737830 Commits

Author SHA1 Message Date
Marc Zyngier
3ddd455653 KVM: arm64: Fix HYP idmap unmap when using 52bit PA
Unmapping the idmap range using 52bit PA is quite broken, as we
don't take into account the right number of PGD entries, and rely
on PTRS_PER_PGD. The result is that pgd_index() truncates the
address, and we end-up in the weed.

Let's introduce a new unmap_hyp_idmap_range() that knows about this,
together with a kvm_pgd_index() helper, which hides a bit of the
complexity of the issue.

Fixes: 98732d1b189b ("KVM: arm/arm64: fix HYP ID map extension to 52 bits")
Reported-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:04:26 +00:00
Marc Zyngier
46fef158f1 KVM: arm/arm64: Fix idmap size and alignment
Although the idmap section of KVM can only be at most 4kB and
must be aligned on a 4kB boundary, the rest of the code expects
it to be page aligned. Things get messy when tearing down the
HYP page tables when PAGE_SIZE is 64K, and the idmap section isn't
64K aligned.

Let's fix this by computing aligned boundaries that the HYP code
will use.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: James Morse <james.morse@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:04:17 +00:00
Marc Zyngier
1bb32a44ae KVM: arm/arm64: Keep GICv2 HYP VAs in kvm_vgic_global_state
As we're about to change the way we map devices at HYP, we need
to move away from kern_hyp_va on an IO address.

One way of achieving this is to store the VAs in kvm_vgic_global_state,
and use that directly from the HYP code. This requires a small change
to create_hyp_io_mappings so that it can also return a HYP VA.

We take this opportunity to nuke the vctrl_base field in the emulated
distributor, as it is not used anymore.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:04:06 +00:00
Marc Zyngier
807a378425 KVM: arm/arm64: Move ioremap calls to create_hyp_io_mappings
Both HYP io mappings call ioremap, followed by create_hyp_io_mappings.
Let's move the ioremap call into create_hyp_io_mappings itself, which
simplifies the code a bit and allows for further refactoring.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:47 +00:00
Marc Zyngier
b4ef04995d KVM: arm/arm64: Demote HYP VA range display to being a debug feature
Displaying the HYP VA information is slightly counterproductive when
using VA randomization. Turn it into a debug feature only, and adjust
the last displayed value to reflect the top of RAM instead of ~0.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:41 +00:00
Marc Zyngier
44a497abd6 KVM: arm/arm64: Do not use kern_hyp_va() with kvm_vgic_global_state
kvm_vgic_global_state is part of the read-only section, and is
usually accessed using a PC-relative address generation (adrp + add).

It is thus useless to use kern_hyp_va() on it, and actively problematic
if kern_hyp_va() becomes non-idempotent. On the other hand, there is
no way that the compiler is going to guarantee that such access is
always PC relative.

So let's bite the bullet and provide our own accessor.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:33 +00:00
Marc Zyngier
a1efdff442 arm64: cpufeatures: Drop the ARM64_HYP_OFFSET_LOW feature flag
Now that we can dynamically compute the kernek/hyp VA mask, there
is no need for a feature flag to trigger the alternative patching.
Let's drop the flag and everything that depends on it.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:31 +00:00
Marc Zyngier
2b4d1606aa arm64: KVM: Dynamically patch the kernel/hyp VA mask
So far, we're using a complicated sequence of alternatives to
patch the kernel/hyp VA mask on non-VHE, and NOP out the
masking altogether when on VHE.

The newly introduced dynamic patching gives us the opportunity
to simplify that code by patching a single instruction with
the correct mask (instead of the mind bending cumulative masking
we have at the moment) or even a single NOP on VHE. This also
adds some initial code that will allow the patching callback
to switch to a more complex patching.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:29 +00:00
Marc Zyngier
ef3935eeeb arm64: insn: Add encoder for bitwise operations using literals
We lack a way to encode operations such as AND, ORR, EOR that take
an immediate value. Doing so is quite involved, and is all about
reverse engineering the decoding algorithm described in the
pseudocode function DecodeBitMasks().

This has been tested by feeding it all the possible literal values
and comparing the output with that of GAS.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:27 +00:00
Marc Zyngier
a264bf3442 arm64: insn: Add N immediate encoding
We're missing the a way to generate the encoding of the N immediate,
which is only a single bit used in a number of instruction that take
an immediate.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:25 +00:00
Marc Zyngier
dea5e2a4c5 arm64: alternatives: Add dynamic patching feature
We've so far relied on a patching infrastructure that only gave us
a single alternative, without any way to provide a range of potential
replacement instructions. For a single feature, this is an all or
nothing thing.

It would be interesting to have a more flexible grained way of patching
the kernel though, where we could dynamically tune the code that gets
injected.

In order to achive this, let's introduce a new form of dynamic patching,
assiciating a callback to a patching site. This callback gets source and
target locations of the patching request, as well as the number of
instructions to be patched.

Dynamic patching is declared with the new ALTERNATIVE_CB and alternative_cb
directives:

	asm volatile(ALTERNATIVE_CB("mov %0, #0\n", callback)
		     : "r" (v));
or
	alternative_cb callback
		mov	x0, #0
	alternative_cb_end

where callback is the C function computing the alternative.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:17 +00:00
Christoffer Dall
2d0e63e030 KVM: arm/arm64: Avoid VGICv3 save/restore on VHE with no IRQs
We can finally get completely rid of any calls to the VGICv3
save/restore functions when the AP lists are empty on VHE systems.  This
requires carefully factoring out trap configuration from saving and
restoring state, and carefully choosing what to do on the VHE and
non-VHE path.

One of the challenges is that we cannot save/restore the VMCR lazily
because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when
emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end
up being delivered as FIQ.

To solve this problem, and still provide fast performance in the fast
path of exiting a VM when no interrupts are pending (which also
optimized the latency for actually delivering virtual interrupts coming
from physical interrupts), we orchestrate a dance of only doing the
activate/deactivate traps in vgic load/put for VHE systems (which can
have ICC_SRE_EL1.SRE cleared when running in the host), and doing the
configuration on every round-trip on non-VHE systems.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:21 +00:00
Christoffer Dall
923a2e30e5 KVM: arm/arm64: Move VGIC APR save/restore to vgic put/load
The APRs can only have bits set when the guest acknowledges an interrupt
in the LR and can only have a bit cleared when the guest EOIs an
interrupt in the LR.  Therefore, if we have no LRs with any
pending/active interrupts, the APR cannot change value and there is no
need to clear it on every exit from the VM (hint: it will have already
been cleared when we exited the guest the last time with the LRs all
EOIed).

The only case we need to take care of is when we migrate the VCPU away
from a CPU or migrate a new VCPU onto a CPU, or when we return to
userspace to capture the state of the VCPU for migration.  To make sure
this works, factor out the APR save/restore functionality into separate
functions called from the VCPU (and by extension VGIC) put/load hooks.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:21 +00:00
Christoffer Dall
771621b0e2 KVM: arm/arm64: Handle VGICv3 save/restore from the main VGIC code on VHE
Just like we can program the GICv2 hypervisor control interface directly
from the core vgic code, we can do the same for the GICv3 hypervisor
control interface on VHE systems.

We do this by simply calling the save/restore functions when we have VHE
and we can then get rid of the save/restore function calls from the VHE
world switch function.

One caveat is that we now write GICv3 system register state before the
potential early exit path in the run loop, and because we sync back
state in the early exit path, we have to ensure that we read a
consistent GIC state from the sync path, even though we have never
actually run the guest with the newly written GIC state.  We solve this
by inserting an ISB in the early exit path.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:21 +00:00
Christoffer Dall
8a43a2b34b KVM: arm/arm64: Move arm64-only vgic-v2-sr.c file to arm64
The vgic-v2-sr.c file now only contains the logic to replay unaligned
accesses to the virtual CPU interface on 16K and 64K page systems, which
is only relevant on 64-bit platforms.  Therefore move this file to the
arm64 KVM tree, remove the compile directive from the 32-bit side
makefile, and remove the ifdef in the C file.

Since this file also no longer saves/restores anything, rename the file
to vgic-v2-cpuif-proxy.c to more accurately describe the logic in this
file.

Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:20 +00:00
Christoffer Dall
75174ba6ca KVM: arm/arm64: Handle VGICv2 save/restore from the main VGIC code
We can program the GICv2 hypervisor control interface logic directly
from the core vgic code and can instead do the save/restore directly
from the flush/sync functions, which can lead to a number of future
optimizations.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:20 +00:00
Christoffer Dall
bb5ed70359 KVM: arm/arm64: Get rid of vgic_elrsr
There is really no need to store the vgic_elrsr on the VGIC data
structures as the only need we have for the elrsr is to figure out if an
LR is inactive when we save the VGIC state upon returning from the
guest.  We can might as well store this in a temporary local variable.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:20 +00:00
Christoffer Dall
b7787e6666 KVM: arm64: Cleanup __activate_traps and __deactive_traps for VHE and non-VHE
To make the code more readable and to avoid the overhead of a function
call, let's get rid of a pair of the alternative function selectors and
explicitly call the VHE and non-VHE functions using the has_vhe() static
key based selector instead, telling the compiler to try to inline the
static function if it can.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall
a2465629b6 KVM: arm64: Configure c15, PMU, and debug register traps on cpu load/put for VHE
We do not have to change the c15 trap setting on each switch to/from the
guest on VHE systems, because this setting only affects guest EL1/EL0
(and therefore not the VHE host).

The PMU and debug trap configuration can also be done on vcpu load/put
instead, because they don't affect how the VHE host kernel can access the
debug registers while executing KVM kernel code.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall
c16c1131fb KVM: arm64: Directly call VHE and non-VHE FPSIMD enabled functions
There is no longer a need for an alternative to choose the right
function to tell us whether or not FPSIMD was enabled for the VM,
because we can simply can the appropriate functions directly from within
the _vhe and _nvhe run functions.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall
d5a21bcc29 KVM: arm64: Move common VHE/non-VHE trap config in separate functions
As we are about to be more lazy with some of the trap configuration
register read/writes for VHE systems, move the logic that is currently
shared between VHE and non-VHE into a separate function which can be
called from either the world-switch path or from vcpu_load/vcpu_put.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall
b9f8ca4db4 KVM: arm64: Defer saving/restoring 32-bit sysregs to vcpu load/put
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers
can be deferred to vcpu load/put on VHE systems because neither
the host kernel nor host userspace uses these registers.

Note that we can't save DBGVCR32_EL2 conditionally based on the state of
the debug dirty flag on VHE after this change, because during
vcpu_load() we haven't calculated a valid debug flag yet, and when we've
restored the register during vcpu_load() we also have to save it during
vcpu_put().  This means that we'll always restore/save the register for
VHE on load/put, but luckily vcpu load/put are called rarely, so saving
an extra register unconditionally shouldn't significantly hurt
performance.

We can also not defer saving FPEXC32_32 because this register only holds
a guest-valid value for 32-bit guests during the exit path when the
guest has used FPSIMD registers and restored the register in the early
assembly handler from taking the EL2 fault, and therefore we have to
check if fpsimd is enabled for the guest in the exit path and save the
register then, for both VHE and non-VHE guests.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall
a892819560 KVM: arm64: Prepare to handle deferred save/restore of 32-bit registers
32-bit registers are not used by a 64-bit host kernel and can be
deferred, but we need to rework the accesses to these register to access
the latest values depending on whether or not guest system registers are
loaded on the CPU or only reside in memory.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall
fc7563b340 KVM: arm64: Defer saving/restoring 64-bit sysregs to vcpu load/put on VHE
Some system registers do not affect the host kernel's execution and can
therefore be loaded when we are about to run a VCPU and we don't have to
restore the host state to the hardware before the time when we are
actually about to return to userspace or schedule out the VCPU thread.

The EL1 system registers and the userspace state registers only
affecting EL0 execution do not need to be saved and restored on every
switch between the VM and the host, because they don't affect the host
kernel's execution.

We mark all registers which are now deffered as such in the
vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most
up-to-date copy is always accessed.

Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu
threads, for example via the GIC emulation, and therefore must be
declared as immediate, which is fine as the guest cannot modify this
value.

The 32-bit sysregs can also be deferred but we do this in a separate
patch as it requires a bit more infrastructure.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall
6d4bd90964 KVM: arm64: Prepare to handle deferred save/restore of ELR_EL1
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall
00536ec476 KVM: arm/arm64: Prepare to handle deferred save/restore of SPSR_EL1
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.

The handling of accessing the various banked SPSRs for 32-bit VMs is a
bit clunky, but this will be improved in following patches which will
first prepare and subsequently implement deferred save/restore of the
32-bit registers, including the 32-bit SPSRs.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall
d47533dab9 KVM: arm64: Introduce framework for accessing deferred sysregs
We are about to defer saving and restoring some groups of system
registers to vcpu_put and vcpu_load on supported systems.  This means
that we need some infrastructure to access system registes which
supports either accessing the memory backing of the register or directly
accessing the system registers, depending on the state of the system
when we access the register.

We do this by defining read/write accessor functions, which can handle
both "immediate" and "deferrable" system registers.  Immediate registers
are always saved/restored in the world-switch path, but deferrable
registers are only saved/restored in vcpu_put/vcpu_load when supported
and sysregs_loaded_on_cpu will be set in that case.

Note that we don't use the deferred mechanism yet in this patch, but only
introduce infrastructure.  This is to improve convenience of review in
the subsequent patches where it is clear which registers become
deferred.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall
8d404c4c24 KVM: arm64: Rewrite system register accessors to read/write functions
Currently we access the system registers array via the vcpu_sys_reg()
macro.  However, we are about to change the behavior to some times
modify the register file directly, so let's change this to two
primitives:

 * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg()
 * Direct array access macro __vcpu_sys_reg()

The accessor macros should be used in places where the code needs to
access the currently loaded VCPU's state as observed by the guest.  For
example, when trapping on cache related registers, a write to a system
register should go directly to the VCPU version of the register.

The direct array access macro can be used in places where the VCPU is
known to never be running (for example userspace access) or for
registers which are never context switched (for example all the PMU
system registers).

This rewrites all users of vcpu_sys_regs to one of the macros described
above.

No functional change.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall
52f6c4f021 KVM: arm64: Change 32-bit handling of VM system registers
We currently handle 32-bit accesses to trapped VM system registers using
the 32-bit index into the coproc array on the vcpu structure, which is a
union of the coproc array and the sysreg array.

Since all the 32-bit coproc indices are created to correspond to the
architectural mapping between 64-bit system registers and 32-bit
coprocessor registers, and because the AArch64 system registers are the
double in size of the AArch32 coprocessor registers, we can always find
the system register entry that we must update by dividing the 32-bit
coproc index by 2.

This is going to make our lives much easier when we have to start
accessing system registers that use deferred save/restore and might
have to be read directly from the physical CPU.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall
0c389d90eb KVM: arm64: Don't save the host ELR_EL2 and SPSR_EL2 on VHE systems
On non-VHE systems we need to save the ELR_EL2 and SPSR_EL2 so that we can
return to the host in EL1 in the same state and location where we issued a
hypercall to EL2, but on VHE ELR_EL2 and SPSR_EL2 are not useful because we
never enter a guest as a result of an exception entry that would be directly
handled by KVM. The kernel entry code already saves ELR_EL1/SPSR_EL1 on
exception entry, which is enough.  Therefore, factor out these registers into
separate save/restore functions, making it easy to exclude them from the VHE
world-switch path later on.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall
4cdecaba01 KVM: arm64: Unify non-VHE host/guest sysreg save and restore functions
There is no need to have multiple identical functions with different
names for saving host and guest state.  When saving and restoring state
for the host and guest, the state is the same for both contexts, and
that's why we have the kvm_cpu_context structure.  Delete one
version and rename the other into simply save/restore.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall
0a62d43314 KVM: arm/arm64: Remove leftover comment from kvm_vcpu_run_vhe
The comment only applied to SPE on non-VHE systems, so we simply remove
it.

Suggested-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall
f837453d0e KVM: arm64: Introduce separate VHE/non-VHE sysreg save/restore functions
As we are about to handle system registers quite differently between VHE
and non-VHE systems.  In preparation for that, we need to split some of
the handling functions between VHE and non-VHE functionality.

For now, we simply copy the non-VHE functions, but we do change the use
of static keys for VHE and non-VHE functionality now that we have
separate functions.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall
2b88104467 KVM: arm64: Rewrite sysreg alternatives to static keys
As we are about to move calls around in the sysreg save/restore logic,
let's first rewrite the alternative function callers, because it is
going to make the next patches much easier to read.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall
060701f04a KVM: arm64: Move userspace system registers into separate function
There's a semantic difference between the EL1 registers that control
operation of a kernel running in EL1 and EL1 registers that only control
userspace execution in EL0.  Since we can defer saving/restoring the
latter, move them into their own function.

The ARMv8 ARM (ARM DDI 0487C.a) Section D10.2.1 recommends that
ACTLR_EL1 has no effect on the processor when running the VHE host, and
we can therefore move this register into the EL1 state which is only
saved/restored on vcpu_put/load for a VHE host.

We also take this chance to rename the function saving/restoring the
remaining system register to make it clear this function deals with
the EL1 system registers.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall
04fef05700 KVM: arm64: Remove noop calls to timer save/restore from VHE switch
The VHE switch function calls __timer_enable_traps and
__timer_disable_traps which don't do anything on VHE systems.
Therefore, simply remove these calls from the VHE switch function and
make the functions non-conditional as they are now only called from the
non-VHE switch path.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall
34f8cdf1df KVM: arm64: Don't deactivate VM on VHE systems
There is no need to reset the VTTBR to zero when exiting the guest on
VHE systems.  VHE systems don't use stage 2 translations for the EL2&0
translation regime used by the host.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall
86d05682b4 KVM: arm64: Remove kern_hyp_va() use in VHE switch function
VHE kernels run completely in EL2 and therefore don't have a notion of
kernel and hyp addresses, they are all just kernel addresses.  Therefore
don't call kern_hyp_va() in the VHE switch function.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall
3f5c90b890 KVM: arm64: Introduce VHE-specific kvm_vcpu_run
So far this is mostly (see below) a copy of the legacy non-VHE switch
function, but we will start reworking these functions in separate
directions to work on VHE and non-VHE in the most optimal way in later
patches.

The only difference after this patch between the VHE and non-VHE run
functions is that we omit the branch-predictor variant-2 hardening for
QC Falkor CPUs, because this workaround is specific to a series of
non-VHE ARMv8.0 CPUs.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall
dc251406bf KVM: arm64: Factor out fault info population and gic workarounds
The current world-switch function has functionality to detect a number
of cases where we need to fixup some part of the exit condition and
possibly run the guest again, before having restored the host state.

This includes populating missing fault info, emulating GICv2 CPU
interface accesses when mapped at unaligned addresses, and emulating
the GICv3 CPU interface on systems that need it.

As we are about to have an alternative switch function for VHE systems,
but VHE systems still need the same early fixup logic, factor out this
logic into a separate function that can be shared by both switch
functions.

No functional change.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall
014c4c77aa KVM: arm64: Improve debug register save/restore flow
Instead of having multiple calls from the world switch path to the debug
logic, each figuring out if the dirty bit is set and if we should
save/restore the debug registers, let's just provide two hooks to the
debug save/restore functionality, one for switching to the guest
context, and one for switching to the host context, and we get the
benefit of only having to evaluate the dirty flag once on each path,
plus we give the compiler some more room to inline some of this
functionality.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall
5742d04912 KVM: arm64: Slightly improve debug save/restore functions
The debug save/restore functions can be improved by using the has_vhe()
static key instead of the instruction alternative.  Using the static key
uses the same paradigm as we're going to use elsewhere, it makes the
code more readable, and it generates slightly better code (no
stack setups and function calls unless necessary).

We also use a static key on the restore path, because it will be
marginally faster than loading a value from memory.

Finally, we don't have to conditionally clear the debug dirty flag if
it's set, we can just clear it.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall
54ceb1bcf8 KVM: arm64: Move debug dirty flag calculation out of world switch
There is no need to figure out inside the world-switch if we should
save/restore the debug registers or not, we might as well do that in the
higher level debug setup code, making it easier to optimize down the
line.

Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall
e72341c512 KVM: arm/arm64: Introduce vcpu_el1_is_32bit
We have numerous checks around that checks if the HCR_EL2 has the RW bit
set to figure out if we're running an AArch64 or AArch32 VM.  In some
cases, directly checking the RW bit (given its unintuitive name), is a
bit confusing, and that's not going to improve as we move logic around
for the following patches that optimize KVM on AArch64 hosts with VHE.

Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing
direct checks of HCR_EL2.RW with the helper.

Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall
bc192ceec3 KVM: arm/arm64: Add kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs
As we are about to move a bunch of save/restore logic for VHE kernels to
the load and put functions, we need some infrastructure to do this.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall
3df59d8dd3 KVM: arm/arm64: Get rid of vcpu->arch.irq_lines
We currently have a separate read-modify-write of the HCR_EL2 on entry
to the guest for the sole purpose of setting the VF and VI bits, if set.
Since this is most rarely the case (only when using userspace IRQ chip
and interrupts are in flight), let's get rid of this operation and
instead modify the bits in the vcpu->arch.hcr[_el2] directly when
needed.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Shih-Wei Li
35a84dec00 KVM: arm64: Move HCR_INT_OVERRIDE to default HCR_EL2 guest flag
We always set the IMO and FMO bits in the HCR_EL2 when running the
guest, regardless if we use the vgic or not.  By moving these flags to
HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of
HCR_EL2 in the world switch code, and we can also soon get rid of the
other one.

This is safe, because even though the IMO and FMO bits control both
taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when
executed at EL1, as long as we ensure that these bits are clear when
running the EL1 host, we're OK, because we reset the HCR_EL2 to only
have the HCR_RW bit set when returning to EL1 on non-VHE systems.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Christoffer Dall
8f17f5e469 KVM: arm64: Rework hyp_panic for VHE and non-VHE
VHE actually doesn't rely on clearing the VTTBR when returning to the
host kernel, and that is the current key mechanism of hyp_panic to
figure out how to attempt to return to a state good enough to print a
panic statement.

Therefore, we split the hyp_panic function into two functions, a VHE and
a non-VHE, keeping the non-VHE version intact, but changing the VHE
behavior.

The vttbr_el2 check on VHE doesn't really make that much sense, because
the only situation where we can get here on VHE is when the hypervisor
assembly code actually called into hyp_panic, which only happens when
VBAR_EL2 has been set to the KVM exception vectors.  On VHE, we can
always safely disable the traps and restore the host registers at this
point, so we simply do that unconditionally and call into the panic
function directly.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Christoffer Dall
4464e210de KVM: arm64: Avoid storing the vcpu pointer on the stack
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch.  We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.

This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.

This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address.  We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().

The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.

Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00
Christoffer Dall
829a586354 KVM: arm/arm64: Move vcpu_load call after kvm_vcpu_first_run_init
Moving the call to vcpu_load() in kvm_arch_vcpu_ioctl_run() to after
we've called kvm_vcpu_first_run_init() simplifies some of the vgic and
there is also no need to do vcpu_load() for things such as handling the
immediate_exit flag.

Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00