425956 Commits

Author SHA1 Message Date
Tejun Heo
6f30558f37 cgroup: make cgroup hold onto its kernfs_node
cgroup currently releases its kernfs_node when it gets removed.  While
not buggy, this makes cgroup->kn access rules complicated than
necessary and leads to things like get/put protection around
kernfs_remove() in cgroup_destroy_locked().  In addition, we want to
use kernfs_name/path() and friends but also want to be able to
determine a cgroup's name between removal and release.

This patch makes cgroup hold onto its kernfs_node until freed so that
cgroup->kn is always accessible.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:50 -05:00
Tejun Heo
21a2d3430b cgroup: simplify dynamic cftype addition and removal
Dynamic cftype addition and removal using cgroup_add/rm_cftypes()
respectively has been quite hairy due to vfs i_mutex.  As i_mutex
nests outside cgroup_mutex, cgroup_mutex has to be released and
regrabbed on each iteration through the hierarchy complicating the
process.  Now that i_mutex is no longer in play, it can be simplified.

* Just holding cgroup_tree_mutex is enough.  No need to meddle with
  cgroup_mutex.

* No reason to play the unlock - relock - check serial_nr dancing.
  Everything can be atomically while holding cgroup_tree_mutex.

* cgroup_cfts_prepare() is replaced with direct locking of
  cgroup_tree_mutex.

* cgroup_cfts_commit() no longer fiddles with locking.  It just
  applies the cftypes change to the existing cgroups in the hierarchy.
  Renamed to cgroup_cfts_apply().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:49 -05:00
Tejun Heo
0adb070426 cgroup: remove cftype_set
cftype_set was added primarily to allow registering the same cftype
array more than once for different subsystems.  Nobody uses or needs
such thing and it's already broken because each cftype has ->ss
pointer which is initialized during registration.

Let's add list_head ->node to cftype and use the first cftype entry in
the array to link them instead of allocating separate cftype_set.
While at it, trigger WARN if cft seems previously initialized during
registration.

This simplifies cftype handling a bit.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:48 -05:00
Tejun Heo
80b1358699 cgroup: relocate cgroup_rm_cftypes()
cftype handling is about to be revamped.  Relocate cgroup_rm_cftypes()
above cgroup_add_cftypes() in preparation.  This is pure relocation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:48 -05:00
Tejun Heo
86bf4b6875 cgroup: warn if "xattr" is specified with "sane_behavior"
Mount option "xattr" is no longer necessary as it's enabled by default
on kernfs.  Warn if "xattr" is specified with "sane_behavior" so that
the option can be removed in the future.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:48 -05:00
Tejun Heo
2bd59d48eb cgroup: convert to kernfs
cgroup filesystem code was derived from the original sysfs
implementation which was heavily intertwined with vfs objects and
locking with the goal of re-using the existing vfs infrastructure.
That experiment turned out rather disastrous and sysfs switched, a
long time ago, to distributed filesystem model where a separate
representation is maintained which is queried by vfs.  Unfortunately,
cgroup stuck with the failed experiment all these years and
accumulated even more problems over time.

Locking and object lifetime management being entangled with vfs is
probably the most egregious.  vfs is never designed to be misused like
this and cgroup ends up jumping through various convoluted dancing to
make things work.  Even then, operations across multiple cgroups can't
be done safely as it'll deadlock with rename locking.

Recently, kernfs is separated out from sysfs so that it can be used by
users other than sysfs.  This patch converts cgroup to use kernfs,
which will bring the following benefits.

* Separation from vfs internals.  Locking and object lifetime
  management is contained in cgroup proper making things a lot
  simpler.  This removes significant amount of locking convolutions,
  hairy object lifetime rules and the restriction on multi-cgroup
  operations.

* Can drop a lot of code to implement filesystem interface as most are
  provided by kernfs.

* Proper "severing" semantics, which allows controllers to not worry
  about lingering file accesses after offline.

While the preceding patches did as much as possible to make the
transition less painful, large part of the conversion has to be one
discrete step making this patch rather large.  The rest of the commit
message lists notable changes in different areas.

Overall
-------

* vfs constructs replaced with kernfs ones.  cgroup->dentry w/ ->kn,
  cgroupfs_root->sb w/ ->kf_root.

* All dentry accessors are removed.  Helpers to map from kernfs
  constructs are added.

* All vfs plumbing around dentry, inode and bdi removed.

* cgroup_mount() now directly looks for matching root and then
  proceeds to create a new one if not found.

Synchronization and object lifetime
-----------------------------------

* vfs inode locking removed.  Among other things, this removes the
  need for the convolution in cgroup_cfts_commit().  Future patches
  will further simplify it.

* vfs refcnting replaced with cgroup internal ones.  cgroup->refcnt,
  cgroupfs_root->refcnt added.  cgroup_put_root() now directly puts
  root->refcnt and when it reaches zero proceeds to destroy it thus
  merging cgroup_put_root() and the former cgroup_kill_sb().
  Simliarly, cgroup_put() now directly schedules cgroup_free_rcu()
  when refcnt reaches zero.

* Unlike before, kernfs objects don't hold onto cgroup objects.  When
  cgroup destroys a kernfs node, all existing operations are drained
  and the association is broken immediately.  The same for
  cgroupfs_roots and mounts.

* All operations which come through kernfs guarantee that the
  associated cgroup is and stays valid for the duration of operation;
  however, there are two paths which need to find out the associated
  cgroup from dentry without going through kernfs -
  css_tryget_from_dir() and cgroupstats_build().  For these two,
  kernfs_node->priv is RCU managed so that they can dereference it
  under RCU read lock.

File and directory handling
---------------------------

* File and directory operations converted to kernfs_ops and
  kernfs_syscall_ops.

* xattrs is implicitly supported by kernfs.  No need to worry about it
  from cgroup.  This means that "xattr" mount option is no longer
  necessary.  A future patch will add a deprecated warning message
  when sane_behavior.

* When cftype->max_write_len > PAGE_SIZE, it's necessary to make a
  private copy of one of the kernfs_ops to set its atomic_write_len.
  cftype->kf_ops is added and cgroup_init/exit_cftypes() are updated
  to handle it.

* cftype->lockdep_key added so that kernfs lockdep annotation can be
  per cftype.

* Inidividual file entries and open states are now managed by kernfs.
  No need to worry about them from cgroup.  cfent, cgroup_open_file
  and their friends are removed.

* kernfs_nodes are created deactivated and kernfs_activate()
  invocations added to places where creation of new nodes are
  committed.

* cgroup_rmdir() uses kernfs_[un]break_active_protection() for
  self-removal.

v2: - Li pointed out in an earlier patch that specifying "name="
      during mount without subsystem specification should succeed if
      there's an existing hierarchy with a matching name although it
      should fail with -EINVAL if a new hierarchy should be created.
      Prior to the conversion, this used by handled by deferring
      failure from NULL return from cgroup_root_from_opts(), which was
      necessary because root was being created before checking for
      existing ones.  Note that cgroup_root_from_opts() returned an
      ERR_PTR() value for error conditions which require immediate
      mount failure.

      As we now have separate search and creation steps, deferring
      failure from cgroup_root_from_opts() is no longer necessary.
      cgroup_root_from_opts() is updated to always return ERR_PTR()
      value on failure.

    - The logic to match existing roots is updated so that a mount
      attempt with a matching name but different subsys_mask are
      rejected.  This was handled by a separate matching loop under
      the comment "Check for name clashes with existing mounts" but
      got lost during conversion.  Merge the check into the main
      search loop.

    - Add __rcu __force casting in RCU_INIT_POINTER() in
      cgroup_destroy_locked() to avoid the sparse address space
      warning reported by kbuild test bot.  Maybe we want an explicit
      interface to use kn->priv as RCU protected pointer?

v3: Make CONFIG_CGROUPS select CONFIG_KERNFS.

v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: kbuild test robot fengguang.wu@intel.com>
2014-02-11 11:52:49 -05:00
Tejun Heo
f2e85d574e cgroup: relocate functions in preparation of kernfs conversion
Relocate cgroup_init/exit_root_id(), cgroup_free_root(),
cgroup_kill_sb() and cgroup_file_name() in preparation of kernfs
conversion.

These are pure relocations to make kernfs conversion easier to follow.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:49 -05:00
Tejun Heo
59f5296b51 cgroup: misc preps for kernfs conversion
* Un-inline seq_css().  After kernfs conversion, the function will
  need to dereference internal data structures.

* Add cgroup_get/put_root() and replace direct super_block->s_active
  manipulatinos with them.  These will be converted to kernfs_root
  refcnting.

* Add cgroup_get/put() and replace dget/put() on cgrp->dentry with
  them.  These will be converted to kernfs refcnting.

* Update current_css_set_cg_links_read() to use cgroup_name() instead
  of reaching into the dentry name.  The end result is the same.

These changes don't make functional differences but will make
transition to kernfs easier.

v2: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:49 -05:00
Tejun Heo
b166492406 cgroup: introduce cgroup_ino()
mm/memory-failure.c::hwpoison_filter_task() has been reaching into
cgroup to extract the associated ino to be used as a filtering
criterion.  This is an implementation detail which shouldn't be
depended upon from outside cgroup proper and is about to change with
the scheduled kernfs conversion.

This patch introduces a proper interface to determine the associated
ino, cgroup_ino(), and updates hwpoison_filter_task() to use it
instead of reaching directly into cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
2014-02-11 11:52:49 -05:00
Tejun Heo
2da440a26c cgroup: introduce cgroup_init/exit_cftypes()
Factor out cft->ss initialization into cgroup_init_cftypes() from
cgroup_add_cftypes() and add cft->ss clearing to cgroup_rm_cftypes()
through cgroup_exit_cftypes().

This doesn't make any meaningful difference now but the two new
functions will be expanded during kernfs transition.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
5f46990787 cgroup: update the meaning of cftype->max_write_len
cftype->max_write_len is used to extend the maximum size of writes.
It's interpreted in such a way that the actual maximum size is one
less than the specified value.  The default size is defined by
CGROUP_LOCAL_BUFFER_SIZE.  Its interpretation is quite confusing - its
value is decremented by 1 and then compared for equality with max
size, which means that the actual default size is
CGROUP_LOCAL_BUFFER_SIZE - 2, which is 62 chars.

There's no point in having a limit that low.  Update its definition so
that it means the actual string length sans termination and anything
below PAGE_SIZE-1 is treated as PAGE_SIZE-1.

.max_write_len for "release_agent" is updated to PATH_MAX-1 and
cgroup_release_agent_write() is updated so that the redundant strlen()
check is removed and it uses strlcpy() instead of strcpy().
.max_write_len initializations in blk-throttle.c and cfq-iosched.c are
no longer necessary and removed.  The one in cpuset is kept unchanged
as it's an approximated value to begin with.

This will also make transition to kernfs smoother.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
de00ffa56e cgroup: make cgroup_subsys->base_cftypes use cgroup_add_cftypes()
Currently, cgroup_subsys->base_cftypes registration is different from
dynamic cftypes registartion.  Instead of going through
cgroup_add_cftypes(), cgroup_init_subsys() invokes
cgroup_init_cftsets() which makes use of cgroup_subsys->base_cftset
which doesn't involve dynamic allocation.

While avoiding dynamic allocation is somewhat nice, having two
separate paths for cftypes registration is nasty, especially as we're
planning to add more operations during cftypes registration.

This patch drops cgroup_init_cftsets() and cgroup_subsys->base_cftset
and registers base_cftypes using cgroup_add_cftypes().  This is done
as a separate step in cgroup_init() instead of a part of
cgroup_init_subsys().  This is because cgroup_init_subsys() can be
called very early during boot when kmalloc() isn't available yet.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
8d7e6fb0a1 cgroup: update cgroup name handling
Straightforward updates to cgroup name handling in preparation of
kernfs conversion.

* cgroup_alloc_name() is updated to take const char * isntead of
  dentry * for name source.

* cgroup name formatting is separated out into cgroup_file_name().
  While at it, buffer length protection is added.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
d427dfeb12 cgroup: factor out cgroup_setup_root() from cgroup_mount()
Factor out new root initialization into cgroup_setup_root() from
cgroup_mount().  This makes it easier to follow and will ease kernfs
conversion.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
8e30e2b8ba cgroup: restructure locking and error handling in cgroup_mount()
cgroup is scheduled to be converted to kernfs.  After conversion,
cgroup_mount() won't use the sget() machinery for finding out existing
super_blocks but instead would do that directly.  It'll search the
existing cgroupfs_roots for a matching one and create a new one iff a
match doesn't exist.  To ease such conversion, this patch restructures
locking and error handling of the function.

cgroup_tree_mutex and cgroup_mutex are grabbed from the get-go and
held until return.  For now, due to the way vfs locks nest outside
cgroup mutexes, the two cgroup mutexes are temporarily dropped across
sget() and inode mutex locking, which looks quite ridiculous; however,
these will be removed through kernfs conversion and structuring the
code this way makes the conversion less painful.

The error goto labels are consolidated to two.  This looks unwieldy
now but the next patch will factor out creation of new root into a
separate function with accompanying error handling and it'll look a
lot better.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo
4ac0601744 cgroup: release cgroup_mutex over file removals
Now that cftypes and all tree modification operations are protected by
cgroup_tree_mutex, we can drop cgroup_mutex while deleting files and
directories.  Drop cgroup_mutex over removals.

This doesn't make any noticeable difference now but is to help kernfs
conversion.  In kernfs, removals are sync points which drain in-flight
operations as those operations would grab cgroup_mutex, trying to
delete under cgroup_mutex would deadlock.  This can be resolved by
just holding the outer cgroup_tree_mutex which nests outside both
kernfs active reference and cgroup_mutex.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:47 -05:00
Tejun Heo
ace2bee813 cgroup: introduce cgroup_tree_mutex
Currently cgroup uses combination of inode->i_mutex'es and
cgroup_mutex for synchronization.  With the scheduled kernfs
conversion, i_mutex'es will be removed.  Unfortunately, just using
cgroup_mutex isn't possible.  All kernfs file and syscall operations,
most of which require grabbing cgroup_mutex, will be called with
kernfs active ref held and, if we try to perform kernfs removals under
cgroup_mutex, it can deadlock as kernfs_remove() tries to drain the
target node.

Let's introduce a new outer mutex, cgroup_tree_mutex, which protects
stuff used during hierarchy changing operations - cftypes and all the
operations which may affect the cgroupfs.  It also covers css
association and iteration.  This allows cgroup_css(), for_each_css()
and other css iterators to be called under cgroup_tree_mutex.  The new
mutex will nest above both kernfs's active ref protection and
cgroup_mutex.  By protecting tree modifications with a separate outer
mutex, we can get rid of the forementioned deadlock condition.

Actual file additions and removals now require cgroup_tree_mutex
instead of cgroup_mutex.  Currently, cgroup_tree_mutex is never used
without cgroup_mutex; however, we'll soon add hierarchy modification
sections which are only protected by cgroup_tree_mutex.  In the
future, we might want to make the locking more granular by better
splitting the coverages of the two mutexes.  For now, this should do.

v2: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:47 -05:00
Tejun Heo
5a17f543ed cgroup: improve css_from_dir() into css_tryget_from_dir()
css_from_dir() returns the matching css (cgroup_subsys_state) given a
dentry and subsystem.  The function doesn't pin the css before
returning and requires the caller to be holding RCU read lock or
cgroup_mutex and handling pinning on the caller side.

Given that users of the function are likely to want to pin the
returned css (both existing users do) and that getting and putting
css's are very cheap, there's no reason for the interface to be tricky
like this.

Rename css_from_dir() to css_tryget_from_dir() and make it try to pin
the found css and return it only if pinning succeeded.  The callers
are updated so that they no longer do RCU locking and pinning around
the function and just use the returned css.

This will also ease converting cgroup to kernfs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-11 11:52:47 -05:00
Tejun Heo
398f878789 Merge branch 'cgroup/for-3.14-fixes' into cgroup/for-3.15
Pull for-3.14-fixes to receive 0ab02ca8f887 ("cgroup: protect
modifications to cgroup_idr with cgroup_mutex") prior to kernfs
conversion series to avoid non-trivial conflicts.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-11 11:02:59 -05:00
Li Zefan
0ab02ca8f8 cgroup: protect modifications to cgroup_idr with cgroup_mutex
Setup cgroupfs like this:
  # mount -t cgroup -o cpuacct xxx /cgroup
  # mkdir /cgroup/sub1
  # mkdir /cgroup/sub2

Then run these two commands:
  # for ((; ;)) { mkdir /cgroup/sub1/tmp && rmdir /mnt/sub1/tmp; } &
  # for ((; ;)) { mkdir /cgroup/sub2/tmp && rmdir /mnt/sub2/tmp; } &

After seconds you may see this warning:

------------[ cut here ]------------
WARNING: CPU: 1 PID: 25243 at lib/idr.c:527 sub_remove+0x87/0x1b0()
idr_remove called for id=6 which is not allocated.
...
Call Trace:
 [<ffffffff8156063c>] dump_stack+0x7a/0x96
 [<ffffffff810591ac>] warn_slowpath_common+0x8c/0xc0
 [<ffffffff81059296>] warn_slowpath_fmt+0x46/0x50
 [<ffffffff81300aa7>] sub_remove+0x87/0x1b0
 [<ffffffff810f3f02>] ? css_killed_work_fn+0x32/0x1b0
 [<ffffffff81300bf5>] idr_remove+0x25/0xd0
 [<ffffffff810f2bab>] cgroup_destroy_css_killed+0x5b/0xc0
 [<ffffffff810f4000>] css_killed_work_fn+0x130/0x1b0
 [<ffffffff8107cdbc>] process_one_work+0x26c/0x550
 [<ffffffff8107eefe>] worker_thread+0x12e/0x3b0
 [<ffffffff81085f96>] kthread+0xe6/0xf0
 [<ffffffff81570bac>] ret_from_fork+0x7c/0xb0
---[ end trace 2d1577ec10cf80d0 ]---

It's because allocating/removing cgroup ID is not properly synchronized.

The bug was introduced when we converted cgroup_ida to cgroup_idr.
While synchronization is already done inside ida_simple_{get,remove}(),
users are responsible for concurrent calls to idr_{alloc,remove}().

tj: Refreshed on top of b58c89986a77 ("cgroup: fix error return from
cgroup_create()").

Fixes: 4e96ee8e981b ("cgroup: convert cgroup_ida to cgroup_idr")
Cc: <stable@vger.kernel.org> #3.12+
Reported-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-11 10:38:30 -05:00
Tejun Heo
f7cef064aa Merge branch 'driver-core-next' into cgroup/for-3.15
Pending kernfs conversion depends on kernfs improvements in
driver-core-next.  Pull it into for-3.15.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-08 10:37:44 -05:00
Tejun Heo
1a698a4aba Merge branch 'for-3.14-fixes' into for-3.15
Pending kernfs conversion depends on fixes in for-3.14-fixes.  Pull it
into for-3.15.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-08 10:37:14 -05:00
Tejun Heo
3417ae1f5f cgroup: remove cgroup_root_mutex
cgroup_root_mutex was added to avoid deadlock involving namespace_sem
via cgroup_show_options().  It added a lot of overhead for the small
purpose of it and, because it's nested under cgroup_mutex, it has very
limited usefulness.  The previous patch made cgroup_show_options() not
use cgroup_root_mutex, so nobody needs it anymore.  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:37:01 -05:00
Tejun Heo
69e943b7d3 cgroup: update locking in cgroup_show_options()
cgroup_show_options() grabs cgroup_root_mutex to protect the options
changing while printing; however, holding root_mutex or not doesn't
really make much difference for the function.  subsys_mask can be
atomically tested and most of the options aren't allowed to change
anyway once mounted.

The only field which needs synchronization is ->release_agent_path.
This patch introduces a dedicated spinlock to synchronize accesses to
the field and drops cgroup_root_mutex locking from
cgroup_show_options().  The next patch will remove cgroup_root_mutex.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Tejun Heo
aec25020f5 cgroup: rename cgroup_subsys->subsys_id to ->id
It's no longer referenced outside cgroup core, so renaming is easy.
Let's rename it for consistency & brevity.

This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Tejun Heo
073219e995 cgroup: clean up cgroup_subsys names and initialization
cgroup_subsys is a bit messier than it needs to be.

* The name of a subsys can be different from its internal identifier
  defined in cgroup_subsys.h.  Most subsystems use the matching name
  but three - cpu, memory and perf_event - use different ones.

* cgroup_subsys_id enums are postfixed with _subsys_id and each
  cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
  included throughout various subsystems, it doesn't and shouldn't
  have claim on such generic names which don't have any qualifier
  indicating that they belong to cgroup.

* cgroup_subsys->subsys_id should always equal the matching
  cgroup_subsys_id enum; however, we require each controller to
  initialize it and then BUG if they don't match, which is a bit
  silly.

This patch cleans up cgroup_subsys names and initialization by doing
the followings.

* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
  cgroup_subsys with _cgrp_subsys.

* With the above, renaming subsys identifiers to match the userland
  visible names doesn't cause any naming conflicts.  All non-matching
  identifiers are renamed to match the official names.

  cpu_cgroup -> cpu
  mem_cgroup -> memory
  perf -> perf_event

* controllers no longer need to initialize ->subsys_id and ->name.
  They're generated in cgroup core and set automatically during boot.

* Redundant cgroup_subsys declarations removed.

* While updating BUG_ON()s in cgroup_init_early(), convert them to
  WARN()s.  BUGging that early during boot is stupid - the kernel
  can't print anything, even through serial console and the trap
  handler doesn't even link stack frame properly for back-tracing.

This patch doesn't introduce any behavior changes.

v2: Rebased on top of fe1217c4f3f7 ("net: net_cls: move cgroupfs
    classid handling into core").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00
Tejun Heo
3ed80a62bf cgroup: drop module support
With module supported dropped from net_prio, no controller is using
cgroup module support.  None of actual resource controllers can be
built as a module and we aren't gonna add new controllers which don't
control resources.  This patch drops module support from cgroup.

* cgroup_[un]load_subsys() and cgroup_subsys->module removed.

* As there's no point in distinguishing IS_BUILTIN() and IS_MODULE(),
  cgroup_subsys.h now uses IS_ENABLED() directly.

* enum cgroup_subsys_id now exactly matches the list of enabled
  controllers as ordered in cgroup_subsys.h.

* cgroup_subsys[] is now a contiguously occupied array.  Size
  specification is no longer necessary and dropped.

* for_each_builtin_subsys() is removed and for_each_subsys() is
  updated to not require any locking.

* module ref handling is removed from rebind_subsystems().

* Module related comments dropped.

v2: Rebased on top of fe1217c4f3f7 ("net: net_cls: move cgroupfs
    classid handling into core").

v3: Added {} around the if (need_forkexit_callback) block in
    cgroup_post_fork() for readability as suggested by Li.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Tejun Heo
af6363374c cgroup: make CONFIG_CGROUP_NET_PRIO bool and drop unnecessary init_netclassid_cgroup()
net_prio is the only cgroup which is allowed to be built as a module.
The savings from allowing one controller to be built as a module are
tiny especially given that cgroup module support itself adds quite a
bit of complexity.

Given that none of other controllers has much chance of being made a
module and that we're unlikely to add new modular controllers, the
added complexity is simply not justifiable.

As a first step to drop cgroup module support, this patch changes the
config option to bool from tristate and drops module related code from
it.

Also, while an earlier commit fe1217c4f3f7 ("net: net_cls: move
cgroupfs classid handling into core") dropped module support from
net_cls cgroup, it retained a call to cgroup_load_subsys(), which is
noop for built-in controllers.  Drop it along with
init_netclassid_cgroup().

v2: Removed modular version of task_netprioidx() in
    include/net/netprio_cgroup.h as suggested by Li Zefan.

v3: Rebased on top of fe1217c4f3f7 ("net: net_cls: move cgroupfs
    classid handling into core").  net_cls cgroup part is mostly
    dropped except for removal of init_netclassid_cgroup().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00
Tejun Heo
48573a8933 cgroup: fix locking in cgroup_cfts_commit()
cgroup_cfts_commit() walks the cgroup hierarchy that the target
subsystem is attached to and tries to apply the file changes.  Due to
the convolution with inode locking, it can't keep cgroup_mutex locked
while iterating.  It currently holds only RCU read lock around the
actual iteration and then pins the found cgroup using dget().

Unfortunately, this is incorrect.  Although the iteration does check
cgroup_is_dead() before invoking dget(), there's nothing which
prevents the dentry from going away inbetween.  Note that this is
different from the usual css iterations where css_tryget() is used to
pin the css - css_tryget() tests whether the css can be pinned and
fails if not.

The problem can be solved by simply holding cgroup_mutex instead of
RCU read lock around the iteration, which actually reduces LOC.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: stable@vger.kernel.org
2014-02-08 10:26:34 -05:00
Tejun Heo
b58c89986a cgroup: fix error return from cgroup_create()
cgroup_create() was returning 0 after allocation failures.  Fix it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: stable@vger.kernel.org
2014-02-08 10:26:33 -05:00
Tejun Heo
eb46bf8969 cgroup: fix error return value in cgroup_mount()
When cgroup_mount() fails to allocate an id for the root, it didn't
set ret before jumping to unlock_drop ending up returning 0 after a
failure.  Fix it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: stable@vger.kernel.org
2014-02-08 10:26:33 -05:00
Tejun Heo
ba341d55a4 kernfs: add CONFIG_KERNFS
As sysfs was kernfs's only user, kernfs has been piggybacking on
CONFIG_SYSFS; however, kernfs is scheduled to grow a new user very
soon.  Introduce a separate config option CONFIG_KERNFS which is to be
selected by kernfs users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:08:57 -08:00
Tejun Heo
fa4cd451cc sysfs, kobject: add sysfs wrapper for kernfs_enable_ns()
Currently, kobject is invoking kernfs_enable_ns() directly.  This is
fine now as sysfs and kernfs are enabled and disabled together.  If
sysfs is disabled, kernfs_enable_ns() is switched to dummy
implementation too and everything is fine; however, kernfs will soon
have its own config option CONFIG_KERNFS and !SYSFS && KERNFS will be
possible, which can make kobject call into non-dummy
kernfs_enable_ns() with NULL kernfs_node pointers leading to an oops.

Introduce sysfs_enable_ns() which is a wrapper around
kernfs_enable_ns() so that it can be made a noop depending only on
CONFIG_SYSFS regardless of the planned CONFIG_KERNFS.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:08:57 -08:00
Tejun Heo
3eef34ad7d kernfs: implement kernfs_get_parent(), kernfs_name/path() and friends
kernfs_node->parent and ->name are currently marked as "published"
indicating that kernfs users may access them directly; however, those
fields may get updated by kernfs_rename[_ns]() and unrestricted access
may lead to erroneous values or oops.

Protect ->parent and ->name updates with a irq-safe spinlock
kernfs_rename_lock and implement the following accessors for these
fields.

* kernfs_name()		- format the node's name into the specified buffer
* kernfs_path()		- format the node's path into the specified buffer
* pr_cont_kernfs_name()	- pr_cont a node's name (doesn't need buffer)
* pr_cont_kernfs_path()	- pr_cont a node's path (doesn't need buffer)
* kernfs_get_parent()	- pin and return a node's parent

All can be called under any context.  The recursive sysfs_pathname()
in fs/sysfs/dir.c is replaced with kernfs_path() and
sysfs_rename_dir_ns() is updated to use kernfs_get_parent() instead of
dereferencing parent directly.

v2: Dummy definition of kernfs_path() for !CONFIG_KERNFS was missing
    static inline making it cause a lot of build warnings.  Add it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:05:35 -08:00
Tejun Heo
0c23b2259a kernfs: implement kernfs_node_from_dentry(), kernfs_root_from_sb() and kernfs_rename()
Implement helpers to determine node from dentry and root from
super_block.  Also add a kernfs_rename_ns() wrapper which assumes NULL
namespace.  These generally make sense and will be used by cgroup.

v2: Some dummy implementations for !CONFIG_SYSFS was missing.  Fixed.
    Reported by kbuild test robot.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:00:41 -08:00
Tejun Heo
2536390da0 kernfs: add kernfs_open_file->priv
Add a private data field to be used by kernfs file operations.  This
generally makes sense and will be used by cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:00:40 -08:00
Tejun Heo
4d3773c4bb kernfs: implement kernfs_ops->atomic_write_len
A write to a kernfs_node is buffered through a kernel buffer.  Writes
<= PAGE_SIZE are performed atomically, while larger ones are executed
in PAGE_SIZE chunks.  While this is enough for sysfs, cgroup which is
scheduled to be converted to use kernfs needs a bit more control over
it.

This patch adds kernfs_ops->atomic_write_len.  If not set (zero), the
behavior stays the same.  If set, writes upto the size are executed
atomically and larger writes are rejected with -E2BIG.

A different implementation strategy would be allowing configuring
chunking size while making the original write size available to the
write method; however, such strategy, while being more complicated,
doesn't really buy anything.  If the write implementation has to
handle chunking, the specific chunk size shouldn't matter all that
much.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
d35258ef70 kernfs: allow nodes to be created in the deactivated state
Currently, kernfs_nodes are made visible to userland on creation,
which makes it difficult for kernfs users to atomically succeed or
fail creation of multiple nodes.  In addition, if something fails
after creating some nodes, the created nodes might already be in use
and their active refs need to be drained for removal, which has the
potential to introduce tricky reverse locking dependency on active_ref
depending on how the error path is synchronized.

This patch introduces per-root flag KERNFS_ROOT_CREATE_DEACTIVATED.
If set, all nodes under the root are created in the deactivated state
and stay invisible to userland until explicitly enabled by the new
kernfs_activate() API.  Also, nodes which have never been activated
are guaranteed to bypass draining on removal thus allowing error paths
to not worry about lockding dependency on active_ref draining.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
b9c9dad0c4 kernfs: add missing kernfs_active() checks in directory operations
kernfs_iop_lookup(), kernfs_dir_pos() and kernfs_dir_next_pos() were
missing kernfs_active() tests before using the found kernfs_node.  As
deactivated state is currently visible only while a node is being
removed, this doesn't pose an actual problem.  e.g. lookup succeeding
on a deactivated node doesn't harm anything as the eventual file
operations are gonna fail and those failures are indistinguishible
from the cases in which the lookups had happened before the node was
deactivated.

However, we're gonna allow new nodes to be created deactivated and
then activated explicitly by the kernfs user when it sees fit.  This
is to support atomically making multiple nodes visible to userland and
thus those nodes must not be visible to userland before activated.

Let's plug the lookup and readdir holes so that deactivated nodes are
invisible to userland.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
6a7fed4eef kernfs: implement kernfs_syscall_ops->remount_fs() and ->show_options()
Add two super_block related syscall callbacks ->remount_fs() and
->show_options() to kernfs_syscall_ops.  These simply forward the
matching super_operations.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
90c07c895c kernfs: rename kernfs_dir_ops to kernfs_syscall_ops
We're gonna need non-dir syscall callbacks, which will make dir_ops a
misnomer.  Let's rename kernfs_dir_ops to kernfs_syscall_ops.

This is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
07c7530dd4 kernfs: invoke dir_ops while holding active ref of the target node
kernfs_dir_ops are currently being invoked without any active
reference, which makes it tricky for the invoked operations to
determine whether the objects associated those nodes are safe to
access and will remain that way for the duration of such operations.

kernfs already has active_ref mechanism to deal with this which makes
the removal of a given node the synchronization point for gating the
file operations.  There's no reason for dir_ops to be any different.
Update the dir_ops handling so that active_ref is held while the
dir_ops are executing.  This guarantees that while a dir_ops is
executing the target nodes stay alive.

As kernfs_dir_ops doesn't have any in-kernel user at this point, this
doesn't affect anybody.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo
ce8b04aa6c sysfs, driver-core: remove unused {sysfs|device}_schedule_callback_owner()
All device_schedule_callback_owner() users are converted to use
device_remove_file_self().  Remove now unused
{sysfs|device}_schedule_callback_owner().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
0b60f9ead5 s390: use device_remove_file_self() instead of device_schedule_callback()
driver-core now supports synchrnous self-deletion of attributes and
the asynchrnous removal mechanism is scheduled for removal.  Use it
instead of device_schedule_callback().

* Conversions in arch/s390/pci/pci_sysfs.c and
  drivers/s390/block/dcssblk.c are straightforward.

* drivers/s390/cio/ccwgroup.c is a bit more tricky because
  ccwgroup_notifier() was (ab)using device_schedule_callback() to
  purely obtain a process context to kick off ungroup operation which
  may block from a notifier callback.

  Rename ccwgroup_ungroup_callback() to ccwgroup_ungroup() and make it
  take ccwgroup_device * instead.  The new function is now called
  directly from ccwgroup_ungroup_store().

  ccwgroup_notifier() chain is updated to explicitly bounce through
  ccwgroup_device->ungroup_work.  This also removes possible failure
  from memory pressure.

Only compile-tested.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux390@de.ibm.com
Cc: linux-s390@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
ac0ece9174 scsi: use device_remove_file_self() instead of device_schedule_callback()
driver-core now supports synchrnous self-deletion of attributes and
the asynchrnous removal mechanism is scheduled for removal.  Use it
instead of device_schedule_callback().  This makes "delete" behave
synchronously.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
Cc: linux-scsi@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
bc6caf02cc pci: use device_remove_file_self() instead of device_schedule_callback()
driver-core now supports synchrnous self-deletion of attributes and
the asynchrnous removal mechanism is scheduled for removal.  Use it
instead of device_schedule_callback().  This makes "remove" behave
synchronously.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-pci@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
6b0afc2a21 kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers
Sometimes it's necessary to implement a node which wants to delete
nodes including itself.  This isn't straightforward because of kernfs
active reference.  While a file operation is in progress, an active
reference is held and kernfs_remove() waits for all such references to
drain before completing.  For a self-deleting node, this is a deadlock
as kernfs_remove() ends up waiting for an active reference that itself
is sitting on top of.

This currently is worked around in the sysfs layer using
sysfs_schedule_callback() which makes such removals asynchronous.
While it works, it's rather cumbersome and inherently breaks
synchronicity of the operation - the file operation which triggered
the operation may complete before the removal is finished (or even
started) and the removal may fail asynchronously.  If a removal
operation is immmediately followed by another operation which expects
the specific name to be available (e.g. removal followed by rename
onto the same name), there's no way to make the latter operation
reliable.

The thing is there's no inherent reason for this to be asynchrnous.
All that's necessary to do this synchronous is a dedicated operation
which drops its own active ref and deactivates self.  This patch
implements kernfs_remove_self() and its wrappers in sysfs and driver
core.  kernfs_remove_self() is to be called from one of the file
operations, drops the active ref the task is holding, removes the self
node, and restores active ref to the dead node so that the ref is
balanced afterwards.  __kernfs_remove() is updated so that it takes an
early exit if the target node is already fully removed so that the
active ref restored by kernfs_remove_self() after removal doesn't
confuse the deactivation path.

This makes implementing self-deleting nodes very easy.  The normal
removal path doesn't even need to be changed to use
kernfs_remove_self() for the self-deleting node.  The method can
invoke kernfs_remove_self() on itself before proceeding the normal
removal path.  kernfs_remove() invoked on the node by the normal
deletion path will simply be ignored.

This will replace sysfs_schedule_callback().  A subtle feature of
sysfs_schedule_callback() is that it collapses multiple invocations -
even if multiple removals are triggered, the removal callback is run
only once.  An equivalent effect can be achieved by testing the return
value of kernfs_remove_self() - only the one which gets %true return
value should proceed with actual deletion.  All other instances of
kernfs_remove_self() will wait till the enclosing kernfs operation
which invoked the winning instance of kernfs_remove_self() finishes
and then return %false.  This trivially makes all users of
kernfs_remove_self() automatically show correct synchronous behavior
even when there are multiple concurrent operations - all "echo 1 >
delete" instances will finish only after the whole operation is
completed by one of the instances.

Note that manipulation of active ref is implemented in separate public
functions - kernfs_[un]break_active_protection().
kernfs_remove_self() is the only user at the moment but this will be
used to cater to more complex cases.

v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing
    and sysfs_remove_file_self() had incorrect return type.  Fix it.
    Reported by kbuild test bot.

v3: kernfs_[un]break_active_protection() separated out from
    kernfs_remove_self() and exposed as public API.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
81c173cb5e kernfs: remove KERNFS_REMOVED
KERNFS_REMOVED is used to mark half-initialized and dying nodes so
that they don't show up in lookups and deny adding new nodes under or
renaming it; however, its role overlaps that of deactivation.

It's necessary to deny addition of new children while removal is in
progress; however, this role considerably intersects with deactivation
- KERNFS_REMOVED prevents new children while deactivation prevents new
file operations.  There's no reason to have them separate making
things more complex than necessary.

This patch removes KERNFS_REMOVED.

* Instead of KERNFS_REMOVED, each node now starts its life
  deactivated.  This means that we now use both atomic_add() and
  atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN.  The compiler
  generates an overflow warnings when negating INT_MIN as the negation
  can't be represented as a positive number.  Nothing is actually
  broken but let's bump BIAS by one to avoid the warnings for archs
  which negates the subtrahend..

* A new helper kernfs_active() which tests whether kn->active >= 0 is
  added for convenience and lockdep annotation.  All KERNFS_REMOVED
  tests are replaced with negated kernfs_active() tests.

* __kernfs_remove() is updated to deactivate, but not drain, all nodes
  in the subtree instead of setting KERNFS_REMOVED.  This removes
  deactivation from kernfs_deactivate(), which is now renamed to
  kernfs_drain().

* Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with
  checks on the active ref.

* Some comment style updates in the affected area.

v2: Reordered before removal path restructuring.  kernfs_active()
    dropped and kernfs_get/put_active() used instead.  RB_EMPTY_NODE()
    used in the lookup paths.

v3: Reverted most of v2 except for creating a new node with
    KN_DEACTIVATED_BIAS.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo
182fd64b66 kernfs: remove KERNFS_ACTIVE_REF and add kernfs_lockdep()
There currently are two mechanisms gating active ref lockdep
annotations - KERNFS_LOCKDEP flag and KERNFS_ACTIVE_REF type mask.
The former disables lockdep annotations in kernfs_get/put_active()
while the latter disables all of kernfs_deactivate().

While KERNFS_ACTIVE_REF also behaves as an optimization to skip the
deactivation step for non-file nodes, the benefit is marginal and it
needlessly diverges code paths.  Let's drop KERNFS_ACTIVE_REF.

While at it, add a test helper kernfs_lockdep() to test KERNFS_LOCKDEP
flag so that it's more convenient and the related code can be compiled
out when not enabled.

v2: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
    KERNFS_LOCKDEP flag").  As the earlier patch already added
    KERNFS_LOCKDEP tests to kernfs_deactivate(), those additions are
    dropped from this patch and the existing ones are simply converted
    to kernfs_lockdep().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:40 -08:00
Tejun Heo
988cd7afb3 kernfs: remove kernfs_addrm_cxt
kernfs_addrm_cxt and the accompanying kernfs_addrm_start/finish() were
added because there were operations which should be performed outside
kernfs_mutex after adding and removing kernfs_nodes.  The necessary
operations were recorded in kernfs_addrm_cxt and performed by
kernfs_addrm_finish(); however, after the recent changes which
relocated deactivation and unmapping so that they're performed
directly during removal, the only operation kernfs_addrm_finish()
performs is kernfs_put(), which can be moved inside the removal path
too.

This patch moves the kernfs_put() of the base ref to __kernfs_remove()
and remove kernfs_addrm_cxt and kernfs_addrm_start/finish().

* kernfs_add_one() is updated to grab and release kernfs_mutex itself.
  sysfs_addrm_start/finish() invocations around it are removed from
  all users.

* __kernfs_remove() puts an unlinked node directly instead of chaining
  it to kernfs_addrm_cxt.  Its callers are updated to grab and release
  kernfs_mutex instead of calling kernfs_addrm_start/finish() around
  it.

v2: Rebased on top of "kernfs: associate a new kernfs_node with its
    parent on creation" which dropped @parent from kernfs_add_one().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:40 -08:00