Due to deduplication for compressed data, pclusters can be partially
referenced with their prefixes.
Together with the user-space implementation, it enables EROFS
variable-length global compressed data deduplication with rolling
hash.
Link: https://lore.kernel.org/r/20220923014915.4362-1-hsiangkao@linux.alibaba.com
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Introduce on-disk compressed fragments data feature.
This approach adds a new field called `h_fragmentoff' in the per-file
compression header to indicate the fragment offset of each tail pcluster
or the whole file in the special packed inode.
Similar to ztailpacking, it will also find and record the 'headlcn'
of the tail pcluster when initializing per-inode zmap for making
follow-on requests more easy.
Signed-off-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/YzHKxcFTlHGgXeH9@B-P7TQMD6M-0146.local
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Currently, uncompressed data is all handled in the shifted way, which
means we have to shift the whole on-disk plain pcluster to get the
logical data. However, since we are also using in-place I/O for
uncompressed data, data copy will be reduced a lot if pcluster is
recorded in the interlaced way as illustrated below:
_______________________________________________________________
| | | |_ tail part |_ head part _|
|<- blk0 ->| .. |<- blkn-2 ->|<- blkn-1 ->|
The logical data then becomes:
________________________________________________________
|_ head part _|_ blk0 _| .. |_ blkn-2 _|_ tail part _|
In addition, non-4k plain pclusters are also survived by the
interlaced way, which can be used for non-4k lclusters as well.
However, it's almost impossible to de-duplicate uncompressed data
in the interlaced way, therefore shifted uncompressed data is still
useful.
Signed-off-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/8369112678604fdf4ef796626d59b1fdd0745a53.1663898962.git.huyue2@coolpad.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
When "-o device" mount option is not specified, scan the device table
and instantiate the devices if there's any in the device table. In this
case, the tag field of each device slot uniquely specifies a device.
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20220512055601.106109-1-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
EROFS images should inherit modification time rather than change time,
since users and host tooling have no easy way to control change time.
To reflect the new timestamp meaning, i_ctime and i_ctime_nsec are
renamed to i_mtime and i_mtime_nsec.
Link: https://lore.kernel.org/r/20220311041829.3109511-1-dvander@google.com # v1
Signed-off-by: David Anderson <dvander@google.com>
[ Gao Xiang: update document as well. ]
Reviewed-by: Chao Yu <chao@kernel.org>
Link: https://lore.kernel.org/r/20220317114959.106787-1-hsiangkao@linux.alibaba.com # v2
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Introduces erofs compressed tail-packing inline support.
This approach adds a new field called `h_idata_size' in the
per-file compression header to indicate the encoded size of
each tail-packing pcluster.
At runtime, it will find the start logical offset of the tail
pcluster when initializing per-inode zmap and record such
extent (headlcn, idataoff) information to the in-memory inode.
Therefore, follow-on requests can directly recognize if one
pcluster is a tail-packing inline pcluster or not.
Link: https://lore.kernel.org/r/20211228054604.114518-6-hsiangkao@linux.alibaba.com
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Yue Hu <huyue2@yulong.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Renaming lz4_0padding to zero_padding globally since LZMA and later
algorithms also need that.
Link: https://lore.kernel.org/r/20211112160935.19394-1-jnhuang95@gmail.com
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Huang Jianan <huangjianan@oppo.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Add MicroLZMA support in order to maximize compression ratios for
specific scenarios. For example, it's useful for low-end embedded
boards and as a secondary algorithm in a file for specific access
patterns.
MicroLZMA is a new container format for raw LZMA1, which was created
by Lasse Collin aiming to minimize old LZMA headers and get rid of
unnecessary EOPM (end of payload marker) as well as to enable
fixed-sized output compression, especially for 4KiB pclusters.
Similar to LZ4, inplace I/O approach is used to minimize runtime
memory footprint when dealing with I/O. Overlapped decompression is
handled with 1) bounced buffer for data under processing or 2) extra
short-lived pages from the on-stack pagepool which will be shared in
the same read request (128KiB for example).
Link: https://lore.kernel.org/r/20211010213145.17462-8-xiang@kernel.org
Acked-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Previously, for each HEAD lcluster, it can be either HEAD or PLAIN
lcluster to indicate whether the whole pcluster is compressed or not.
In this patch, a new HEAD2 head type is introduced to specify another
compression algorithm other than the primary algorithm for each
compressed file, which can be used for upcoming LZMA compression and
LZ4 range dictionary compression for various data patterns.
It has been stayed in the EROFS roadmap for years. Complete it now!
Link: https://lore.kernel.org/r/20211017165721.2442-1-xiang@kernel.org
Reviewed-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
In order to support multi-layer container images, add multiple
device feature to EROFS. Two ways are available to use for now:
- Devices can be mapped into 32-bit global block address space;
- Device ID can be specified with the chunk indexes format.
Note that it assumes no extent would cross device boundary and mkfs
should take care of it seriously.
In the future, a dedicated device manager could be introduced then
thus extra devices can be automatically scanned by UUID as well.
Link: https://lore.kernel.org/r/20211014081010.43485-1-hsiangkao@linux.alibaba.com
Reviewed-by: Chao Yu <chao@kernel.org>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Currently, uncompressed data except for tail-packing inline is
consecutive on disk.
In order to support chunk-based data deduplication, add a new
corresponding inode data layout.
In the future, the data source of chunks can be either (un)compressed.
Link: https://lore.kernel.org/r/20210820100019.208490-1-hsiangkao@linux.alibaba.com
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Big pcluster indicates the size of compressed data for each physical
pcluster is no longer fixed as block size, but could be more than 1
block (more accurately, 1 logical pcluster)
When big pcluster feature is enabled for head0/1, delta0 of the 1st
non-head lcluster index will keep block count of this pcluster in
lcluster size instead of 1. Or, the compressed size of pcluster
should be 1 lcluster if pcluster has no non-head lcluster index.
Also note that BIG_PCLUSTER feature reuses COMPR_CFGS feature since
it depends on COMPR_CFGS and will be released together.
Link: https://lore.kernel.org/r/20210407043927.10623-6-xiang@kernel.org
Acked-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Since multiple pcluster sizes could be used at once, the number of
compressed pages will become a variable factor. It's necessary to
introduce slab pools rather than a single slab cache now.
This limits the pclustersize to 1M (Z_EROFS_PCLUSTER_MAX_SIZE), and
get rid of the obsolete EROFS_FS_CLUSTER_PAGE_LIMIT, which has no
use now.
Link: https://lore.kernel.org/r/20210407043927.10623-4-xiang@kernel.org
Acked-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Formal big pcluster design is actually more powerful / flexable than
the previous thought whose pclustersize was fixed as power-of-2 blocks,
which was obviously inefficient and space-wasting. Instead, pclustersize
can now be set independently for each pcluster, so various pcluster
sizes can also be used together in one file if mkfs wants (for example,
according to data type and/or compression ratio).
Let's get rid of previous physical_clusterbits[] setting (also notice
that corresponding on-disk fields are still 0 for now). Therefore,
head1/2 can be used for at most 2 different algorithms in one file and
again pclustersize is now independent of these.
Link: https://lore.kernel.org/r/20210407043927.10623-2-xiang@kernel.org
Acked-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Add a bitmap for available compression algorithms and a variable-sized
on-disk table for compression options in preparation for upcoming big
pcluster and LZMA algorithm, which follows the end of super block.
To parse the compression options, the bitmap is scanned one by one.
For each available algorithm, there is data followed by 2-byte `length'
correspondingly (it's enough for most cases, or entire fs blocks should
be used.)
With such available algorithm bitmap, kernel itself can also refuse to
mount such filesystem if any unsupported compression algorithm exists.
Note that COMPR_CFGS feature will be enabled with BIG_PCLUSTER.
Link: https://lore.kernel.org/r/20210329100012.12980-1-hsiangkao@aol.com
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Introduce z_erofs_lz4_cfgs to store all lz4 configurations.
Currently it's only max_distance, but will be used for new
features later.
Link: https://lore.kernel.org/r/20210329012308.28743-4-hsiangkao@aol.com
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
lz4 uses LZ4_DISTANCE_MAX to record history preservation. When
using rolling decompression, a block with a higher compression
ratio will cause a larger memory allocation (up to 64k). It may
cause a large resource burden in extreme cases on devices with
small memory and a large number of concurrent IOs. So appropriately
reducing this value can improve performance.
Decreasing this value will reduce the compression ratio (except
when input_size <LZ4_DISTANCE_MAX). But considering that erofs
currently only supports 4k output, reducing this value will not
significantly reduce the compression benefits.
The maximum value of LZ4_DISTANCE_MAX defined by lz4 is 64k, and
we can only reduce this value. For the old kernel, it just can't
reduce the memory allocation during rolling decompression without
affecting the decompression result.
Link: https://lore.kernel.org/r/20210329012308.28743-3-hsiangkao@aol.com
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Huang Jianan <huangjianan@oppo.com>
Signed-off-by: Guo Weichao <guoweichao@oppo.com>
[ Gao Xiang: introduce struct erofs_sb_lz4_info for configurations. ]
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
If any unknown i_format fields are set (may be of some new incompat
inode features), mark such inode as unsupported.
Just in case of any new incompat i_format fields added in the future.
Link: https://lore.kernel.org/r/20210329003614.6583-1-hsiangkao@aol.com
Fixes: 431339ba90 ("staging: erofs: add inode operations")
Cc: <stable@vger.kernel.org> # 4.19+
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.
Deterministic algorithm:
For each file:
If not .svg:
For each line:
If doesn't contain `\bxmlns\b`:
For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`:
If both the HTTP and HTTPS versions
return 200 OK and serve the same content:
Replace HTTP with HTTPS.
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Link: https://lore.kernel.org/r/20200713130944.34419-1-grandmaster@al2klimov.de
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Introduce superblock checksum feature in order to
check at mounting time.
Note that the first 1024 bytes are ignore for x86
boot sectors and other oddities.
Link: https://lore.kernel.org/r/20191104024937.113939-1-gaoxiang25@huawei.com
Signed-off-by: Pratik Shinde <pratikshinde320@gmail.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
As Christoph said, "This looks like a really obsfucated
way to write:
return datamode == EROFS_INODE_FLAT_COMPRESSION ||
datamode == EROFS_INODE_FLAT_COMPRESSION_LEGACY; "
Although I had my own consideration, it's the right way for now.
[1] https://lore.kernel.org/r/20190829095954.GB20598@infradead.org/
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Link: https://lore.kernel.org/r/20190904020912.63925-6-gaoxiang25@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As Christoph suggested "Please don't add __packed" [1],
remove all __packed except struct erofs_dirent here.
Note that all on-disk fields except struct erofs_dirent
(12 bytes with a 8-byte nid) in EROFS are naturally aligned.
[1] https://lore.kernel.org/r/20190829095954.GB20598@infradead.org/
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Link: https://lore.kernel.org/r/20190904020912.63925-5-gaoxiang25@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
EROFS filesystem has been merged into linux-staging for a year.
EROFS is designed to be a better solution of saving extra storage
space with guaranteed end-to-end performance for read-only files
with the help of reduced metadata, fixed-sized output compression
and decompression inplace technologies.
In the past year, EROFS was greatly improved by many people as
a staging driver, self-tested, betaed by a large number of our
internal users, successfully applied to almost all in-service
HUAWEI smartphones as the part of EMUI 9.1 and proven to be stable
enough to be moved out of staging.
EROFS is a self-contained filesystem driver. Although there are
still some TODOs to be more generic, we have a dedicated team
actively keeping on working on EROFS in order to make it better
with the evolution of Linux kernel as the other in-kernel filesystems.
As Pavel suggested, it's better to do as one commit since git
can do moves and all histories will be saved in this way.
Let's promote it from staging and enhance it more actively as
a "real" part of kernel for more wider scenarios!
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Pavel Machek <pavel@denx.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J . Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Richard Weinberger <richard@nod.at>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Li Guifu <bluce.liguifu@huawei.com>
Cc: Fang Wei <fangwei1@huawei.com>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Link: https://lore.kernel.org/r/20190822213659.5501-1-hsiangkao@aol.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>