocate using the specified
allocation mask and if it fails falls back to the preloaded buffer. This
order prevent non-preloading idr_alloc() users from taking advantage of
preloading ones by using preload buffer without filling it shifting the
burden of allocation to the preload users.
Unfortunately, this allowed/expected-to-fail kmem_cache allocation ends up
generating spurious slab lowmem warning before succeeding the request from
the preload buffer.
This patch makes idr_layer_alloc() add __GFP_NOWARN to the first
kmem_cache attempt and try kmem_cache again w/o __GFP_NOWARN after
allocation from preload_buffer fails so that lowmem warning is generated
if not suppressed by the original @gfp_mask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: David Teigland <teigland@redhat.com>
Tested-by: David Teigland <teigland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that all in-kernel users are converted to ues the new alloc
interface, mark the old interface deprecated. We should be able to
remove these in a few releases.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix new kernel-doc warnings in idr:
Warning(include/linux/idr.h:113): No description found for parameter 'idr'
Warning(include/linux/idr.h:113): Excess function parameter 'idp' description in 'idr_find'
Warning(lib/idr.c:232): Excess function parameter 'id' description in 'sub_alloc'
Warning(lib/idr.c:232): Excess function parameter 'id' description in 'sub_alloc'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
idr_find(), idr_remove() and idr_replace() used to silently ignore the
sign bit and perform lookup with the rest of the bits. The weird behavior
has been changed such that negative IDs are treated as invalid. As the
behavior change was subtle, WARN_ON_ONCE() was added in the hope of
determining who's calling idr functions with negative IDs so that they can
be examined for problems.
Up until now, all two reported cases are ID number coming directly from
userland and getting fed into idr_find() and the warnings seem to cause
more problems than being helpful. Drop the WARN_ON_ONCE()s.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: <markus@trippelsdorf.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until recently, when an negative ID is specified, idr functions used to
ignore the sign bit and proceeded with the operation with the rest of
bits, which is bizarre and error-prone. The behavior recently got changed
so that negative IDs are treated as invalid but we're triggering
WARN_ON_ONCE() on negative IDs just in case somebody was depending on the
sign bit being ignored, so that those can be detected and fixed easily.
We only need this for a while. Explain why WARN_ON_ONCE()s are there and
that they can be removed later.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>