According to Section 5.2.10 of ACPI Specification, FACS is optional
in reduced hardware model. Enable the detection for "Hardware-reduced
ACPI support only" build (CONFIG_ACPI_REDUCED_HARDWARE_ONLY=y) also.
Link: ee53ed6b54
Signed-off-by: Jiaqing Zhao <jiaqing.zhao@linux.intel.com>
Link: https://patch.msgid.link/20240827025821.2099068-2-jiaqing.zhao@linux.intel.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 44fc328a1a14b097d92b8be83989e4bf69b6e6cb
The FACS is optional even on hardware reduced platforms, and may exist
for the purpose of communicating the hardware_signature field to provoke
a clean reboot instead of a resume from hibernation.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20240412073530.2222496-2-dwmw2@infradead.org
Signed-off-by: Will Deacon <will@kernel.org>
ACPICA commit 25bddd1824b1e450829468a64bbdcb38074ba3d2
Copyright updates to 2023.
Link: https://github.com/acpica/acpica/commit/25bddd18
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 8ac4e5116f59d6f9ba2fbeb9ce22ab58237a278f
Finish support for the CDAT table, in both the data table compiler and
the disassembler.
Link: https://github.com/acpica/acpica/commit/8ac4e511
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 738d7b0726e6c0458ef93c0a01c0377490888d1e
Affects all source modules and utility signons.
Link: https://github.com/acpica/acpica/commit/738d7b07
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit dfa3feffa8f760b686207d09dc880cd2f26c72af
Currently the pointer to the table is cast to acpi_physical_address and
later cast back to a pointer to be dereferenced. Whether or not this is
supported is implementation-defined.
On CHERI, and thus Arm's experimental Morello prototype architecture,
pointers are represented as capabilities, which are unforgeable bounded
pointers, providing always-on fine-grained spatial memory safety. This
means that any pointer cast to a plain integer will lose all its
associated metadata, and when cast back to a pointer it will give a
null-derived pointer (one that has the same metadata as null but an
address equal to the integer) that will trap on any dereference. As a
result, this is an implementation where acpi_physical_address cannot be
used as a hack to store real pointers.
Thus, alter the lifecycle of table descriptors. Internal physical tables
keep the current behaviour where only the address is set on install, and
the pointer is set on acquire. Virtual tables (internal and external)
now store the pointer on initialisation and use that on acquire (which
will redundantly set *table_ptr to itself, but changing that is both
unnecessary and overly complicated as acpi_tb_acquire_table is called with
both a pointer to a variable and a pointer to Table->Pointer itself).
This requires propagating the (possible) table pointer everywhere in
order to make sure pointers make it through to acpi_tb_acquire_temp_table,
which requires a change to the acpi_install_table interface. Instead of
taking an ACPI_PHYSADDR_TYPE and a boolean indicating whether it's
physical or virtual, it is now split into acpi_install_table (that takes
an external virtual table pointer) and acpi_install_physical_table (that
takes an ACPI_PHYSADDR_TYPE for an internal physical table address).
This also has the benefit of providing a cleaner API.
Link: https://github.com/acpica/acpica/commit/dfa3feff
Signed-off-by: Bob Moore <robert.moore@intel.com>
[ rjw: Adjust the code in tables.c to match interface changes ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This affects all ACPICA source code modules.
ACPICA commit c570953c914437e621dd5f160f26ddf352e0d2f4
Link: https://github.com/acpica/acpica/commit/c570953c
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 8b9c69d0984067051ffbe8526f871448ead6a26b
Link: https://github.com/acpica/acpica/commit/8b9c69d0
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 92ec0935f27e217dff0b176fca02c2ec3d782bb5
ACPI_COMPARE_NAME changed to ACPI_COMPARE_NAMESEG
This clarifies (1) this is a compare on 4-byte namesegs, not
a generic compare. Improves understanding of the code.
Link: https://github.com/acpica/acpica/commit/92ec0935
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 62f4f98e941d86e41969bf2ab5a93b8dc94dc49e
The update includes userspace tool signons.
Link: https://github.com/acpica/acpica/commit/62f4f98e
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
including tool signons.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 45eb6384fb47f4fdc5759f63c47a9b6799924972
Link: https://github.com/acpica/acpica/commit/45eb6384
Signed-off-by: Cao Jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Considering this case:
1. A program opens a sysfs table file 65535 times, it can increase
validation_count and first increment cause the table to be mapped:
validation_count = 65535
2. AML execution causes "Load" to be executed on the same
table, this time it cannot increase validation_count, so
validation_count remains:
validation_count = 65535
3. The program closes sysfs table file 65535 times, it can decrease
validation_count and the last decrement cause the table to be
unmapped:
validation_count = 0
4. AML code still accessing the loaded table, kernel crash can be
observed.
To prevent that from happening, add a validation_count threashold.
When it is reached, the validation_count can no longer be
incremented/decremented to invalidate the table descriptor (means
preventing table unmappings)
Note that code added in acpi_tb_put_table() is actually a no-op but
changes the warning message into a "warn once" one. Lv Zheng.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[ rjw: Changelog, comments ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In the Linux kernel, acpi_get_table() "clones" haven't been fully
balanced by acpi_put_table() invocations. In upstream ACPICA, due to
the design change, there are also unbalanced acpi_get_table_by_index()
invocations requiring special care.
acpi_get_table() reference counting mismatches may occor due to that
and printing error messages related to them is not useful at this
point. The strict balanced validation count check should only be
enabled after confirming that all invocations are safe and aligned
with their designed purposes.
Thus this patch removes the error value returned by acpi_tb_get_table()
in that case along with the accompanying error message to fix the
issue.
Fixes: 174cc7187e6f (ACPICA: Tables: Back port acpi_get_table_with_size() and early_acpi_os_unmap_memory() from Linux kernel)
Cc: 4.10+ <stable@vger.kernel.org> # 4.10+
Reported-by: Anush Seetharaman <anush.seetharaman@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 16577e5265923f4999b4d2c0addb2343b18135e1
Affects all files.
Link: https://github.com/acpica/acpica/commit/16577e52
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit cac6790954d4d752a083e6122220b8a22febcd07
This patch back ports Linux acpi_get_table_with_size() and
early_acpi_os_unmap_memory() into ACPICA upstream to reduce divergences.
The 2 APIs are used by Linux as table management APIs for long time, it
contains a hidden logic that during the early stage, the mapped tables
should be unmapped before the early stage ends.
During the early stage, tables are handled by the following sequence:
acpi_get_table_with_size();
parse the table
early_acpi_os_unmap_memory();
During the late stage, tables are handled by the following sequence:
acpi_get_table();
parse the table
Linux uses acpi_gbl_permanent_mmap to distinguish the early stage and the
late stage.
The reasoning of introducing acpi_get_table_with_size() is: ACPICA will
remember the early mapped pointer in acpi_get_table() and Linux isn't able to
prevent ACPICA from using the wrong early mapped pointer during the late
stage as there is no API provided from ACPICA to be an inverse of
acpi_get_table() to forget the early mapped pointer.
But how ACPICA can work with the early/late stage requirement? Inside of
ACPICA, tables are ensured to be remained in "INSTALLED" state during the
early stage, and they are carefully not transitioned to "VALIDATED" state
until the late stage. So the same logic is in fact implemented inside of
ACPICA in a different way. The gap is only that the feature is not provided
to the OSPMs in an accessible external API style.
It then is possible to fix the gap by providing an inverse of
acpi_get_table() from ACPICA, so that the two Linux sequences can be
combined:
acpi_get_table();
parse the table
acpi_put_table();
In order to work easier with the current Linux code, acpi_get_table() and
acpi_put_table() is implemented in a usage counting based style:
1. When the usage count of the table is increased from 0 to 1, table is
mapped and .Pointer is set with the mapping address (VALIDATED);
2. When the usage count of the table is decreased from 1 to 0, .Pointer
is unset and the mapping address is unmapped (INVALIDATED).
So that we can deploy the new APIs to Linux with minimal effort by just
invoking acpi_get_table() in acpi_get_table_with_size() and invoking
acpi_put_table() in early_acpi_os_unmap_memory(). Lv Zheng.
Link: https://github.com/acpica/acpica/commit/cac67909
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c160cae765412f5736cf88a9ebcc6138aa761a48
Linux uses asmlinkage and sparse macros to mark function symbols. This
leads to the divergences between the Linux and the ACPICA.
This patch ports such declarators back to ACPICA. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/c160cae7
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit ba60e4500053010bf775d58f6f61febbdb94d817
New file is utascii.c
Link: https://github.com/acpica/acpica/commit/ba60e450
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit b2294cae776f5a66a7697414b21949d307e6856f
This patch removes unwanted spaces for typedef. This solution doesn't cover
function types.
Note that the linuxize result of this commit is very giant and should have
many conflicts against the current Linux upstream. Thus it is required to
modify the linuxize result of this commit and the commits around it
manually in order to have them merged to the Linux upstream. Since this is
very costy, we should do this only once, and if we can't ensure to do this
only once, we need to revert the Linux code to the wrong indentation result
before merging the linuxize result of this commit. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/b2294cae
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 181f56605a771e0b91e24b0648d2565ca70bea20
This is used as a purely infomation message, without module name
and line number information. Therefore, these arguments are
not needed and they are unnecessary overhead.
Arguments are removed.
ACPICA BZ 872.
Link: https://github.com/acpica/acpica/commit/181f5660
Link: https://bugs.acpica.org/show_bug.cgi?id=872
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
All tool/utility signons.
Dual-license module header.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 3a6f2a516dd35a4daacbc5b5144d1db763ff2cb0
Improve and cleanup verification of ACPI tables within input files.
Share more code between the disassembler and acpiexec.
This patch only affects application debugger commands, thus it is a
no-op chage for Linux kernel.
Link: https://github.com/acpica/acpica/commit/3a6f2a51
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit dfa394471f6c01b2ee9433dbc143ec70cb9bca72
Mostly indentation inconsistencies across the code. Split
some long lines, etc.
Link: https://github.com/acpica/acpica/commit/dfa39447
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some logics actually relying on the existence of FADT, currently relies on
the number of loaded tables. This false dependency can easily trigger
regressions. One of them has been introduced by commit 8ec3f459073e
(ACPICA: Tables: Fix global table list issues by removing fixed table).
The commit changing the fixed table indexes results in the change of FADT
table index, originally, it was 3 (thus the installed table count should be
greater than 4), while currently it is 0 (and the installed table count may
be 3).
This patch fixes this regression by cleaning up the code. Lv Zheng.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=105351
Fixes: 8ec3f459073e (ACPICA: Tables: Fix global table list issues by removing fixed table)
Reported-and-tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 3f42ba76e2a0453976d3108296d5f656fdf2bd6e
In this patch, FACS table mapping is also tuned a bit so that only the
selected FACS table will be mapped by the OSPM (mapped on demand) and the
FACS related global variables can be reduced. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/3f42ba76
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c0b38b4c3982c2336ee92a2a14716107248bd941
The fixed table indexes leave holes in the global table list:
1. One hole can be seen when there is only 1 FACS provided by the BIOS.
2. Tow holes can be seen when it is a reduced hardware platform.
The holes do not break OSPMs but have broken ACPI debugger "tables"
command.
Also the "fixed table indexes" mechanism may make the descriptors of the
standard tables installed earlier than DSDT to be overwritten by the
descriptors of the fixed tables. For example, FACP disappears from the
global table list after DSDT is installed.
This patch fixes all above issues by removing the "fixed table indexes"
mechanism which is too complicated to be maintained in a regression safe
manner. After removal, the table loader will determine the indexes of the
fixed tables. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/c0b38b4c
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 51ab555e60b4a3de3cc4a846e86d0de255be441a
Add additional validation for the table signature and
the OEM strings. Eliminates buffer read overrun in data_table_region.
ACPICA BZ 1184.
Link: https://bugs.acpica.org/show_bug.cgi?id=1184
Link: https://github.com/acpica/acpica/commit/51ab555e
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 3b1026e0bdd3c32eb6d5d313f3ba0b1fee7597b4
ACPICA commit 00f0dc83f5cfca53b27a3213ae0d7719b88c2d6b
ACPICA commit 47d22a738d0e19fd241ffe4e3e9d4e198e4afc69
Across all of ACPICA. Replace C library macros such as ACPI_STRLEN with the
standard names such as strlen. The original purpose for these macros is
long since obsolete.
Also cast various invocations as necessary. Bob Moore, Jung-uk Kim, Lv Zheng.
Link: https://github.com/acpica/acpica/commit/3b1026e0
Link: https://github.com/acpica/acpica/commit/00f0dc83
Link: https://github.com/acpica/acpica/commit/47d22a73
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Jung-uk Kim <jkim@FreeBSD.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 368eb60778b27b6ae94d3658ddc902ca1342a963
ACPICA commit 70f62a80d65515e1285fdeeb50d94ee6f07df4bd
ACPICA commit a04dbfa308a48ab0b2d10519c54a6c533c5c8949
ACPICA commit ebd544ed24c5a4faba11f265e228b7a821a729f5
The following commit is reported to have broken s2ram on some platforms:
Commit: 0249ed2444d65d65fc3f3f64f398f1ad0b7e54cd
ACPICA: Add option to favor 32-bit FADT addresses.
The platform reports 2 FACS tables (which is not allowed by ACPI
specification) and the new 32-bit address favor rule forces OSPMs to use
the FACS table reported via FADT's X_FIRMWARE_CTRL field.
The root cause of the reported bug might be one of the followings:
1. BIOS may favor the 64-bit firmware waking vector address when the
version of the FACS is greater than 0 and Linux currently only supports
resuming from the real mode, so the 64-bit firmware waking vector has
never been set and might be invalid to BIOS while the commit enables
higher version FACS.
2. BIOS may favor the FACS reported via the "FIRMWARE_CTRL" field in the
FADT while the commit doesn't set the firmware waking vector address of
the FACS reported by "FIRMWARE_CTRL", it only sets the firware waking
vector address of the FACS reported by "X_FIRMWARE_CTRL".
This patch excludes the cases that can trigger the bugs caused by the root
cause 2.
There is no handshaking mechanism can be used by OSPM to tell BIOS which
FACS is currently used. Thus the FACS reported by "FIRMWARE_CTRL" may still
be used by BIOS and the 0 value of the 32-bit firmware waking vector might
trigger such failure.
This patch enables the firmware waking vectors for both 32bit/64bit FACS
tables in order to ensure we can exclude the cases that trigger the bugs
caused by the root cause 2. The exclusion is split into 2 commits so that
if it turns out not to be necessary, this single commit can be reverted
without affecting the useful one. Lv Zheng, Bob Moore.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=74021
Link: https://github.com/acpica/acpica/commit/368eb607
Link: https://github.com/acpica/acpica/commit/70f62a80
Link: https://github.com/acpica/acpica/commit/a04dbfa3
Link: https://github.com/acpica/acpica/commit/ebd544ed
Reported-and-tested-by: Oswald Buddenhagen <ossi@kde.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit f7b86f35416e3d1f71c3d816ff5075ddd33ed486
The following commit is reported to have broken s2ram on some platforms:
Commit: 0249ed2444d65d65fc3f3f64f398f1ad0b7e54cd
ACPICA: Add option to favor 32-bit FADT addresses.
The platform reports 2 FACS tables (which is not allowed by ACPI
specification) and the new 32-bit address favor rule forces OSPMs to use
the FACS table reported via FADT's X_FIRMWARE_CTRL field.
The root cause of the reported bug might be one of the followings:
1. BIOS may favor the 64-bit firmware waking vector address when the
version of the FACS is greater than 0 and Linux currently only supports
resuming from the real mode, so the 64-bit firmware waking vector has
never been set and might be invalid to BIOS while the commit enables
higher version FACS.
2. BIOS may favor the FACS reported via the "FIRMWARE_CTRL" field in the
FADT while the commit doesn't set the firmware waking vector address of
the FACS reported by "FIRMWARE_CTRL", it only sets the firware waking
vector address of the FACS reported by "X_FIRMWARE_CTRL".
This patch excludes the cases that can trigger the bugs caused by the root
cause 2.
There is no handshaking mechanism can be used by OSPM to tell BIOS which
FACS is currently used. Thus the FACS reported by "FIRMWARE_CTRL" may still
be used by BIOS and the 0 value of the 32-bit firmware waking vector might
trigger such failure.
This patch tries to favor 32bit FACS address in another way where both the
FACS reported by "FIRMWARE_CTRL" and the FACS reported by "X_FIRMWARE_CTRL"
are loaded so that further commit can set firmware waking vector in the
both tables to ensure we can exclude the cases that trigger the bugs caused
by the root cause 2. The exclusion is split into 2 commits as this commit
is also useful for dumping more ACPI tables, it won't get reverted when
such exclusion is no longer necessary. Lv Zheng.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=74021
Link: https://github.com/acpica/acpica/commit/f7b86f35
Cc: 3.14.1+ <stable@vger.kernel.org> # 3.14.1+
Reported-and-tested-by: Oswald Buddenhagen <ossi@kde.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 8990e73ab2aa15d6a0068b860ab54feff25bee36
Link: https://github.com/acpica/acpica/commit/8990e73a
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that Linux x86 kernel cannot map large tables. The following
large SSDT table on such platform fails to pass checksum verification and
cannot be installed:
ACPI: SSDT 0x00000000B9638018 07A0C4 (v02 INTEL S2600CP 00004000 INTL 20100331)
It sounds strange that in the 64-bit virtual memory address space, we
cannot map a single ACPI table to do checksum verification. The root cause
is:
1. ACPICA doesn't split IO memory mapping and table mapping;
2. Linux x86 OSL implements acpi_os_map_memory() using a size limited fix-map
mechanism during early boot stage, which is more suitable for only IO
mappings.
ACPICA originally only mapped table header for signature validation, and
this header mapping is required by OSL override mechanism. There was no
checksum verification because we could not map the whole table using this
OSL. While the following ACPICA commit enforces checksum verification by
mapping the whole table during Linux boot stage and it finally triggers
this issue on some platforms:
Commit: 86dfc6f339886559d80ee0d4bd20fe5ee90450f0
Subject: ACPICA: Tables: Fix table checksums verification before installation.
Before doing further cleanups for the OSL table mapping and override
implementation, this patch introduces an option for such OSPMs to
temporarily discard the checksum verification feature. It then can be
re-enabled easily when the ACPICA and the underlying OSL is ready.
This patch also deletes a comment around the limitation of mappings because
it is not correct. The limitation is not how many times we can map in the
early stage, but the OSL mapping facility may not be suitable for mapping
the ACPI tables and thus may complain us the size limitation.
The acpi_tb_verify_table() is renamed to acpi_tb_verify_temp_table() due to the
work around added, it now only applies to the table descriptor that hasn't
been installed and cannot be used in other cases. Lv Zheng.
Tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the NULL entry sanity check implemented, the XSDT validation is
useless because:
1. If XSDT contains NULL entries, it can be bypassed by the new sanity
check mechanism;
2. If RSDP contains a bad XSDT address, invoking XSDT validation will still
lead to a kernel crash.
This patch deletes the old XSDT validation solution and thus enables the
new NULL entry sanity check solution.
Note that if there are reports reporting regressions caused by the enabling
of the new feature and disabling of the old feature, this commit should be
bisected and reverted. Lv Zheng.
References: https://bugzilla.kernel.org/show_bug.cgi?id=73911
References: https://bugs.archlinux.org/task/39811
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reported-and-tested-by: Bruce Chiarelli <mano155@gmail.com>
Reported-and-tested-by: Spyros Stathopoulos <spystath@gmail.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that there are buggy BIOSes in the world: AMI uses an XSDT
compiler for early BIOSes, this compiler will generate XSDT with a NULL
entry. The affected BIOS versions are "AMI BIOS F2-F4".
Original solution on Linux is to use an alternative heathy root table
instead of the ill one. This commit is:
Commit: 671cc68dc61f029d44b43a681356078e02d8dab8
Subject: ACPICA: Back port and refine validation of the XSDT root table.
This is an example of such XSDT dumped from B85-HD3 (AMI F3 BIOS):
[000h 0000 4] Signature : "XSDT" [Extended System Description Table]
[004h 0004 4] Table Length : 00000074
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : 18
[00Ah 0010 6] Oem ID : "ALASKA"
[010h 0016 8] Oem Table ID : "A M I"
[018h 0024 4] Oem Revision : 01072009
[01Ch 0028 4] Asl Compiler ID : "AMI "
[020h 0032 4] Asl Compiler Revision : 00010013
[024h 0036 8] ACPI Table Address 0 : 00000000BA5F8180
[02Ch 0044 8] ACPI Table Address 1 : 00000000BA5F8290
[034h 0052 8] ACPI Table Address 2 : 00000000BA5F8308
[03Ch 0060 8] ACPI Table Address 3 : 00000000BA5F8848
[044h 0068 8] ACPI Table Address 4 : 00000000BA5F9320
[04Ch 0076 8] ACPI Table Address 5 : 00000000BA5F9360
[054h 0084 8] ACPI Table Address 6 : 00000000BA5F9398
[05Ch 0092 8] ACPI Table Address 7 : 00000000BA5F9708
[064h d100 8] ACPI Table Address 8 : 00000000BA5FC9A8
[06Ch 0108 8] ACPI Table Address 9 : 0000000000000000
But according to the bug report, the XSDT in fact is not broken. In the
above XSDT, ACPI Table Address 1-8 contains the same value as RSDT. The
differences can only be seen on the following 2 entries:
1. The first entry points to a FADT whose Revision is 5 while the first
entry in RSDT points to a FADT whose Revision is 2.
The FADT dumped from the address indicated by the first entry of XSDT:
FACP @ 0x00000000BA5F8180
0000: 46 41 43 50 0C 01 00 00<05>4B 41 4C 41 53 4B 41 FACP.....KALASKA
...
The FADT dumped from the address indicated by the first entry of RSDT:
FACP @ 0x00000000BA5ED0F0
0000: 46 41 43 50 84 00 00 00<02>A7 41 4C 41 53 4B 41 FACP......ALASKA
...
2. The last entry is a NULL terminator.
According to the test result, the Revision 5 FADT is accessible. Thus the
original solution turns out to be a work around that is preventing the
higher revision tables to be used for such platforms (they are all x86-64
platforms, and should use XSDT and higher revision FADT).
This patch offers a new solution, where a sanity check is performed before
installing a table address from XSDT. If the entry is NULL, it is simply
discarded.
Note that, this patch doesn't remove the original solution, so for Linux
kernel, this commit is actually a no-op, but it allows acpidump to be
working on such platforms. By doing so, we allow another easy revertable
commit to enable this feature so that when that commit is reverted, the
useful sanity check will not be affected. Lv Zheng.
References: https://bugzilla.kernel.org/show_bug.cgi?id=73911
References: https://bugs.archlinux.org/task/39811
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reported-and-tested-by: Bruce Chiarelli <mano155@gmail.com>
Reported-and-tested-by: Spyros Stathopoulos <spystath@gmail.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Linux XSDT validation mechanism backport has introduced a regreession:
Commit: 671cc68dc61f029d44b43a681356078e02d8dab8
Subject: ACPICA: Back port and refine validation of the XSDT root table.
There is a pointer still accessed after unmapping.
This patch fixes this issue. Lv Zheng.
Fixes: 671cc68dc61f (ACPICA: Back port and refine validation of the XSDT root table.)
References: https://bugzilla.kernel.org/show_bug.cgi?id=73911
References: https://bugs.archlinux.org/task/39811
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reported-and-tested-by: Bruce Chiarelli <mano155@gmail.com>
Reported-and-tested-by: Spyros Stathopoulos <spystath@gmail.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some various cleanups and renames.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds a new API - acpi_install_table(). OSPMs can use this API
to install tables during early boot stage. Lv Zheng.
References: https://lkml.org/lkml/2014/2/28/372
Cc: Thomas Renninger <trenn@suse.de>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch refines ACPI_TABLE_ORIGIN_xxx flags. No functional changes.
The previous commits have introduced the following internal APIs:
1. acpi_tb_acquire_table: Acquire struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
2. acpi_tb_release_table: Release struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
3. acpi_tb_install_table: Make struct acpi_table_desc.Address not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
4. acpi_tb_uninstall_table: Make struct acpi_table_desc.Address NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
5. acpi_tb_validate_table: Make struct acpi_table_desc.Pointer not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
6. acpi_tb_invalidate_table: Make struct acpi_table_desc.Pointer NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
It thus detects that the ACPI_TABLE_ORIGIN_UNKNOWN is redundant to
ACPI_TABLE_ORIGIN_OVERRIDE.
The ACPI_TABLE_ORIGIN_xxTERN_VIRTUAL flags are named as VIRTUAL in order
not to confuse with x86 logical address, this patch also renames all
"logical override" into "virtual override".
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The original table handling code does not always verify checksums before
installing a table, this is because code to achieve this must be
implemented here and there in the redundant code blocks.
There are two stages during table initialization:
1. "INSTALLED" after acpi_tb_install_table() and acpi_tb_override_table(),
struct acpi_table_desc.Pointer is ensured to be NULL. This can be safely used
during OSPM's early boot stage.
2. "VALIDATED" after acpi_tb_validate_table(), struct acpi_table_desc.Pointer is
ensured to be not NULL. This must not be used during OSPM's early boot
stage.
This patch changes acpi_tb_add_table() into an early boot safe API to reduce
code redundancies by changing the table state that is returned by this
function from "VALIDATED" to "INSTALLED". Then the table verification
code can be done in a single place. Originally, the acpi_tb_add_table() can
only be used by dynamic table loadings that are executed after early boot
stage, it cannot be used by static table loadings that are executed in
early boot stage as:
1. The address of the table is a virtual address either maintained by
OSPMs who call acpi_load_table() or by ACPICA whenever "Load" or
"LoadTable" opcodes are executed, while during early boot stage,
physical address of the table should be used for table loading.
2. The API will ensure the state of the loaded table to be "VALIDATED"
while during early boot stage, tables maintained by root table list
should be kept as "INSTALLED".
To achieve this:
1. Rename acpi_tb_install_table() to acpi_tb_install_fixed_table() as it only
applies to DSDT/FACS installation. Rename acpi_tb_add_table() to
acpi_tb_install_non_fixed_table() as it will be applied to the installation
of the rest kinds of tables.
2. Introduce acpi_tb_install_table(), acpi_tb_install_and_override_table to collect
redudant code where their invocations actually have slight differences.
1. acpi_tb_install_table() is used to fill an struct acpi_table_desc where the
table length is known to the caller.
2. acpi_tb_install_and_override_table() is used to perform necessary
overriding before installation.
3. Change a parameter of acpi_tb_install_non_fixed_table() from struct acpi_table_desc
to acpi_physical_address to allow it to be invoked by static table
loadings. Also cleanup acpi_ex_load_op() and acpi_load_table() to accomodate
to the parameter change.
4. Invoke acpi_tb_install_non_fixed_table() for all table loadings other than
DSDT/FACS in acpi_tb_parse_root_table() to improve code maintainability
(logics are collected in the single function). Also delete useless code
from acpi_tb_parse_root_table().
5. Remove all acpi_tb_validate_table() from acpi_tb_install_non_fixed_table() and
acpi_tb_install_fixed_table() so that the table descriptor is kept in the
state of "INSTALLED" but not "VALIDATED" after returning from these
functions.
6. Introduce temporary struct acpi_table_desc (new_table_desc/old_table_desc) into
the functions to indicate a table descriptor that is not maintained by
acpi_gbl_root_table_list. Introduce acpi_tb_acquire_temporal_table() and
acpi_tb_release_temporal_table() to handle the use cases of such temporal
tables. They are only used for verified installation.
7. Introduce acpi_tb_verify_table() to validate table and verify table
checksum, also remove table checksum verification from
acpi_tb_validate_table(). Invoke acpi_tb_validate_table() in the functions
that will convert a table into "LOADED" state or invoke it from
acpi_get_table_XXX() APIs. Invoke acpi_tb_verify_table() on temporary
struct acpi_table_desc(s) that are going to be "INSTALLED".
8. Change acpi_tb_override_table() logic so that a temporary struct acpi_table_desc
will be overridden before installtion, this makes code simpler.
After applying the patch, tables are always installed after being
overridden and the table checksums are always verified before installation.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch is mainly a naming cleanup to clarify hidden logics, no
functional changes.
acpi_initialize_tables() is used by Linux to install table addresses for
early boot steps. During this stage, table addresses are mapped by
early_ioremap() mechanism which is different from the runtime IO mappings.
Thus it is not safe for ACPICA to keep mapped pointers in struct acpi_table_desc
structure during this stage.
In order to support this in ACPICA, table states are divided into
1. "INSTALLED" (where struct acpi_table_desc.Pointer is always NULL) and
2. "VALIDATED" (where struct acpi_table_desc.Pointer is always not NULL).
During acpi_initialize_tables(), table state are ensured to be "INSTALLED"
but not "VALIDATED". This logic is ensured by the original code in very
ambigious way. For example, currently acpi_tb_delete_table() is invoked in
some place to perform an uninstallation while it is invoked in other place
to perform an invalidation. They happen to work just because no one enters
the penalty where the 2 behaviours are not equivalent.
The naming cleanups are made in this patch:
A. For installation and validation:
There is code setting struct acpi_table_desc.Pointer first and delete it
immediately to keep the descriptor's state as "INSTALLED" during the
installation. This patch implements this in more direct way. After
applying it, struct acpi_table_desc.Pointer will never be set in
acpi_tb_install_table() and acpi_tb_override_table() as they are the only
functions invoked during acpi_initialize_tables(). This is achieved by:
1. Rename acpi_tb_verify_table() to acpi_tb_validate_table() to clarify this
change.
2. Rename acpi_tb_table_override() to acpi_tb_override_table() to keep nameing
consistencies as other APIs (verb. Table).
3. Stops setting struct acpi_table_desc.Pointer in acpi_tb_install_table() and
acpi_tb_table_override().
4. Introduce acpi_tb_acquire_table() to acquire the table pointer that is not
maintained in the struct acpi_table_desc of the global root table list and
rewrite acpi_tb_validate_table() using this new function to reduce
redundancies.
5. Replace the table pointer using the overridden table pointer in
acpi_tb_add_table(). As acpi_tb_add_table() is not invoked during early boot
stage, tables returned from this functions should be "VALIDATED". As
acpi_tb_override_table() is modified by this patch to return a "INSTALLED"
but not "VALIDATED" descriptor, to keep acpi_tb_add_table() unchanged,
struct acpi_table_desc.Pointer is filled in acpi_tb_add_table().
B. For invalidation and uninstallation:
The original code invalidate table by invoking acpi_tb_delete_table() here
and there, but actually this function should only be used to uninstall
tables. This can work just because its invocations are equivalent to
invalidation in some cases.
This patch splits acpi_tb_delete_table() into acpi_tb_invalidate_table() and
acpi_tb_uninstall_table() and cleans up the hidden logic using the new
APIs. This is achieved by:
1. Rename acpi_tb_delete_table() to acpi_tb_uninstall_table() as it is mainly
called before resetting struct acpi_table_desc.Address. Thus the table
descriptor is in "not INSTALLED" state. This patch enforces this by
setting struct acpi_table_desc.Address to NULL in this function.
2. Introduce acpi_tb_invalidate_table() to be the reversal of
acpi_tb_validate_table() and invoke it in acpi_tb_uninstall_table().
3. Introduce acpi_tb_release_table() to release the table pointer that is not
maintained in acpi_gbl_root_table_list and rewrite acpi_tb_invalidate_table()
using this new function to reduce redundancies.
After cleaning up, the maintainability of the internal APIs are also
improved:
1. acpi_tb_acquire_table: Acquire struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
2. acpi_tb_release_table: Release struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
3. acpi_tb_install_table: Make struct acpi_table_desc.Address not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
4. acpi_tb_uninstall_table: Make struct acpi_table_desc.Address NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
5. acpi_tb_validate_table: Make struct acpi_table_desc.Pointer not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
6. acpi_tb_invalidate_table: Make struct acpi_table_desc.Pointer NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
7. acpi_tb_override_table: Replace struct acpi_table_desc.Address and
struct acpi_table_desc.Flags. It only happens in
"INSTALLED" state.
The patch has been unit tested in acpi_exec by:
1. Initializing;
2. Executing exc_tbl ASLTS tests;
3. Executing "Load" command.
So that all original acpi_tb_install_table() and acpi_tb_override_table()
invocations are covered.
Known Issues:
1. Cleanup acpi_tb_add_table() to Kill Code Redundancies
Current implementation in acpi_tb_add_table() is not very clean, further
patch can rewrite acpi_tb_add_table() with ordered acpi_tb_install_table(),
acpi_tb_override_table() and acpi_tb_validate_table(). It is not done in this
patch so that it is easy for the reviewers to understand the changes in
this patch.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When table is overridden or reloaded, acpi_tb_delete_table() is called where
struct acpi_table_desc.Pointer will be NULL. It thus is impossible for virtual
addressed tables to obtain the .Pointer again in acpi_tb_verify_table().
This patch stores virtual table addresses (ACPI_TABLE_ORIGIN_ALLOCATED,
ACPI_TABLE_ORIGIN_UNKNOWN, ACPI_TABLE_ORIGIN_OVERRIDE) in the
struct acpi_table_desc.Address field and refills the struct acpi_table_desc.Pointer
using these addresses in acpi_tb_verify_table(). Note that if a table with
ACPI_TABLE_ORIGIN_ALLOCATED set is actually freed, the .Address field
should be invalidated and thus must be replaced with NULL to avoid wrong
future validations occuring in acpi_tb_verify_table().
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The divergences in the ACPICA files makes it difficult to maintain linuxize
ACPICA table commits. This patch reduces such divergences before applying
table manager commits so that human interventions of patch rebasing can be
reduced.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Update ACPICA copyrights to 2014. Includes all source headers and
signons for the various tools.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This change adds a runtime option that will force ACPICA to use the
RSDT instead of the XSDT. Although the ACPI spec requires that an XSDT
be used instead of the RSDT, the XSDT has been found to be corrupt or
ill-formed on some machines.
This option is already in the Linux kernel. When it is back ported to
ACPICA, code is re-written to follow ACPICA coding style. This patch
is the generation of the integration.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some platforms contain an XSDT that is ill-formed or otherwise invalid
(such as containing some or all entries that are NULL pointers).
This change adds a new function to validate the XSDT before actually
using it. If the XSDT is found to be invalid, ACPICA will now fall
back to using the RSDT instead.
This feature is already in the Linux kernel. When it is back ported to
ACPICA, code is refined to follow ACPICA coding style and this patch
is the generation of the integration.
Original-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds __init to the ACPICA documented initializers:
acpi_initialize_tables()
acpi_initialize_subsystem()
acpi_load_tables()
acpi_enable_subsystem()
acpi_initialize_objects()
and to acpi_reallocate_root_table(), acpi_find_root_pointer() which
are also meant to be called only during initialization.
This patch adds __init to the ACPICA documented finalizer:
acpi_terminate()
as this finalizer is only called in __init function now.
This change helps to reduce source code differences between
ACPICA upstream and Linux.
[rjw: Changelog]
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>