1076669 Commits

Author SHA1 Message Date
Muchun Song
d8d55f5616 mm: sparsemem: use page table lock to protect kernel pmd operations
The init_mm.page_table_lock is used to protect kernel page tables, we
can use it to serialize splitting vmemmap PMD mappings instead of mmap
write lock, which can increase the concurrency of vmemmap_remap_free().

Actually, It increase the concurrency between allocations of HugeTLB
pages.  But it is not the only benefit.  There are a lot of users of
mmap read lock of init_mm.  The mmap write lock is holding through
vmemmap_remap_free(), removing mmap write lock usage to make it does not
affect other users of mmap read lock.  It is not making anything worse
and always a win to move.

Now the kernel page table walker does not hold the page_table_lock when
walking pmd entries.  There may be consistency issue of a pmd entry,
because pmd entry might change from a huge pmd entry to a PTE page
table.  There is only one user of kernel page table walker, namely
ptdump.  The ptdump already considers the consistency, which use a local
variable to cache the value of pmd entry.  But we also need to update
->action to ACTION_CONTINUE to make sure the walker does not walk every
pte entry again when concurrent thread has split the huge pmd.

Link: https://lkml.kernel.org/r/20211101031651.75851-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:08 -07:00
Muchun Song
a6b40850c4 mm: hugetlb: replace hugetlb_free_vmemmap_enabled with a static_key
The page_fixed_fake_head() is used throughout memory management and the
conditional check requires checking a global variable, although the
overhead of this check may be small, it increases when the memory cache
comes under pressure.  Also, the global variable will not be modified
after system boot, so it is very appropriate to use static key machanism.

Link: https://lkml.kernel.org/r/20211101031651.75851-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:08 -07:00
Muchun Song
e7d324850b mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB page
Patch series "Free the 2nd vmemmap page associated with each HugeTLB
page", v7.

This series can minimize the overhead of struct page for 2MB HugeTLB
pages significantly.  It further reduces the overhead of struct page by
12.5% for a 2MB HugeTLB compared to the previous approach, which means
2GB per 1TB HugeTLB.  It is a nice gain.  Comments and reviews are
welcome.  Thanks.

The main implementation and details can refer to the commit log of patch
1.  In this series, I have changed the following four helpers, the
following table shows the impact of the overhead of those helpers.

	+------------------+-----------------------+
	|       APIs       | head page | tail page |
	+------------------+-----------+-----------+
	|    PageHead()    |     Y     |     N     |
	+------------------+-----------+-----------+
	|    PageTail()    |     Y     |     N     |
	+------------------+-----------+-----------+
	|  PageCompound()  |     N     |     N     |
	+------------------+-----------+-----------+
	|  compound_head() |     Y     |     N     |
	+------------------+-----------+-----------+

	Y: Overhead is increased.
	N: Overhead is _NOT_ increased.

It shows that the overhead of those helpers on a tail page don't change
between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off".  But the
overhead on a head page will be increased when "hugetlb_free_vmemmap=on"
(except PageCompound()).  So I believe that Matthew Wilcox's folio series
will help with this.

The users of PageHead() and PageTail() are much less than compound_head()
and most users of PageTail() are VM_BUG_ON(), so I have done some tests
about the overhead of compound_head() on head pages.

I have tested the overhead of calling compound_head() on a head page,
which is 2.11ns (Measure the call time of 10 million times
compound_head(), and then average).

For a head page whose address is not aligned with PAGE_SIZE or a
non-compound page, the overhead of compound_head() is 2.54ns which is
increased by 20%.  For a head page whose address is aligned with
PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by
40%.  Most pages are the former.  I do not think the overhead is
significant since the overhead of compound_head() itself is low.

This patch (of 5):

This patch minimizes the overhead of struct page for 2MB HugeTLB pages
significantly.  It further reduces the overhead of struct page by 12.5%
for a 2MB HugeTLB compared to the previous approach, which means 2GB per
1TB HugeTLB (2MB type).

After the feature of "Free sonme vmemmap pages of HugeTLB page" is
enabled, the mapping of the vmemmap addresses associated with a 2MB
HugeTLB page becomes the figure below.

     HugeTLB                    struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+---> PG_head
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | -------------> |     1     |
 |           |                     +-----------+                +-----------+
 |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
 |           |                     +-----------+                   | | | | |
 |           |                     |     3     | ------------------+ | | | |
 |           |                     +-----------+                     | | | |
 |           |                     |     4     | --------------------+ | | |
 |    2MB    |                     +-----------+                       | | |
 |           |                     |     5     | ----------------------+ | |
 |           |                     +-----------+                         | |
 |           |                     |     6     | ------------------------+ |
 |           |                     +-----------+                           |
 |           |                     |     7     | --------------------------+
 |           |                     +-----------+
 |           |
 |           |
 |           |
 +-----------+

As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and
remaped. However, the 2nd vmemmap page frame is also can be freed to
the buddy allocator, then we can change the mapping from the figure
above to the figure below.

    HugeTLB                    struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+---> PG_head
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | ---------------^ ^ ^ ^ ^ ^ ^
 |           |                     +-----------+                  | | | | | |
 |           |                     |     2     | -----------------+ | | | | |
 |           |                     +-----------+                    | | | | |
 |           |                     |     3     | -------------------+ | | | |
 |           |                     +-----------+                      | | | |
 |           |                     |     4     | ---------------------+ | | |
 |    2MB    |                     +-----------+                        | | |
 |           |                     |     5     | -----------------------+ | |
 |           |                     +-----------+                          | |
 |           |                     |     6     | -------------------------+ |
 |           |                     +-----------+                            |
 |           |                     |     7     | ---------------------------+
 |           |                     +-----------+
 |           |
 |           |
 |           |
 +-----------+

After we do this, all tail vmemmap pages (1-7) are mapped to the head
vmemmap page frame (0).  In other words, there are more than one page
struct with PG_head associated with each HugeTLB page.  We __know__ that
there is only one head page struct, the tail page structs with PG_head are
fake head page structs.  We need an approach to distinguish between those
two different types of page structs so that compound_head(), PageHead()
and PageTail() can work properly if the parameter is the tail page struct
but with PG_head.

The following code snippet describes how to distinguish between real and
fake head page struct.

	if (test_bit(PG_head, &page->flags)) {
		unsigned long head = READ_ONCE(page[1].compound_head);

		if (head & 1) {
			if (head == (unsigned long)page + 1)
				==> head page struct
			else
				==> tail page struct
		} else
			==> head page struct
	}

We can safely access the field of the @page[1] with PG_head because the
@page is a compound page composed with at least two contiguous pages.

[songmuchun@bytedance.com: restore lost comment changes]

Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:08 -07:00
Miaohe Lin
5c2a956c3e mm/mlock: fix potential imbalanced rlimit ucounts adjustment
user_shm_lock forgets to set allowed to 0 when get_ucounts fails.  So
the later user_shm_unlock might do the extra dec_rlimit_ucounts.  Fix
this by resetting allowed to 0.

Link: https://lkml.kernel.org/r/20220310132417.41189-1-linmiaohe@huawei.com
Fixes: d7c9e99aee48 ("Reimplement RLIMIT_MEMLOCK on top of ucounts")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Vlastimil Babka
1e7a818164 mm, fault-injection: declare should_fail_alloc_page()
The mm/ directory can almost fully be built with W=1, which would help
in local development.  One remaining issue is missing prototype for
should_fail_alloc_page().  Thus add it next to the should_failslab()
prototype.

Note the previous attempt by commit f7173090033c ("mm/page_alloc: make
should_fail_alloc_page() static") had to be reverted by commit
54aa386661fe as it caused an unresolved symbol error with
CONFIG_DEBUG_INFO_BTF=y

Link: https://lkml.kernel.org/r/20220314165724.16071-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
bf6445bc8f mm/memory-failure.c: make non-LRU movable pages unhandlable
We can not really handle non-LRU movable pages in memory failure.
Typically they are balloon, zsmalloc, etc.

Assuming we run into a base (4K) non-LRU movable page, we could reach as
far as identify_page_state(), it should not fall into any category
except me_unknown.

For the non-LRU compound movable pages, they could be taken for
transhuge pages but it's unexpected to split non-LRU movable pages using
split_huge_page_to_list in memory_failure.  So we could just simply make
non-LRU movable pages unhandlable to avoid these possible nasty cases.

Link: https://lkml.kernel.org/r/20220312074613.4798-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
593396b86e mm/memory-failure.c: avoid calling invalidate_inode_page() with unexpected pages
Since commit 042c4f32323b ("mm/truncate: Inline invalidate_complete_page()
into its one caller"), invalidate_inode_page() can invalidate the pages
in the swap cache because the check of page->mapping != mapping is
removed.  But invalidate_inode_page() is not expected to deal with the
pages in swap cache.  Also non-lru movable page can reach here too.
They're not page cache pages.  Skip these pages by checking
PageSwapCache and PageLRU.

Link: https://lkml.kernel.org/r/20220312074613.4798-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
888af2701d mm/memory-failure.c: fix race with changing page compound again
Patch series "A few fixup patches for memory failure", v2.

This series contains a few patches to fix the race with changing page
compound page, make non-LRU movable pages unhandlable and so on.  More
details can be found in the respective changelogs.

There is a race window where we got the compound_head, the hugetlb page
could be freed to buddy, or even changed to another compound page just
before we try to get hwpoison page.  Think about the below race window:

  CPU 1					  CPU 2
  memory_failure_hugetlb
  struct page *head = compound_head(p);
					  hugetlb page might be freed to
					  buddy, or even changed to another
					  compound page.

  get_hwpoison_page -- page is not what we want now...

If this race happens, just bail out.  Also MF_MSG_DIFFERENT_PAGE_SIZE is
introduced to record this event.

[akpm@linux-foundation.org: s@/**@/*@, per Naoya Horiguchi]

Link: https://lkml.kernel.org/r/20220312074613.4798-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220312074613.4798-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
luofei
a06ad3c0c7 mm/hwpoison: add in-use hugepage hwpoison filter judgement
After successfully obtaining the reference count of the huge page, it is
still necessary to call hwpoison_filter() to make a filter judgement,
otherwise the filter hugepage will be unmaped and the related process
may be killed.

Link: https://lkml.kernel.org/r/20220223082254.2769757-1-luofei@unicloud.com
Signed-off-by: luofei <luofei@unicloud.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
luofei
d1fe111fb6 mm/hwpoison: avoid the impact of hwpoison_filter() return value on mce handler
When the hwpoison page meets the filter conditions, it should not be
regarded as successful memory_failure() processing for mce handler, but
should return a distinct value, otherwise mce handler regards the error
page has been identified and isolated, which may lead to calling
set_mce_nospec() to change page attribute, etc.

Here memory_failure() return -EOPNOTSUPP to indicate that the error
event is filtered, mce handler should not take any action for this
situation and hwpoison injector should treat as correct.

Link: https://lkml.kernel.org/r/20220223082135.2769649-1-luofei@unicloud.com
Signed-off-by: luofei <luofei@unicloud.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
a581865ecd mm/hwpoison-inject: support injecting hwpoison to free page
memory_failure() can handle free buddy page.  Support injecting hwpoison
to free page by adding is_free_buddy_page check when hwpoison filter is
disabled.

[akpm@linux-foundation.org: export is_free_buddy_page() to modules]

Link: https://lkml.kernel.org/r/20220218092052.3853-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
b04d3eebeb mm/memory-failure.c: remove unnecessary PageTransTail check
When we reach here, we're guaranteed to have non-compound page as thp is
already splited.  Remove this unnecessary PageTransTail check.

Link: https://lkml.kernel.org/r/20220218090118.1105-9-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
2ab916790f mm/memory-failure.c: remove obsolete comment in __soft_offline_page
Since commit add05cecef80 ("mm: soft-offline: don't free target page in
successful page migration"), set_migratetype_isolate logic is removed.
Remove this obsolete comment.

Link: https://lkml.kernel.org/r/20220218090118.1105-8-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
357670f79e mm/memory-failure.c: rework the try_to_unmap logic in hwpoison_user_mappings()
Only for hugetlb pages in shared mappings, try_to_unmap should take
semaphore in write mode here.  Rework the code to make it clear.

Link: https://lkml.kernel.org/r/20220218090118.1105-7-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
67ff51c6a6 mm/memory-failure.c: remove PageSlab check in hwpoison_filter_dev
Since commit 03e5ac2fc3bf ("mm: fix crash when using XFS on loopback"),
page_mapping() can handle the Slab pages.  So remove this unnecessary
PageSlab check and obsolete comment.

Link: https://lkml.kernel.org/r/20220218090118.1105-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
75ee64b3c9 mm/memory-failure.c: fix race with changing page more robustly
We're only intended to deal with the non-Compound page after we split
thp in memory_failure.  However, the page could have changed compound
pages due to race window.  If this happens, we could retry once to
hopefully handle the page next round.  Also remove unneeded orig_head.
It's always equal to the hpage.  So we can use hpage directly and remove
this redundant one.

Link: https://lkml.kernel.org/r/20220218090118.1105-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
49775047cf mm/memory-failure.c: rework the signaling logic in kill_proc
BUS_MCEERR_AR code is only sent when MF_ACTION_REQUIRED is set and the
target is current.  Rework the code to make this clear.

Link: https://lkml.kernel.org/r/20220218090118.1105-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
a994402bc4 mm/memory-failure.c: catch unexpected -EFAULT from vma_address()
It's unexpected to walk the page table when vma_address() return
-EFAULT.  But dev_pagemap_mapping_shift() is called only when vma
associated to the error page is found already in
collect_procs_{file,anon}, so vma_address() should not return -EFAULT
except with some bug, as Naoya pointed out.  We can use VM_BUG_ON_VMA()
to catch this bug here.

Link: https://lkml.kernel.org/r/20220218090118.1105-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Miaohe Lin
577553f489 mm/memory-failure.c: minor clean up for memory_failure_dev_pagemap
Patch series "A few cleanup and fixup patches for memory failure", v3.

This series contains a few patches to simplify the code logic, remove
unneeded variable and remove obsolete comment.  Also we fix race
changing page more robustly in memory_failure.  More details can be
found in the respective changelogs.

This patch (of 8):

The flags always has MF_ACTION_REQUIRED and MF_MUST_KILL set.  So we do
not need to check these flags again.

Link: https://lkml.kernel.org/r/20220218090118.1105-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220218090118.1105-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Rik van Riel
e53ac7374e mm: invalidate hwpoison page cache page in fault path
Sometimes the page offlining code can leave behind a hwpoisoned clean
page cache page.  This can lead to programs being killed over and over
and over again as they fault in the hwpoisoned page, get killed, and
then get re-spawned by whatever wanted to run them.

This is particularly embarrassing when the page was offlined due to
having too many corrected memory errors.  Now we are killing tasks due
to them trying to access memory that probably isn't even corrupted.

This problem can be avoided by invalidating the page from the page fault
handler, which already has a branch for dealing with these kinds of
pages.  With this patch we simply pretend the page fault was successful
if the page was invalidated, return to userspace, incur another page
fault, read in the file from disk (to a new memory page), and then
everything works again.

Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:07 -07:00
Naoya Horiguchi
046545a661 mm/hwpoison: fix error page recovered but reported "not recovered"
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a
UCNA signature, and the core reporting and SRAR signature machine check
when the data is about to be consumed.

If the CMCI wins that race, the page is marked poisoned when
uc_decode_notifier() calls memory_failure() and the machine check
processing code finds the page already poisoned.  It calls
kill_accessing_process() to make sure a SIGBUS is sent.  But returns the
wrong error code.

Console log looks like this:

  mce: Uncorrected hardware memory error in user-access at 3710b3400
  Memory failure: 0x3710b3: recovery action for dirty LRU page: Recovered
  Memory failure: 0x3710b3: already hardware poisoned
  Memory failure: 0x3710b3: Sending SIGBUS to einj_mem_uc:361438 due to hardware memory corruption
  mce: Memory error not recovered

kill_accessing_process() is supposed to return -EHWPOISON to notify that
SIGBUS is already set to the process and kill_me_maybe() doesn't have to
send it again.  But current code simply fails to do this, so fix it to
make sure to work as intended.  This change avoids the noise message
"Memory error not recovered" and skips duplicate SIGBUSs.

[tony.luck@intel.com: reword some parts of commit message]

Link: https://lkml.kernel.org/r/20220113231117.1021405-1-naoya.horiguchi@linux.dev
Fixes: a3f5d80ea401 ("mm,hwpoison: send SIGBUS with error virutal address")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Youquan Song <youquan.song@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Naoya Horiguchi
ae483c2006 mm/memory-failure.c: remove obsolete comment
With the introduction of mf_mutex, most of memory error handling process
is mutually exclusive, so the in-line comment about subtlety about
double-checking PageHWPoison is no more correct.  So remove it.

Link: https://lkml.kernel.org/r/20220125025601.3054511-1-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
77fe7f136a mm/page_alloc: check high-order pages for corruption during PCP operations
Eric Dumazet pointed out that commit 44042b449872 ("mm/page_alloc: allow
high-order pages to be stored on the per-cpu lists") only checks the
head page during PCP refill and allocation operations.  This was an
oversight and all pages should be checked.  This will incur a small
performance penalty but it's necessary for correctness.

Link: https://lkml.kernel.org/r/20220310092456.GJ15701@techsingularity.net
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Eric Dumazet <edumazet@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Eric Dumazet
3313204c8a mm/page_alloc: call check_new_pages() while zone spinlock is not held
For high order pages not using pcp, rmqueue() is currently calling the
costly check_new_pages() while zone spinlock is held, and hard irqs
masked.

This is not needed, we can release the spinlock sooner to reduce zone
spinlock contention.

Note that after this patch, we call __mod_zone_freepage_state() before
deciding to leak the page because it is in bad state.

Link: https://lkml.kernel.org/r/20220304170215.1868106-1-eric.dumazet@gmail.com
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Suren Baghdasaryan
fa7fc75f63 mm: count time in drain_all_pages during direct reclaim as memory pressure
When page allocation in direct reclaim path fails, the system will make
one attempt to shrink per-cpu page lists and free pages from high alloc
reserves.  Draining per-cpu pages into buddy allocator can be a very
slow operation because it's done using workqueues and the task in direct
reclaim waits for all of them to finish before proceeding.  Currently
this time is not accounted as psi memory stall.

While testing mobile devices under extreme memory pressure, when
allocations are failing during direct reclaim, we notices that psi
events which would be expected in such conditions were not triggered.
After profiling these cases it was determined that the reason for
missing psi events was that a big chunk of time spent in direct reclaim
is not accounted as memory stall, therefore psi would not reach the
levels at which an event is generated.  Further investigation revealed
that the bulk of that unaccounted time was spent inside drain_all_pages
call.

A typical captured case when drain_all_pages path gets activated:

__alloc_pages_slowpath  took 44.644.613ns
    __perform_reclaim   took    751.668ns (1.7%)
    drain_all_pages     took 43.887.167ns (98.3%)

PSI in this case records the time spent in __perform_reclaim but ignores
drain_all_pages, IOW it misses 98.3% of the time spent in
__alloc_pages_slowpath.

Annotate __alloc_pages_direct_reclaim in its entirety so that delays
from handling page allocation failure in the direct reclaim path are
accounted as memory stall.

Link: https://lkml.kernel.org/r/20220223194812.1299646-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Tim Murray <timmurray@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Oscar Salvador
1ca75fa7f1 arch/x86/mm/numa: Do not initialize nodes twice
On x86, prior to ("mm: handle uninitialized numa nodes gracecully"), NUMA
nodes could be allocated at three different places.

 - numa_register_memblks
 - init_cpu_to_node
 - init_gi_nodes

All these calls happen at setup_arch, and have the following order:

setup_arch
  ...
  x86_numa_init
   numa_init
    numa_register_memblks
  ...
  init_cpu_to_node
   init_memory_less_node
    alloc_node_data
    free_area_init_memoryless_node
  init_gi_nodes
   init_memory_less_node
    alloc_node_data
    free_area_init_memoryless_node

numa_register_memblks() is only interested in those nodes which have
memory, so it skips over any memoryless node it founds.  Later on, when
we have read ACPI's SRAT table, we call init_cpu_to_node() and
init_gi_nodes(), which initialize any memoryless node we might have that
have either CPU or Initiator affinity, meaning we allocate pg_data_t
struct for them and we mark them as ONLINE.

So far so good, but the thing is that after ("mm: handle uninitialized
numa nodes gracefully"), we allocate all possible NUMA nodes in
free_area_init(), meaning we have a picture like the following:

setup_arch
  x86_numa_init
   numa_init
    numa_register_memblks  <-- allocate non-memoryless node
  x86_init.paging.pagetable_init
   ...
    free_area_init
     free_area_init_memoryless <-- allocate memoryless node
  init_cpu_to_node
   alloc_node_data             <-- allocate memoryless node with CPU
   free_area_init_memoryless_node
  init_gi_nodes
   alloc_node_data             <-- allocate memoryless node with Initiator
   free_area_init_memoryless_node

free_area_init() already allocates all possible NUMA nodes, but
init_cpu_to_node() and init_gi_nodes() are clueless about that, so they
go ahead and allocate a new pg_data_t struct without checking anything,
meaning we end up allocating twice.

It should be mad clear that this only happens in the case where
memoryless NUMA node happens to have a CPU/Initiator affinity.

So get rid of init_memory_less_node() and just set the node online.

Note that setting the node online is needed, otherwise we choke down the
chain when bringup_nonboot_cpus() ends up calling
__try_online_node()->register_one_node()->...  and we blow up in
bus_add_device().  As can be seen here:

  BUG: kernel NULL pointer dereference, address: 0000000000000060
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4-1-default+ #45
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/4
  RIP: 0010:bus_add_device+0x5a/0x140
  Code: 8b 74 24 20 48 89 df e8 84 96 ff ff 85 c0 89 c5 75 38 48 8b 53 50 48 85 d2 0f 84 bb 00 004
  RSP: 0000:ffffc9000022bd10 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: ffff888100987400 RCX: ffff8881003e4e19
  RDX: ffff8881009a5e00 RSI: ffff888100987400 RDI: ffff888100987400
  RBP: 0000000000000000 R08: ffff8881003e4e18 R09: ffff8881003e4c98
  R10: 0000000000000000 R11: ffff888100402bc0 R12: ffffffff822ceba0
  R13: 0000000000000000 R14: ffff888100987400 R15: 0000000000000000
  FS:  0000000000000000(0000) GS:ffff88853fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000060 CR3: 000000000200a001 CR4: 00000000001706b0
  Call Trace:
   device_add+0x4c0/0x910
   __register_one_node+0x97/0x2d0
   __try_online_node+0x85/0xc0
   try_online_node+0x25/0x40
   cpu_up+0x4f/0x100
   bringup_nonboot_cpus+0x4f/0x60
   smp_init+0x26/0x79
   kernel_init_freeable+0x130/0x2f1
   kernel_init+0x17/0x150
   ret_from_fork+0x22/0x30

The reason is simple, by the time bringup_nonboot_cpus() gets called, we
did not register the node_subsys bus yet, so we crash when
bus_add_device() tries to dereference bus()->p.

The following shows the order of the calls:

kernel_init_freeable
 smp_init
  bringup_nonboot_cpus
   ...
     bus_add_device()      <- we did not register node_subsys yet
 do_basic_setup
  do_initcalls
   postcore_initcall(register_node_type);
    register_node_type
     subsys_system_register
      subsys_register
       bus_register         <- register node_subsys bus

Why setting the node online saves us then? Well, simply because
__try_online_node() backs off when the node is online, meaning we do not
end up calling register_one_node() in the first place.

This is subtle, broken and deserves a deep analysis and thought about
how to put this into shape, but for now let us have this easy fix for
the leaking memory issue.

[osalvador@suse.de: add comments]
  Link: https://lkml.kernel.org/r/20220221142649.3457-1-osalvador@suse.de

Link: https://lkml.kernel.org/r/20220218224302.5282-2-osalvador@suse.de
Fixes: da4490c958ad ("mm: handle uninitialized numa nodes gracefully")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Rafael Aquini <raquini@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
2a791f4412 mm/page_alloc: do not prefetch buddies during bulk free
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b4562 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held.

As the list processing now takes place under the zone lock, it's less
clear that this will always benefit for two reasons.

1. There is a guaranteed cost to calculating the buddy which definitely
   has to be calculated again. However, as the zone lock is held and
   there is no deferring of buddy merging, there is no guarantee that the
   prefetch will have completed when the second buddy calculation takes
   place and buddies are being merged.  With or without the prefetch, there
   may be further stalls depending on how many pages get merged. In other
   words, a stall due to merging is inevitable and at best only one stall
   might be avoided at the cost of calculating the buddy location twice.

2. As the zone lock is held, prefetch_nr makes less sense as once
   prefetch_nr expires, the cache lines of interest have already been
   merged.

The main concern is that there is a definite cost to calculating the
buddy location early for the prefetch and it is a "maybe win" depending
on whether the CPU prefetch logic and memory is fast enough.  Remove the
prefetch logic on the basis that reduced instructions in a path is
always a saving where as the prefetch might save one memory stall
depending on the CPU and memory.

In most cases, this has marginal benefit as the calculations are a small
part of the overall freeing of pages.  However, it was detectable on at
least one machine.

                              5.17.0-rc3             5.17.0-rc3
                    mm-highpcplimit-v2r1     mm-noprefetch-v1r1
Min       elapsed      630.00 (   0.00%)      610.00 (   3.17%)
Amean     elapsed      639.00 (   0.00%)      623.00 *   2.50%*
Max       elapsed      660.00 (   0.00%)      660.00 (   0.00%)

Link: https://lkml.kernel.org/r/20220221094119.15282-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Aaron Lu <aaron.lu@intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
f26b3fa046 mm/page_alloc: limit number of high-order pages on PCP during bulk free
When a PCP is mostly used for frees then high-order pages can exist on
PCP lists for some time.  This is problematic when the allocation
pattern is all allocations from one CPU and all frees from another
resulting in colder pages being used.  When bulk freeing pages, limit
the number of high-order pages that are stored on the PCP lists.

Netperf running on localhost exhibits this pattern and while it does not
matter for some machines, it does matter for others with smaller caches
where cache misses cause problems due to reduced page reuse.  Pages
freed directly to the buddy list may be reused quickly while still cache
hot where as storing on the PCP lists may be cold by the time
free_pcppages_bulk() is called.

Using perf kmem:mm_page_alloc, the 5 most used page frames were

5.17-rc3
  13041 pfn=0x111a30
  13081 pfn=0x5814d0
  13097 pfn=0x108258
  13121 pfn=0x689598
  13128 pfn=0x5814d8

5.17-revert-highpcp
 192009 pfn=0x54c140
 195426 pfn=0x1081d0
 200908 pfn=0x61c808
 243515 pfn=0xa9dc20
 402523 pfn=0x222bb8

5.17-full-series
 142693 pfn=0x346208
 162227 pfn=0x13bf08
 166413 pfn=0x2711e0
 166950 pfn=0x2702f8

The spread is wider as there is still time before pages freed to one PCP
get released with a tradeoff between fast reuse and reduced zone lock
acquisition.

On the machine used to gather the traces, the headline performance was
equivalent.

netperf-tcp
                            5.17.0-rc3             5.17.0-rc3             5.17.0-rc3
                               vanilla  mm-reverthighpcp-v1r1     mm-highpcplimit-v2
Hmean     64         839.93 (   0.00%)      840.77 (   0.10%)      841.02 (   0.13%)
Hmean     128       1614.22 (   0.00%)     1622.07 *   0.49%*     1636.41 *   1.37%*
Hmean     256       2952.00 (   0.00%)     2953.19 (   0.04%)     2977.76 *   0.87%*
Hmean     1024     10291.67 (   0.00%)    10239.17 (  -0.51%)    10434.41 *   1.39%*
Hmean     2048     17335.08 (   0.00%)    17399.97 (   0.37%)    17134.81 *  -1.16%*
Hmean     3312     22628.15 (   0.00%)    22471.97 (  -0.69%)    22422.78 (  -0.91%)
Hmean     4096     25009.50 (   0.00%)    24752.83 *  -1.03%*    24740.41 (  -1.08%)
Hmean     8192     32745.01 (   0.00%)    31682.63 *  -3.24%*    32153.50 *  -1.81%*
Hmean     16384    39759.59 (   0.00%)    36805.78 *  -7.43%*    38948.13 *  -2.04%*

On a 1-socket skylake machine with a small CPU cache that suffers more if
cache misses are too high

netperf-tcp
                            5.17.0-rc3             5.17.0-rc3             5.17.0-rc3
                               vanilla    mm-reverthighpcp-v1     mm-highpcplimit-v2
Hmean     64         938.95 (   0.00%)      941.50 *   0.27%*      943.61 *   0.50%*
Hmean     128       1843.10 (   0.00%)     1857.58 *   0.79%*     1861.09 *   0.98%*
Hmean     256       3573.07 (   0.00%)     3667.45 *   2.64%*     3674.91 *   2.85%*
Hmean     1024     13206.52 (   0.00%)    13487.80 *   2.13%*    13393.21 *   1.41%*
Hmean     2048     22870.23 (   0.00%)    23337.96 *   2.05%*    23188.41 *   1.39%*
Hmean     3312     31001.99 (   0.00%)    32206.50 *   3.89%*    31863.62 *   2.78%*
Hmean     4096     35364.59 (   0.00%)    36490.96 *   3.19%*    36112.54 *   2.11%*
Hmean     8192     48497.71 (   0.00%)    49954.05 *   3.00%*    49588.26 *   2.25%*
Hmean     16384    58410.86 (   0.00%)    60839.80 *   4.16%*    62282.96 *   6.63%*

Note that this was a machine that did not benefit from caching high-order
pages and performance is almost restored with the series applied.  It's
not fully restored as cache misses are still higher.  This is a trade-off
between optimising for a workload that does all allocs on one CPU and
frees on another or more general workloads that need high-order pages for
SLUB and benefit from avoiding zone->lock for every SLUB refill/drain.

Link: https://lkml.kernel.org/r/20220217002227.5739-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
8b10b465d0 mm/page_alloc: free pages in a single pass during bulk free
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b4562 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held.  Now that list selection is simplier, the
main cost during selection is bulkfree_pcp_prepare() which in the normal
case is a simple check and prefetching.  As the list manipulations have
cost in itself, go back to freeing pages in a single pass.

The series up to this point was evaulated using a trunc microbenchmark
that is truncating sparse files stored in page cache (mmtests config
config-io-trunc).  Sparse files were used to limit filesystem
interaction.  The results versus a revert of storing high-order pages in
the PCP lists is

1-socket Skylake
                               5.17.0-rc3             5.17.0-rc3             5.17.0-rc3
                                  vanilla      mm-reverthighpcp-v1     mm-highpcpopt-v2
 Min       elapsed      540.00 (   0.00%)      530.00 (   1.85%)      530.00 (   1.85%)
 Amean     elapsed      543.00 (   0.00%)      530.00 *   2.39%*      530.00 *   2.39%*
 Stddev    elapsed        4.83 (   0.00%)        0.00 ( 100.00%)        0.00 ( 100.00%)
 CoeffVar  elapsed        0.89 (   0.00%)        0.00 ( 100.00%)        0.00 ( 100.00%)
 Max       elapsed      550.00 (   0.00%)      530.00 (   3.64%)      530.00 (   3.64%)
 BAmean-50 elapsed      540.00 (   0.00%)      530.00 (   1.85%)      530.00 (   1.85%)
 BAmean-95 elapsed      542.22 (   0.00%)      530.00 (   2.25%)      530.00 (   2.25%)
 BAmean-99 elapsed      542.22 (   0.00%)      530.00 (   2.25%)      530.00 (   2.25%)

2-socket CascadeLake
                               5.17.0-rc3             5.17.0-rc3             5.17.0-rc3
                                  vanilla    mm-reverthighpcp-v1       mm-highpcpopt-v2
 Min       elapsed      510.00 (   0.00%)      500.00 (   1.96%)      500.00 (   1.96%)
 Amean     elapsed      529.00 (   0.00%)      521.00 (   1.51%)      510.00 *   3.59%*
 Stddev    elapsed       16.63 (   0.00%)       12.87 (  22.64%)       11.55 (  30.58%)
 CoeffVar  elapsed        3.14 (   0.00%)        2.47 (  21.46%)        2.26 (  27.99%)
 Max       elapsed      550.00 (   0.00%)      540.00 (   1.82%)      530.00 (   3.64%)
 BAmean-50 elapsed      516.00 (   0.00%)      512.00 (   0.78%)      500.00 (   3.10%)
 BAmean-95 elapsed      526.67 (   0.00%)      518.89 (   1.48%)      507.78 (   3.59%)
 BAmean-99 elapsed      526.67 (   0.00%)      518.89 (   1.48%)      507.78 (   3.59%)

The original motivation for multi-passes was will-it-scale page_fault1
using $nr_cpu processes.

2-socket CascadeLake (40 cores, 80 CPUs HT enabled)
                                                     5.17.0-rc3                 5.17.0-rc3
                                                        vanilla           mm-highpcpopt-v2
 Hmean     page_fault1-processes-2        2694662.26 (   0.00%)      2695780.35 (   0.04%)
 Hmean     page_fault1-processes-5        6425819.34 (   0.00%)      6435544.57 *   0.15%*
 Hmean     page_fault1-processes-8        9642169.10 (   0.00%)      9658962.39 (   0.17%)
 Hmean     page_fault1-processes-12      12167502.10 (   0.00%)     12190163.79 (   0.19%)
 Hmean     page_fault1-processes-21      15636859.03 (   0.00%)     15612447.26 (  -0.16%)
 Hmean     page_fault1-processes-30      25157348.61 (   0.00%)     25169456.65 (   0.05%)
 Hmean     page_fault1-processes-48      27694013.85 (   0.00%)     27671111.46 (  -0.08%)
 Hmean     page_fault1-processes-79      25928742.64 (   0.00%)     25934202.02 (   0.02%) <--
 Hmean     page_fault1-processes-110     25730869.75 (   0.00%)     25671880.65 *  -0.23%*
 Hmean     page_fault1-processes-141     25626992.42 (   0.00%)     25629551.61 (   0.01%)
 Hmean     page_fault1-processes-172     25611651.35 (   0.00%)     25614927.99 (   0.01%)
 Hmean     page_fault1-processes-203     25577298.75 (   0.00%)     25583445.59 (   0.02%)
 Hmean     page_fault1-processes-234     25580686.07 (   0.00%)     25608240.71 (   0.11%)
 Hmean     page_fault1-processes-265     25570215.47 (   0.00%)     25568647.58 (  -0.01%)
 Hmean     page_fault1-processes-296     25549488.62 (   0.00%)     25543935.00 (  -0.02%)
 Hmean     page_fault1-processes-320     25555149.05 (   0.00%)     25575696.74 (   0.08%)

The differences are mostly within the noise and the difference close to
$nr_cpus is negligible.

Link: https://lkml.kernel.org/r/20220217002227.5739-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
d61372bc41 mm/page_alloc: drain the requested list first during bulk free
Prior to the series, pindex 0 (order-0 MIGRATE_UNMOVABLE) was always
skipped first and the precise reason is forgotten.  A potential reason
may have been to artificially preserve MIGRATE_UNMOVABLE but there is no
reason why that would be optimal as it depends on the workload.  The
more likely reason is that it was less complicated to do a pre-increment
instead of a post-increment in terms of overall code flow.  As
free_pcppages_bulk() now typically receives the pindex of the PCP list
that exceeded high, always start draining that list.

Link: https://lkml.kernel.org/r/20220217002227.5739-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
fd56eef258 mm/page_alloc: simplify how many pages are selected per pcp list during bulk free
free_pcppages_bulk() selects pages to free by round-robining between
lists.  Originally this was to evenly shrink pages by migratetype but
uneven freeing is inevitable due to high pages.  Simplify list selection
by starting with a list that definitely has pages on it in
free_unref_page_commit() and for drain, it does not matter where
draining starts as all pages are removed.

Link: https://lkml.kernel.org/r/20220217002227.5739-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
35b6d770e6 mm/page_alloc: track range of active PCP lists during bulk free
free_pcppages_bulk() frees pages in a round-robin fashion.  Originally,
this was dealing only with migratetypes but storing high-order pages
means that there can be many more empty lists that are uselessly
checked.  Track the minimum and maximum active pindex to reduce the
search space.

Link: https://lkml.kernel.org/r/20220217002227.5739-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Mel Gorman
ca7b59b1de mm/page_alloc: fetch the correct pcp buddy during bulk free
Patch series "Follow-up on high-order PCP caching", v2.

Commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored
on the per-cpu lists") was primarily aimed at reducing the cost of SLUB
cache refills of high-order pages in two ways.  Firstly, zone lock
acquisitions was reduced and secondly, there were fewer buddy list
modifications.  This is a follow-up series fixing some issues that
became apparant after merging.

Patch 1 is a functional fix.  It's harmless but inefficient.

Patches 2-5 reduce the overhead of bulk freeing of PCP pages.  While the
overhead is small, it's cumulative and noticable when truncating large
files.  The changelog for patch 4 includes results of a microbench that
deletes large sparse files with data in page cache.  Sparse files were
used to eliminate filesystem overhead.

Patch 6 addresses issues with high-order PCP pages being stored on PCP
lists for too long.  Pages freed on a CPU potentially may not be quickly
reused and in some cases this can increase cache miss rates.  Details
are included in the changelog.

This patch (of 6):

free_pcppages_bulk() prefetches buddies about to be freed but the order
must also be passed in as PCP lists store multiple orders.

Link: https://lkml.kernel.org/r/20220217002227.5739-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20220217002227.5739-2-mgorman@techsingularity.net
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Alistair Popple
ddbc84f3f5 mm/pages_alloc.c: don't create ZONE_MOVABLE beyond the end of a node
ZONE_MOVABLE uses the remaining memory in each node.  Its starting pfn
is also aligned to MAX_ORDER_NR_PAGES.  It is possible for the remaining
memory in a node to be less than MAX_ORDER_NR_PAGES, meaning there is
not enough room for ZONE_MOVABLE on that node.

Unfortunately this condition is not checked for.  This leads to
zone_movable_pfn[] getting set to a pfn greater than the last pfn in a
node.

calculate_node_totalpages() then sets zone->present_pages to be greater
than zone->spanned_pages which is invalid, as spanned_pages represents
the maximum number of pages in a zone assuming no holes.

Subsequently it is possible free_area_init_core() will observe a zone of
size zero with present pages.  In this case it will skip setting up the
zone, including the initialisation of free_lists[].

However populated_zone() checks zone->present_pages to see if a zone has
memory available.  This is used by iterators such as
walk_zones_in_node().  pagetypeinfo_showfree() uses this to walk the
free_list of each zone in each node, which are assumed to be initialised
due to the zone not being empty.

As free_area_init_core() never initialised the free_lists[] this results
in the following kernel crash when trying to read /proc/pagetypeinfo:

  BUG: kernel NULL pointer dereference, address: 0000000000000000
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
  CPU: 0 PID: 456 Comm: cat Not tainted 5.16.0 #461
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
  RIP: 0010:pagetypeinfo_show+0x163/0x460
  Code: 9e 82 e8 80 57 0e 00 49 8b 06 b9 01 00 00 00 4c 39 f0 75 16 e9 65 02 00 00 48 83 c1 01 48 81 f9 a0 86 01 00 0f 84 48 02 00 00 <48> 8b 00 4c 39 f0 75 e7 48 c7 c2 80 a2 e2 82 48 c7 c6 79 ef e3 82
  RSP: 0018:ffffc90001c4bd10 EFLAGS: 00010003
  RAX: 0000000000000000 RBX: ffff88801105f638 RCX: 0000000000000001
  RDX: 0000000000000001 RSI: 000000000000068b RDI: ffff8880163dc68b
  RBP: ffffc90001c4bd90 R08: 0000000000000001 R09: ffff8880163dc67e
  R10: 656c6261766f6d6e R11: 6c6261766f6d6e55 R12: ffff88807ffb4a00
  R13: ffff88807ffb49f8 R14: ffff88807ffb4580 R15: ffff88807ffb3000
  FS:  00007f9c83eff5c0(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000000 CR3: 0000000013c8e000 CR4: 0000000000350ef0
  Call Trace:
   seq_read_iter+0x128/0x460
   proc_reg_read_iter+0x51/0x80
   new_sync_read+0x113/0x1a0
   vfs_read+0x136/0x1d0
   ksys_read+0x70/0xf0
   __x64_sys_read+0x1a/0x20
   do_syscall_64+0x3b/0xc0
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Fix this by checking that the aligned zone_movable_pfn[] does not exceed
the end of the node, and if it does skip creating a movable zone on this
node.

Link: https://lkml.kernel.org/r/20220215025831.2113067-1-apopple@nvidia.com
Fixes: 2a1e274acf0b ("Create the ZONE_MOVABLE zone")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
Nathan Chancellor
a4812d47de mm/page_alloc: mark pagesets as __maybe_unused
Commit 9983a9d577db ("locking/local_lock: Make the empty local_lock_*()
function a macro.") in the -tip tree converted the local_lock_*()
functions into macros, which causes a warning with clang with
CONFIG_PREEMPT_RT=n + CONFIG_DEBUG_LOCK_ALLOC=n:

  mm/page_alloc.c:131:40: error: variable 'pagesets' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration]
  static DEFINE_PER_CPU(struct pagesets, pagesets) = {
                                         ^
  1 error generated.

Prior to that change, clang was not able to tell that pagesets was
unused in this configuration because it does not perform cross function
analysis in the frontend.  After that change, it sees that the macros
just do a typecheck on the lock member of pagesets, which is evaluated
at compile time (so the variable is technically "used"), meaning the
variable is not needed in the final assembly, as the warning states.

Mark the variable as __maybe_unused to make it clear to clang that this
is expected in this configuration so there is no more warning.

Link: https://github.com/ClangBuiltLinux/linux/issues/1593
Link: https://lkml.kernel.org/r/20220215184322.440969-1-nathan@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
David Hildenbrand
b3d40a2b6d mm: enforce pageblock_order < MAX_ORDER
Some places in the kernel don't really expect pageblock_order >=
MAX_ORDER, and it looks like this is only possible in corner cases:

1) CONFIG_DEFERRED_STRUCT_PAGE_INIT we'll end up freeing pageblock_order
   pages via __free_pages_core(), which cannot possibly work.

2) find_zone_movable_pfns_for_nodes() will roundup the ZONE_MOVABLE
   start PFN to MAX_ORDER_NR_PAGES. Consequently with a bigger
   pageblock_order, we could have a single pageblock partially managed by
   two zones.

3) compaction code runs into __fragmentation_index() with order
   >= MAX_ORDER, when checking WARN_ON_ONCE(order >= MAX_ORDER). [1]

4) mm/page_reporting.c won't be reporting any pages with default
   page_reporting_order == pageblock_order, as we'll be skipping the
   reporting loop inside page_reporting_process_zone().

5) __rmqueue_fallback() will never be able to steal with
   ALLOC_NOFRAGMENT.

pageblock_order >= MAX_ORDER is weird either way: it's a pure
optimization for making alloc_contig_range(), as used for allcoation of
gigantic pages, a little more reliable to succeed.  However, if there is
demand for somewhat reliable allocation of gigantic pages, affected
setups should be using CMA or boottime allocations instead.

So let's make sure that pageblock_order < MAX_ORDER and simplify.

[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com

Link: https://lkml.kernel.org/r/20220214174132.219303-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:06 -07:00
David Hildenbrand
e16faf2678 cma: factor out minimum alignment requirement
Patch series "mm: enforce pageblock_order < MAX_ORDER".

Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.

For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.

We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.

Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.

Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.

This patch (of 2):

Let's enforce pageblock_order < MAX_ORDER and simplify.

Especially patch #1 can be regarded a cleanup before:
	[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
	alignment. [2]

[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com

Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Nicolas Saenz Julienne
566513775d mm/page_alloc: don't pass pfn to free_unref_page_commit()
free_unref_page_commit() doesn't make use of its pfn argument, so get
rid of it.

Link: https://lkml.kernel.org/r/20220202140451.415928-1-nsaenzju@redhat.com
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Miaohe Lin
7f37e49cbd mm/mmzone.h: remove unused macros
Remove pgdat_page_nr, nid_page_nr and NODE_MEM_MAP.  They are unused
now.

Link: https://lkml.kernel.org/r/20220127093210.62293-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Peter Collingbourne
abe8b2ae64 mm/mmzone.c: use try_cmpxchg() in page_cpupid_xchg_last()
This will let us avoid an additional read from page->flags when retrying
the compare-exchange on some architectures.

Link: https://lkml.kernel.org/r/20220120011200.1322836-1-pcc@google.com
Link: https://linux-review.googlesource.com/id/I2e1f5b5b080ac9c4e0eb7f98768dba6fd7821693
Signed-off-by: Peter Collingbourne <pcc@google.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Zi Yan
1dd214b8f2 mm: page_alloc: avoid merging non-fallbackable pageblocks with others
This is done in addition to MIGRATE_ISOLATE pageblock merge avoidance.
It prepares for the upcoming removal of the MAX_ORDER-1 alignment
requirement for CMA and alloc_contig_range().

MIGRATE_HIGHATOMIC should not merge with other migratetypes like
MIGRATE_ISOLATE and MIGRARTE_CMA[1], so this commit prevents that too.

Remove MIGRATE_CMA and MIGRATE_ISOLATE from fallbacks list, since they
are never used.

[1] https://lore.kernel.org/linux-mm/20211130100853.GP3366@techsingularity.net/

Link: https://lkml.kernel.org/r/20220124175957.1261961-1-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Bang Li
ff11a7ce1f mm/vmalloc: fix comments about vmap_area struct
The vmap_area_root should be in the "busy" tree and the
free_vmap_area_root should be in the "free" tree.

Link: https://lkml.kernel.org/r/20220305011510.33596-1-libang.linuxer@gmail.com
Fixes: 688fcbfc06e4 ("mm/vmalloc: modify struct vmap_area to reduce its size")
Signed-off-by: Bang Li <libang.linuxer@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Pengfei Li <lpf.vector@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Jiapeng Chong
c3385e8458 mm/vmalloc.c: fix "unused function" warning
compute_subtree_max_size() is unused, when building with
DEBUG_AUGMENT_PROPAGATE_CHECK=y.

  mm/vmalloc.c:785:1: warning: unused function 'compute_subtree_max_size' [-Wunused-function].

Link: https://lkml.kernel.org/r/20220129034652.75359-1-jiapeng.chong@linux.alibaba.com
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Uladzislau Rezki (Sony)
c3d77172df mm/vmalloc: eliminate an extra orig_gfp_mask
That extra variable has been introduced just for keeping an original
passed gfp_mask because it is updated with __GFP_NOWARN on entry, thus
error handling messages were broken.

Instead we can keep an original gfp_mask without modifying it and add an
extra __GFP_NOWARN flag together with gfp_mask as a parameter to the
vm_area_alloc_pages() function.  It will make it less confused.

Link: https://lkml.kernel.org/r/20220119143540.601149-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Uladzislau Rezki
9333fe98d0 mm/vmalloc: add adjust_search_size parameter
Extend the find_vmap_lowest_match() function with one more parameter.
It is "adjust_search_size" boolean variable, so it is possible to
control an accuracy of search block if a specific alignment is required.

With this patch, a search size is always adjusted, to serve a request as
fast as possible because of performance reason.

But there is one exception though, it is short ranges where requested
size corresponds to passed vstart/vend restriction together with a
specific alignment request.  In such scenario an adjustment wold not
lead to success allocation.

Link: https://lkml.kernel.org/r/20220119143540.601149-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Uladzislau Rezki (Sony)
690467c81b mm/vmalloc: Move draining areas out of caller context
A caller initiates the drain procces from its context once the
drain threshold is reached or passed. There are at least two
drawbacks of doing so:

a) a caller can be a high-prio or RT task. In that case it can
   stuck in doing the actual drain of all lazily freed areas.
   This is not optimal because such tasks usually are latency
   sensitive where the control should be returned back as soon
   as possible in order to drive such workloads in time. See
   96e2db456135 ("mm/vmalloc: rework the drain logic")

b) It is not safe to call vfree() during holding a spinlock due
   to the vmap_purge_lock mutex. The was a report about this from
   Zeal Robot <zealci@zte.com.cn> here:
   https://lore.kernel.org/all/20211222081026.484058-1-chi.minghao@zte.com.cn

Moving the drain to the separate work context addresses those
issues.

v1->v2:
   - Added prefix "_work" to the drain worker function.
v2->v3:
   - Remove the drain_vmap_work_in_progress. Extra queuing
     is expectable under heavy load but it can be disregarded
     because a work will bail out if nothing to be done.

Link: https://lkml.kernel.org/r/20220131144058.35608-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Miaohe Lin
651d55ce09 mm/vmalloc: remove unneeded function forward declaration
The forward declaration for lazy_max_pages() is unnecessary.  Remove it.

Link: https://lkml.kernel.org/r/20220124133752.60663-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Miaohe Lin
c7878534a1 mm/sparse: make mminit_validate_memmodel_limits() static
It's only used in the sparse.c now. So we can make it static and further
clean up the relevant code.

Link: https://lkml.kernel.org/r/20220127093221.63524-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Miaohe Lin
0e6799db96 mm/mremap:: use vma_lookup() instead of find_vma()
Using vma_lookup() verifies the address is contained in the found vma.
This results in easier to read code.

Link: https://lkml.kernel.org/r/20220312083118.48284-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00
Miaohe Lin
360cd06173 mm/mmap: remove obsolete comment in ksys_mmap_pgoff
RLIMIT_MEMLOCK is already reimplemented on top of ucounts now.  And
since commit 83c1fd763b32 ("mm,hugetlb: remove mlock ulimit for
SHM_HUGETLB"), mlock ulimit for SHM_HUGETLB is further removed.

So we should remove this obsolete comment.

Link: https://lkml.kernel.org/r/20220309090623.13036-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00