Mike Galbraith reported that this recent commit:
commit 4dcfe1025b513c2c1da5bf5586adb0e80148f612
Author: Peter Zijlstra <peterz@infradead.org>
Date: Thu Nov 10 13:01:10 2011 +0100
sched: Avoid SMT siblings in select_idle_sibling() if possible
stopped selecting an idle SMT sibling when there are no idle
cores in a single socket system.
Intent of the select_idle_sibling() was to fallback to an idle
SMT sibling, if it fails to identify an idle core. But this
fallback was not happening on systems where all the scheduler
domains had `SD_SHARE_PKG_RESOURCES' flag set.
Fix it. Slightly bigger patch of cleaning all these goto's etc
is queued up for the next release.
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1323978421.1984.244.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In return_cfs_rq_runtime() we want to return bandwidth when there are no
remaining tasks, not "return" when this is the case.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111108042736.623812423@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Avoid select_idle_sibling() from picking a sibling thread if there's
an idle core that shares cache.
This fixes SMT balancing in the increasingly common case where there's
a shared cache core available to balance to.
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1321350377.1421.55.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Every time I have to stare at this function I need to completely
reverse engineer its workings, about time I write a comment
explaining the thing.
Collected bits and pieces from previous changelogs, mostly:
4be9daaa1b33701f011f4117f22dc1e45a3e6e34
83378269a5fad98f562ebc0f09c349575e6cbfe1
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1318518057.27731.2.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This task is preparatory for the migrate_disable() implementation, but
stands on its own and provides a cleanup.
It currently only converts those sites required for task-placement.
Kosaki-san once mentioned replacing cpus_allowed with a proper
cpumask_t instead of the NR_CPUS sized array it currently is, that
would also require something like this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Link: http://lkml.kernel.org/n/tip-e42skvaddos99psip0vce41o@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
rq's idle_at_tick is set to idle/busy during the timer tick
depending on the cpu was idle or not. This will be used later in the load
balance that will be done in the softirq context (which is a process
context in -RT kernels).
For nohz kernels, for the cpu doing nohz idle load balance on behalf of
all the idle cpu's, its rq->idle_at_tick might have a stale value (which is
recorded when it got the timer tick presumably when it is busy).
As the nohz idle load balancing is also being done at the same place
as the regular load balancing, nohz idle load balancing was bailing out
when it sees rq's idle_at_tick not set.
Thus leading to poor system utilization.
Rename rq's idle_at_tick to idle_balance and set it when someone requests
for nohz idle balance on an idle cpu.
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111003220934.892350549@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current use of smp call function to kick the nohz idle balance can deadlock
in this scenario.
1. cpu-A did a generic_exec_single() to cpu-B and after queuing its call single
data (csd) to the call single queue, cpu-A took a timer interrupt. Actual IPI
to cpu-B to process the call single queue is not yet sent.
2. As part of the timer interrupt handler, cpu-A decided to kick cpu-B
for the idle load balancing (sets cpu-B's rq->nohz_balance_kick to 1)
and __smp_call_function_single() with nowait will queue the csd to the
cpu-B's queue. But the generic_exec_single() won't send an IPI to cpu-B
as the call single queue was not empty.
3. cpu-A is busy with lot of interrupts
4. Meanwhile cpu-B is entering and exiting idle and noticed that it has
it's rq->nohz_balance_kick set to '1'. So it will go ahead and do the
idle load balancer and clear its rq->nohz_balance_kick.
5. At this point, csd queued as part of the step-2 above is still locked
and waiting to be serviced on cpu-B.
6. cpu-A is still busy with interrupt load and now it got another timer
interrupt and as part of it decided to kick cpu-B for another idle load
balancing (as it finds cpu-B's rq->nohz_balance_kick cleared in step-4
above) and does __smp_call_function_single() with the same csd that is
still locked.
7. And we get a deadlock waiting for the csd_lock() in the
__smp_call_function_single().
Main issue here is that cpu-B can service the idle load balancer kick
request from cpu-A even with out receiving the IPI and this lead to
doing multiple __smp_call_function_single() on the same csd leading to
deadlock.
To kick a cpu, scheduler already has the reschedule vector reserved. Use
that mechanism (kick_process()) instead of using the generic smp call function
mechanism to kick off the nohz idle load balancing and avoid the deadlock.
[ This issue is present from 2.6.35+ kernels, but marking it -stable
only from v3.0+ as the proposed fix depends on the scheduler_ipi()
that is introduced recently. ]
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: stable@kernel.org # v3.0+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111003220934.834943260@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The caller already checks for nr_running > 1, therefore we don't have
to do so again.
Signed-off-by: Wang Xingchao <xingchao.wang@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1316194552-12019-1-git-send-email-xingchao.wang@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a local cfs_rq blocks we return the majority of its remaining quota to the
global bandwidth pool for use by other runqueues.
We do this only when the quota is current and there is more than
min_cfs_rq_quota [1ms by default] of runtime remaining on the rq.
In the case where there are throttled runqueues and we have sufficient
bandwidth to meter out a slice, a second timer is kicked off to handle this
delivery, unthrottling where appropriate.
Using a 'worst case' antagonist which executes on each cpu
for 1ms before moving onto the next on a fairly large machine:
no quota generations:
197.47 ms /cgroup/a/cpuacct.usage
199.46 ms /cgroup/a/cpuacct.usage
205.46 ms /cgroup/a/cpuacct.usage
198.46 ms /cgroup/a/cpuacct.usage
208.39 ms /cgroup/a/cpuacct.usage
Since we are allowed to use "stale" quota our usage is effectively bounded by
the rate of input into the global pool and performance is relatively stable.
with quota generations [1s increments]:
119.58 ms /cgroup/a/cpuacct.usage
119.65 ms /cgroup/a/cpuacct.usage
119.64 ms /cgroup/a/cpuacct.usage
119.63 ms /cgroup/a/cpuacct.usage
119.60 ms /cgroup/a/cpuacct.usage
The large deficit here is due to quota generations (/intentionally/) preventing
us from now using previously stranded slack quota. The cost is that this quota
becomes unavailable.
with quota generations and quota return:
200.09 ms /cgroup/a/cpuacct.usage
200.09 ms /cgroup/a/cpuacct.usage
198.09 ms /cgroup/a/cpuacct.usage
200.09 ms /cgroup/a/cpuacct.usage
200.06 ms /cgroup/a/cpuacct.usage
By returning unused quota we're able to both stably consume our desired quota
and prevent unintentional overages due to the abuse of slack quota from
previous quota periods (especially on a large machine).
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.306848658@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This change introduces statistics exports for the cpu sub-system, these are
added through the use of a stat file similar to that exported by other
subsystems.
The following exports are included:
nr_periods: number of periods in which execution occurred
nr_throttled: the number of periods above in which execution was throttle
throttled_time: cumulative wall-time that any cpus have been throttled for
this group
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.198901931@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the machinery in place to throttle and unthrottle entities, as well as
handle their participation (or lack there of) we can now enable throttling.
There are 2 points that we must check whether it's time to set throttled state:
put_prev_entity() and enqueue_entity().
- put_prev_entity() is the typical throttle path, we reach it by exceeding our
allocated run-time within update_curr()->account_cfs_rq_runtime() and going
through a reschedule.
- enqueue_entity() covers the case of a wake-up into an already throttled
group. In this case we know the group cannot be on_rq and can throttle
immediately. Checks are added at time of put_prev_entity() and
enqueue_entity()
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.091415417@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Buddies allow us to select "on-rq" entities without actually selecting them
from a cfs_rq's rb_tree. As a result we must ensure that throttled entities
are not falsely nominated as buddies. The fact that entities are dequeued
within throttle_entity is not sufficient for clearing buddy status as the
nomination may occur after throttling.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.886850167@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
From the perspective of load-balance and shares distribution, throttled
entities should be invisible.
However, both of these operations work on 'active' lists and are not
inherently aware of what group hierarchies may be present. In some cases this
may be side-stepped (e.g. we could sideload via tg_load_down in load balance)
while in others (e.g. update_shares()) it is more difficult to compute without
incurring some O(n^2) costs.
Instead, track hierarchicaal throttled state at time of transition. This
allows us to easily identify whether an entity belongs to a throttled hierarchy
and avoid incorrect interactions with it.
Also, when an entity leaves a throttled hierarchy we need to advance its
time averaging for shares averaging so that the elapsed throttled time is not
considered as part of the cfs_rq's operation.
We also use this information to prevent buddy interactions in the wakeup and
yield_to() paths.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.777916795@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At the start of each period we refresh the global bandwidth pool. At this time
we must also unthrottle any cfs_rq entities who are now within bandwidth once
more (as quota permits).
Unthrottled entities have their corresponding cfs_rq->throttled flag cleared
and their entities re-enqueued.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.574628950@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that consumption is tracked (via update_curr()) we add support to throttle
group entities (and their corresponding cfs_rqs) in the case where this is no
run-time remaining.
Throttled entities are dequeued to prevent scheduling, additionally we mark
them as throttled (using cfs_rq->throttled) to prevent them from becoming
re-enqueued until they are unthrottled. A list of a task_group's throttled
entities are maintained on the cfs_bandwidth structure.
Note: While the machinery for throttling is added in this patch the act of
throttling an entity exceeding its bandwidth is deferred until later within
the series.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.480608533@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since quota is managed using a global state but consumed on a per-cpu basis
we need to ensure that our per-cpu state is appropriately synchronized.
Most importantly, runtime that is state (from a previous period) should not be
locally consumable.
We take advantage of existing sched_clock synchronization about the jiffy to
efficiently detect whether we have (globally) crossed a quota boundary above.
One catch is that the direction of spread on sched_clock is undefined,
specifically, we don't know whether our local clock is behind or ahead
of the one responsible for the current expiration time.
Fortunately we can differentiate these by considering whether the
global deadline has advanced. If it has not, then we assume our clock to be
"fast" and advance our local expiration; otherwise, we know the deadline has
truly passed and we expire our local runtime.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.379275352@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds a per-task_group timer which handles the refresh of the global
CFS bandwidth pool.
Since the RT pool is using a similar timer there's some small refactoring to
share this support.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.277271273@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Account bandwidth usage on the cfs_rq level versus the task_groups to which
they belong. Whether we are tracking bandwidth on a given cfs_rq is maintained
under cfs_rq->runtime_enabled.
cfs_rq's which belong to a bandwidth constrained task_group have their runtime
accounted via the update_curr() path, which withdraws bandwidth from the global
pool as desired. Updates involving the global pool are currently protected
under cfs_bandwidth->lock, local runtime is protected by rq->lock.
This patch only assigns and tracks quota, no action is taken in the case that
cfs_rq->runtime_used exceeds cfs_rq->runtime_assigned.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.179386821@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In this patch we introduce the notion of CFS bandwidth, partitioned into
globally unassigned bandwidth, and locally claimed bandwidth.
- The global bandwidth is per task_group, it represents a pool of unclaimed
bandwidth that cfs_rqs can allocate from.
- The local bandwidth is tracked per-cfs_rq, this represents allotments from
the global pool bandwidth assigned to a specific cpu.
Bandwidth is managed via cgroupfs, adding two new interfaces to the cpu subsystem:
- cpu.cfs_period_us : the bandwidth period in usecs
- cpu.cfs_quota_us : the cpu bandwidth (in usecs) that this tg will be allowed
to consume over period above.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184756.972636699@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce hierarchical task accounting for the group scheduling case in CFS, as
well as promoting the responsibility for maintaining rq->nr_running to the
scheduling classes.
The primary motivation for this is that with scheduling classes supporting
bandwidth throttling it is possible for entities participating in throttled
sub-trees to not have root visible changes in rq->nr_running across activate
and de-activate operations. This in turn leads to incorrect idle and
weight-per-task load balance decisions.
This also allows us to make a small fixlet to the fastpath in pick_next_task()
under group scheduling.
Note: this issue also exists with the existing sched_rt throttling mechanism.
This patch does not address that.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184756.878333391@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Checking for the validity of sd is removed, since it is already
checked by the for_each_domain macro.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTimT+Tut-3TshCDm-NiLLXrOznibNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the WAKEUP_PREEMPT feature, disabling it doesn't make any sense
and its outlived its use by a long long while.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110729082033.GB12106@zhy
Signed-off-by: Ingo Molnar <mingo@elte.hu>
No need to define a new "cfs_rq" variable in the "for" block.
Just use the one at the top of the function.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311297271.3938.1352.camel@minggr.sh.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
"entity_key()" is only used in "__enqueue_entity()" and
its only function is to subtract a tasks vruntime by
its groups minvruntime.
Before this patch a rbtree enqueue-decision is done by
comparing two tasks in the style:
"if (entity_key(cfs_rq, se) < entity_key(cfs_rq, entry))"
which would be
"if (se->vruntime-cfs_rq->min_vruntime < entry->vruntime-cfs_rq->min_vruntime)"
or (if reducing cfs_rq->min_vruntime out)
"if (se->vruntime < entry->vruntime)"
which is
"if (entity_before(se, entry))"
So we do not need "entity_key()".
If "entity_before()" is inline we will also save one subtraction (only one,
because "entity_key(cfs_rq, se)" was cached in "key")
Signed-off-by: Stephan Baerwolf <stephan.baerwolf@tu-ilmenau.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-ns12mnd2h5w8rb9agd8hnsfk@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The last reference to cpu_cfs_rq() was removed with commit 88ec22d3
("sched: Remove the cfs_rq dependency from set_task_cpu()"). Thus,
remove this function, too.
Signed-off-by: Jan Schoenherr <schnhrr@cs.tu-berlin.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1310580816-10861-3-git-send-email-schnhrr@cs.tu-berlin.de
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use for_each_leaf_cfs_rq() instead of list_for_each_entry_rcu(), this
achieves that load_balance_fair() only iterates those task_groups that
actually have tasks on busiest, and that we iterate bottom-up, trying to
move light groups before the heavier ones.
No idea if it will actually work out to be beneficial in practice, does
anybody have a cgroup workload that might show a difference one way or
the other?
[ Also move update_h_load to sched_fair.c, loosing #ifdef-ery ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/1310557009.2586.28.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In dequeue_task_fair() we bail on dequeue when we encounter a parenting entity
with additional weight. However, we perform a double shares update on this
entity as we continue the shares update traversal from this point, despite
dequeue_entity() having already updated its queuing cfs_rq.
Avoid this by starting from the parent when we resume.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110707053059.797714697@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While looking at check_preempt_wakeup() I realized that we are
potentially updating the wrong entity in the fair-group scheduling
case. In this case the current task's cfs_rq may not be the same as
the one used for the comparison between the waking task and the
existing task's vruntime.
This potentially results in us using a stale vruntime in the
pre-emption decision, providing a small false preference for the
previous task. The effects of this are bounded since we always
perform a hierarchal update on the tick.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/CAPM31R+2Ke2urUZKao5W92_LupdR4AYEv-EZWiJ3tG=tEes2cw@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to prepare for non-unique sched_groups per domain, we need to
carry the cpu_power elsewhere, so put a level of indirection in.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-qkho2byuhe4482fuknss40ad@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
wake_affine() is only called from one path: select_task_rq_fair(),
which already has the RCU read lock held.
Signed-off-by: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20110607101251.777.34547.stgit@IBM-009124035060.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Dima Zavin <dima@android.com> reported:
"After pulling the thread off the run-queue during a cgroup change,
the cfs_rq.min_vruntime gets recalculated. The dequeued thread's vruntime
then gets normalized to this new value. This can then lead to the thread
getting an unfair boost in the new group if the vruntime of the next
task in the old run-queue was way further ahead."
Reported-by: Dima Zavin <dima@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Recalls-having-tested-once-upon-a-time-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1305674470-23727-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SCHED_LOAD_SCALE is used to increase nice resolution and to
scale cpu_power calculations in the scheduler. This patch
introduces SCHED_POWER_SCALE and converts all uses of
SCHED_LOAD_SCALE for scaling cpu_power to use SCHED_POWER_SCALE
instead.
This is a preparatory patch for increasing the resolution of
SCHED_LOAD_SCALE, and there is no need to increase resolution
for cpu_power calculations.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Stephan Barwolf <stephan.baerwolf@tu-ilmenau.de>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/1305738580-9924-3-git-send-email-ncrao@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a task in a taskgroup sleeps, pick_next_task starts all the way back at
the root and picks the task/taskgroup with the min vruntime across all
runnable tasks.
But when there are many frequently sleeping tasks across different taskgroups,
it makes better sense to stay with same taskgroup for its slice period (or
until all tasks in the taskgroup sleeps) instead of switching cross taskgroup
on each sleep after a short runtime.
This helps specifically where taskgroups corresponds to a process with
multiple threads. The change reduces the number of CR3 switches in this case.
Example:
Two taskgroups with 2 threads each which are running for 2ms and
sleeping for 1ms. Looking at sched:sched_switch shows:
BEFORE: taskgroup_1 threads [5004, 5005], taskgroup_2 threads [5016, 5017]
cpu-soaker-5004 [003] 3683.391089
cpu-soaker-5016 [003] 3683.393106
cpu-soaker-5005 [003] 3683.395119
cpu-soaker-5017 [003] 3683.397130
cpu-soaker-5004 [003] 3683.399143
cpu-soaker-5016 [003] 3683.401155
cpu-soaker-5005 [003] 3683.403168
cpu-soaker-5017 [003] 3683.405170
AFTER: taskgroup_1 threads [21890, 21891], taskgroup_2 threads [21934, 21935]
cpu-soaker-21890 [003] 865.895494
cpu-soaker-21935 [003] 865.897506
cpu-soaker-21934 [003] 865.899520
cpu-soaker-21935 [003] 865.901532
cpu-soaker-21934 [003] 865.903543
cpu-soaker-21935 [003] 865.905546
cpu-soaker-21891 [003] 865.907548
cpu-soaker-21890 [003] 865.909560
cpu-soaker-21891 [003] 865.911571
cpu-soaker-21890 [003] 865.913582
cpu-soaker-21891 [003] 865.915594
cpu-soaker-21934 [003] 865.917606
Similar problem is there when there are multiple taskgroups and say a task A
preempts currently running task B of taskgroup_1. On schedule, pick_next_task
can pick an unrelated task on taskgroup_2. Here it would be better to give some
preference to task B on pick_next_task.
A simple (may be extreme case) benchmark I tried was tbench with 2 tbench
client processes with 2 threads each running on a single CPU. Avg throughput
across 5 50 sec runs was:
BEFORE: 105.84 MB/sec
AFTER: 112.42 MB/sec
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302802253-25760-1-git-send-email-venki@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make set_*_buddy() work on non-task sched_entity, to facilitate the
use of next_buddy to cache a group entity in cases where one of the
tasks within that entity sleeps or gets preempted.
set_skip_buddy() was incorrectly comparing the policy of task that is
yielding to be not equal to SCHED_IDLE. Yielding should happen even
when task yielding is SCHED_IDLE. This change removes the policy check
on the yielding task.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302744070-30079-2-git-send-email-venki@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to avoid reading partial updated min_vruntime values on 32bit
implement a seqcount like solution.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.111378493@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In preparation of calling this without rq->lock held, remove the
dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.071474242@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In preparation of calling select_task_rq() without rq->lock held, drop
the dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.031077745@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Don't use sd->level for identifying properties of the domain.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.350174079@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of relying on static allocations for the sched_domain and
sched_group trees, dynamically allocate and RCU free them.
Allocating this dynamically also allows for some build_sched_groups()
simplification since we can now (like with other simplifications) rely
on the sched_domain tree instead of hard-coded knowledge.
One tricky to note is that detach_destroy_domains() needs to hold
rcu_read_lock() over the entire tear-down, per-cpu is not sufficient
since that can lead to partial sched_group existance (could possibly
be solved by doing the tear-down backwards but this is much more
robust).
A concequence of the above is that we can no longer print the
sched_domain debug stuff from cpu_attach_domain() since that might now
run with preemption disabled (due to classic RCU etc.) and
sched_domain_debug() does some GFP_KERNEL allocations.
Another thing to note is that we now fully rely on normal RCU and not
RCU-sched, this is because with the new and exiting RCU flavours we
grew over the years BH doesn't necessarily hold off RCU-sched grace
periods (-rt is known to break this). This would in fact already cause
us grief since we do sched_domain/sched_group iterations from softirq
context.
This patch is somewhat larger than I would like it to be, but I didn't
find any means of shrinking/splitting this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.245307941@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The scheduler load balancer has specific code to deal with cases of
unbalanced system due to lots of unmovable tasks (for example because of
hard CPU affinity). In those situation, it excludes the busiest CPU that
has pinned tasks for load balance consideration such that it can perform
second 2nd load balance pass on the rest of the system.
This all works as designed if there is only one cgroup in the system.
However, when we have multiple cgroups, this logic has false positives and
triggers multiple load balance passes despite there are actually no pinned
tasks at all.
The reason it has false positives is that the all pinned logic is deep in
the lowest function of can_migrate_task() and is too low level:
load_balance_fair() iterates each task group and calls balance_tasks() to
migrate target load. Along the way, balance_tasks() will also set a
all_pinned variable. Given that task-groups are iterated, this all_pinned
variable is essentially the status of last group in the scanning process.
Task group can have number of reasons that no load being migrated, none
due to cpu affinity. However, this status bit is being propagated back up
to the higher level load_balance(), which incorrectly think that no tasks
were moved. It kick off the all pinned logic and start multiple passes
attempt to move load onto puller CPU.
To fix this, move the all_pinned aggregation up at the iterator level.
This ensures that the status is aggregated over all task-groups, not just
last one in the list.
Signed-off-by: Ken Chen <kenchen@google.com>
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTi=ernzNawaR5tJZEsV_QVnfxqXmsQ@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In function find_busiest_group(), the sched-domain avg_load isn't
calculated at all if there is a group imbalance within the domain. This
will cause erroneous imbalance calculation.
The reason is that calculate_imbalance() sees sds->avg_load = 0 and it
will dump entire sds->max_load into imbalance variable, which is used
later on to migrate entire load from busiest CPU to the puller CPU.
This has two really bad effect:
1. stampede of task migration, and they won't be able to break out
of the bad state because of positive feedback loop: large load
delta -> heavier load migration -> larger imbalance and the cycle
goes on.
2. severe imbalance in CPU queue depth. This causes really long
scheduling latency blip which affects badly on application that
has tight latency requirement.
The fix is to have kernel calculate domain avg_load in both cases. This
will ensure that imbalance calculation is always sensible and the target
is usually half way between busiest and puller CPU.
Signed-off-by: Ken Chen <kenchen@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/20110408002322.3A0D812217F@elm.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-32, fpu: Fix FPU exception handling on non-SSE systems
x86, hibernate: Initialize mmu_cr4_features during boot
x86-32, NUMA: Fix ACPI NUMA init broken by recent x86-64 change
x86: visws: Fixup irq overhaul fallout
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Clean up rebalance_domains() load-balance interval calculation
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86/mrst/vrtc: Fix boot crash in mrst_rtc_init()
rtc, x86/mrst/vrtc: Fix boot crash in rtc_read_alarm()
* 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
genirq: Fix cpumask leak in __setup_irq()
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf probe: Fix listing incorrect line number with inline function
perf probe: Fix to find recursively inlined function
perf probe: Fix multiple --vars options behavior
perf probe: Fix to remove redundant close
perf probe: Fix to ensure function declared file
Instead of the possible multiple-evaluation of num_online_cpus()
in rebalance_domains() that Linus reported, avoid it altogether
in the normal case since it's implemented with a Hamming weight
function over a cpu bitmask which can be darn expensive for those
with big iron.
This also makes it cleaner, smaller and documents the code.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1301991265.2225.12.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>