Fix sparse warning:
security/lockdown/lockdown.c:79:21: warning:
symbol 'lockdown_lsmid' was not declared. Should it be static?
Signed-off-by: Yue Haibing <yuehaibing@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Create a struct lsm_id to contain identifying information about Linux
Security Modules (LSMs). At inception this contains the name of the
module and an identifier associated with the security module. Change
the security_add_hooks() interface to use this structure. Change the
individual modules to maintain their own struct lsm_id and pass it to
security_add_hooks().
The values are for LSM identifiers are defined in a new UAPI
header file linux/lsm.h. Each existing LSM has been updated to
include it's LSMID in the lsm_id.
The LSM ID values are sequential, with the oldest module
LSM_ID_CAPABILITY being the lowest value and the existing modules
numbered in the order they were included in the main line kernel.
This is an arbitrary convention for assigning the values, but
none better presents itself. The value 0 is defined as being invalid.
The values 1-99 are reserved for any special case uses which may
arise in the future. This may include attributes of the LSM
infrastructure itself, possibly related to namespacing or network
attribute management. A special range is identified for such attributes
to help reduce confusion for developers unfamiliar with LSMs.
LSM attribute values are defined for the attributes presented by
modules that are available today. As with the LSM IDs, The value 0
is defined as being invalid. The values 1-99 are reserved for any
special case uses which may arise in the future.
Cc: linux-security-module <linux-security-module@vger.kernel.org>
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Reviewed-by: Mickael Salaun <mic@digikod.net>
Reviewed-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Nacked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
[PM: forward ported beyond v6.6 due merge window changes]
Signed-off-by: Paul Moore <paul@paul-moore.com>
After working with the larger SELinux-based distros for several
years, we're finally at a place where we can disable the SELinux
runtime disable functionality. The existing kernel deprecation
notice explains the functionality and why we want to remove it:
The selinuxfs "disable" node allows SELinux to be disabled at
runtime prior to a policy being loaded into the kernel. If
disabled via this mechanism, SELinux will remain disabled until
the system is rebooted.
The preferred method of disabling SELinux is via the "selinux=0"
boot parameter, but the selinuxfs "disable" node was created to
make it easier for systems with primitive bootloaders that did not
allow for easy modification of the kernel command line.
Unfortunately, allowing for SELinux to be disabled at runtime makes
it difficult to secure the kernel's LSM hooks using the
"__ro_after_init" feature.
It is that last sentence, mentioning the '__ro_after_init' hardening,
which is the real motivation for this change, and if you look at the
diffstat you'll see that the impact of this patch reaches across all
the different LSMs, helping prevent tampering at the LSM hook level.
From a SELinux perspective, it is important to note that if you
continue to disable SELinux via "/etc/selinux/config" it may appear
that SELinux is disabled, but it is simply in an uninitialized state.
If you load a policy with `load_policy -i`, you will see SELinux
come alive just as if you had loaded the policy during early-boot.
It is also worth noting that the "/sys/fs/selinux/disable" file is
always writable now, regardless of the Kconfig settings, but writing
to the file has no effect on the system, other than to display an
error on the console if a non-zero/true value is written.
Finally, in the several years where we have been working on
deprecating this functionality, there has only been one instance of
someone mentioning any user visible breakage. In this particular
case it was an individual's kernel test system, and the workaround
documented in the deprecation notice ("selinux=0" on the kernel
command line) resolved the issue without problem.
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
User space can flood the log with lockdown denial messages:
[ 662.555584] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
[ 662.563237] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
[ 662.571134] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
[ 662.578668] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
[ 662.586021] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
[ 662.593398] Lockdown: bash: debugfs access is restricted; see man kernel_lockdown.7
Ratelimiting these shouldn't meaningfully degrade the quality of the
information logged.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Pull lockdown update from James Morris:
"An update for the security subsystem to allow unprivileged users
to see the status of the lockdown feature. From Jeremy Cline"
Also an added comment to describe CAP_SETFCAP.
* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
capabilities: add description for CAP_SETFCAP
lockdown: Allow unprivileged users to see lockdown status
A number of userspace tools, such as systemtap, need a way to see the
current lockdown state so they can gracefully deal with the kernel being
locked down. The state is already exposed in
/sys/kernel/security/lockdown, but is only readable by root. Adjust the
permissions so unprivileged users can read the state.
Fixes: 000d388ed3bb ("security: Add a static lockdown policy LSM")
Cc: Frank Ch. Eigler <fche@redhat.com>
Signed-off-by: Jeremy Cline <jcline@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Implement a SELinux hook for lockdown. If the lockdown module is also
enabled, then a denial by the lockdown module will take precedence over
SELinux, so SELinux can only further restrict lockdown decisions.
The SELinux hook only distinguishes at the granularity of integrity
versus confidentiality similar to the lockdown module, but includes the
full lockdown reason as part of the audit record as a hint in diagnosing
what triggered the denial. To support this auditing, move the
lockdown_reasons[] string array from being private to the lockdown
module to the security framework so that it can be used by the lsm audit
code and so that it is always available even when the lockdown module
is disabled.
Note that the SELinux implementation allows the integrity and
confidentiality reasons to be controlled independently from one another.
Thus, in an SELinux policy, one could allow operations that specify
an integrity reason while blocking operations that specify a
confidentiality reason. The SELinux hook implementation is
stricter than the lockdown module in validating the provided reason value.
Sample AVC audit output from denials:
avc: denied { integrity } for pid=3402 comm="fwupd"
lockdown_reason="/dev/mem,kmem,port" scontext=system_u:system_r:fwupd_t:s0
tcontext=system_u:system_r:fwupd_t:s0 tclass=lockdown permissive=0
avc: denied { confidentiality } for pid=4628 comm="cp"
lockdown_reason="/proc/kcore access"
scontext=unconfined_u:unconfined_r:test_lockdown_integrity_t:s0-s0:c0.c1023
tcontext=unconfined_u:unconfined_r:test_lockdown_integrity_t:s0-s0:c0.c1023
tclass=lockdown permissive=0
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
[PM: some merge fuzz do the the perf hooks]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Highlights:
- Infrastructure for secure boot on some bare metal Power9 machines. The
firmware support is still in development, so the code here won't actually
activate secure boot on any existing systems.
- A change to xmon (our crash handler / pseudo-debugger) to restrict it to
read-only mode when the kernel is lockdown'ed, otherwise it's trivial to drop
into xmon and modify kernel data, such as the lockdown state.
- Support for KASLR on 32-bit BookE machines (Freescale / NXP).
- Fixes for our flush_icache_range() and __kernel_sync_dicache() (VDSO) to work
with memory ranges >4GB.
- Some reworks of the pseries CMM (Cooperative Memory Management) driver to
make it behave more like other balloon drivers and enable some cleanups of
generic mm code.
- A series of fixes to our hardware breakpoint support to properly handle
unaligned watchpoint addresses.
Plus a bunch of other smaller improvements, fixes and cleanups.
Thanks to:
Alastair D'Silva, Andrew Donnellan, Aneesh Kumar K.V, Anthony Steinhauser,
Cédric Le Goater, Chris Packham, Chris Smart, Christophe Leroy, Christopher M.
Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens, David Hildenbrand,
Deb McLemore, Diana Craciun, Eric Richter, Geert Uytterhoeven, Greg
Kroah-Hartman, Greg Kurz, Gustavo L. F. Walbon, Hari Bathini, Harish, Jason
Yan, Krzysztof Kozlowski, Leonardo Bras, Mathieu Malaterre, Mauro S. M.
Rodrigues, Michal Suchanek, Mimi Zohar, Nathan Chancellor, Nathan Lynch, Nayna
Jain, Nick Desaulniers, Oliver O'Halloran, Qian Cai, Rasmus Villemoes, Ravi
Bangoria, Sam Bobroff, Santosh Sivaraj, Scott Wood, Thomas Huth, Tyrel
Datwyler, Vaibhav Jain, Valentin Longchamp, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl3hBycTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgApBEACk91MEQDYJ9MF9I6uN+85qb5p4pMsp
rGzqnpt+XFidbDAc3eP63pYfIDSo3jtkQ2YL7shAnDOTvkO0md+Vqkl9Aq/G6FIf
lDBlwbgkXMSxS/O2Lpvfn4NZAoK6dKmiV55LSgfliM62X3e2Saeg6TR55wBTgJ6/
SlYPDwZfcVHOAiFS3UmfB+hkiIZk+AI5Zr5VAZvT2ZmeH36yAWkq4JgJI1uAk6m1
/7iCnlfUjx/nl/BhnA3kjjmAgGCJ5s/WuVgwFMz47XpMBWGBhLWpMh/NqDTFb8ca
kpiVQoVPQe2xyO3pL/kOwBy6sii26ftfHDhLKMy1hJdEhVQzS5LerPIMeh1qsU8Q
hV/Cj+jfsrS/vBDOehj3jwx93t+861PmTOqgLnpYQ6Ltrt+2B/74+fufGMHE1kI3
Ffo7xvNw4sw6bSziDxDFqUx2P1dFN5D5EJsJsYM98ekkVAAkzNqCDRvfD2QI8Pif
VXWPYXqtNJTrVPJA0D7Yfo9FDNwhANd0f1zi7r/U5mVXBFUyKOlGqTQSkXgMrVeK
3I7wHPOVGgdA5UUkfcd3pcuqsY081U9E//o5PUfj8ybO5JCwly8NoatbG+xHmKia
a72uJT8MjCo9mGCHKDrwi9l/kqms6ZSv8RP+yMhGuB52YoiGc6PpVyab5jXIUd1N
yTtBlC0YGW1JYw==
=JHzg
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Infrastructure for secure boot on some bare metal Power9 machines.
The firmware support is still in development, so the code here
won't actually activate secure boot on any existing systems.
- A change to xmon (our crash handler / pseudo-debugger) to restrict
it to read-only mode when the kernel is lockdown'ed, otherwise it's
trivial to drop into xmon and modify kernel data, such as the
lockdown state.
- Support for KASLR on 32-bit BookE machines (Freescale / NXP).
- Fixes for our flush_icache_range() and __kernel_sync_dicache()
(VDSO) to work with memory ranges >4GB.
- Some reworks of the pseries CMM (Cooperative Memory Management)
driver to make it behave more like other balloon drivers and enable
some cleanups of generic mm code.
- A series of fixes to our hardware breakpoint support to properly
handle unaligned watchpoint addresses.
Plus a bunch of other smaller improvements, fixes and cleanups.
Thanks to: Alastair D'Silva, Andrew Donnellan, Aneesh Kumar K.V,
Anthony Steinhauser, Cédric Le Goater, Chris Packham, Chris Smart,
Christophe Leroy, Christopher M. Riedl, Christoph Hellwig, Claudio
Carvalho, Daniel Axtens, David Hildenbrand, Deb McLemore, Diana
Craciun, Eric Richter, Geert Uytterhoeven, Greg Kroah-Hartman, Greg
Kurz, Gustavo L. F. Walbon, Hari Bathini, Harish, Jason Yan, Krzysztof
Kozlowski, Leonardo Bras, Mathieu Malaterre, Mauro S. M. Rodrigues,
Michal Suchanek, Mimi Zohar, Nathan Chancellor, Nathan Lynch, Nayna
Jain, Nick Desaulniers, Oliver O'Halloran, Qian Cai, Rasmus Villemoes,
Ravi Bangoria, Sam Bobroff, Santosh Sivaraj, Scott Wood, Thomas Huth,
Tyrel Datwyler, Vaibhav Jain, Valentin Longchamp, YueHaibing"
* tag 'powerpc-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (144 commits)
powerpc/fixmap: fix crash with HIGHMEM
x86/efi: remove unused variables
powerpc: Define arch_is_kernel_initmem_freed() for lockdep
powerpc/prom_init: Use -ffreestanding to avoid a reference to bcmp
powerpc: Avoid clang warnings around setjmp and longjmp
powerpc: Don't add -mabi= flags when building with Clang
powerpc: Fix Kconfig indentation
powerpc/fixmap: don't clear fixmap area in paging_init()
selftests/powerpc: spectre_v2 test must be built 64-bit
powerpc/powernv: Disable native PCIe port management
powerpc/kexec: Move kexec files into a dedicated subdir.
powerpc/32: Split kexec low level code out of misc_32.S
powerpc/sysdev: drop simple gpio
powerpc/83xx: map IMMR with a BAT.
powerpc/32s: automatically allocate BAT in setbat()
powerpc/ioremap: warn on early use of ioremap()
powerpc: Add support for GENERIC_EARLY_IOREMAP
powerpc/fixmap: Use __fix_to_virt() instead of fix_to_virt()
powerpc/8xx: use the fixmapped IMMR in cpm_reset()
powerpc/8xx: add __init to cpm1 init functions
...
The driver exposes EFI runtime services to user-space through an IOCTL
interface, calling the EFI services function pointers directly without
using the efivar API.
Disallow access to the /dev/efi_test character device when the kernel is
locked down to prevent arbitrary user-space to call EFI runtime services.
Also require CAP_SYS_ADMIN to open the chardev to prevent unprivileged
users to call the EFI runtime services, instead of just relying on the
chardev file mode bits for this.
The main user of this driver is the fwts [0] tool that already checks if
the effective user ID is 0 and fails otherwise. So this change shouldn't
cause any regression to this tool.
[0]: https://wiki.ubuntu.com/FirmwareTestSuite/Reference/uefivarinfo
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Matthew Garrett <mjg59@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191029173755.27149-7-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xmon should be either fully or partially disabled depending on the
kernel lockdown state.
Put xmon into read-only mode for lockdown=integrity and prevent user
entry into xmon when lockdown=confidentiality. Xmon checks the lockdown
state on every attempted entry:
(1) during early xmon'ing
(2) when triggered via sysrq
(3) when toggled via debugfs
(4) when triggered via a previously enabled breakpoint
The following lockdown state transitions are handled:
(1) lockdown=none -> lockdown=integrity
set xmon read-only mode
(2) lockdown=none -> lockdown=confidentiality
clear all breakpoints, set xmon read-only mode,
prevent user re-entry into xmon
(3) lockdown=integrity -> lockdown=confidentiality
clear all breakpoints, set xmon read-only mode,
prevent user re-entry into xmon
Suggested-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190907061124.1947-3-cmr@informatik.wtf
No reason for these not to be const.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Suggested-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Print the content of current->comm in messages generated by lockdown to
indicate a restriction that was hit. This makes it a bit easier to find
out what caused the message.
The message now patterned something like:
Lockdown: <comm>: <what> is restricted; see man kernel_lockdown.7
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <jmorris@namei.org>
Tracefs may release more information about the kernel than desirable, so
restrict it when the kernel is locked down in confidentiality mode by
preventing open().
(Fixed by Ben Hutchings to avoid a null dereference in
default_file_open())
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
Disallow opening of debugfs files that might be used to muck around when
the kernel is locked down as various drivers give raw access to hardware
through debugfs. Given the effort of auditing all 2000 or so files and
manually fixing each one as necessary, I've chosen to apply a heuristic
instead. The following changes are made:
(1) chmod and chown are disallowed on debugfs objects (though the root dir
can be modified by mount and remount, but I'm not worried about that).
(2) When the kernel is locked down, only files with the following criteria
are permitted to be opened:
- The file must have mode 00444
- The file must not have ioctl methods
- The file must not have mmap
(3) When the kernel is locked down, files may only be opened for reading.
Normal device interaction should be done through configfs, sysfs or a
miscdev, not debugfs.
Note that this makes it unnecessary to specifically lock down show_dsts(),
show_devs() and show_call() in the asus-wmi driver.
I would actually prefer to lock down all files by default and have the
the files unlocked by the creator. This is tricky to manage correctly,
though, as there are 19 creation functions and ~1600 call sites (some of
them in loops scanning tables).
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Andy Shevchenko <andy.shevchenko@gmail.com>
cc: acpi4asus-user@lists.sourceforge.net
cc: platform-driver-x86@vger.kernel.org
cc: Matthew Garrett <mjg59@srcf.ucam.org>
cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg KH <greg@kroah.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Matthew Garrett <matthewgarrett@google.com>
Signed-off-by: James Morris <jmorris@namei.org>
Disallow the use of certain perf facilities that might allow userspace to
access kernel data.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
bpf_read() and bpf_read_str() could potentially be abused to (eg) allow
private keys in kernel memory to be leaked. Disable them if the kernel
has been locked down in confidentiality mode.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: netdev@vger.kernel.org
cc: Chun-Yi Lee <jlee@suse.com>
cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: James Morris <jmorris@namei.org>
Disallow the creation of perf and ftrace kprobes when the kernel is
locked down in confidentiality mode by preventing their registration.
This prevents kprobes from being used to access kernel memory to steal
crypto data, but continues to allow the use of kprobes from signed
modules.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: davem@davemloft.net
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
Disallow access to /proc/kcore when the kernel is locked down to prevent
access to cryptographic data. This is limited to lockdown
confidentiality mode and is still permitted in integrity mode.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <jmorris@namei.org>
The testmmiotrace module shouldn't be permitted when the kernel is locked
down as it can be used to arbitrarily read and write MMIO space. This is
a runtime check rather than buildtime in order to allow configurations
where the same kernel may be run in both locked down or permissive modes
depending on local policy.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Howells <dhowells@redhat.com
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: Thomas Gleixner <tglx@linutronix.de>
cc: Steven Rostedt <rostedt@goodmis.org>
cc: Ingo Molnar <mingo@kernel.org>
cc: "H. Peter Anvin" <hpa@zytor.com>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Provided an annotation for module parameters that specify hardware
parameters (such as io ports, iomem addresses, irqs, dma channels, fixed
dma buffers and other types).
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Jessica Yu <jeyu@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
Lock down TIOCSSERIAL as that can be used to change the ioport and irq
settings on a serial port. This only appears to be an issue for the serial
drivers that use the core serial code. All other drivers seem to either
ignore attempts to change port/irq or give an error.
Reported-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-serial@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Prohibit replacement of the PCMCIA Card Information Structure when the
kernel is locked down.
Suggested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <jmorris@namei.org>
custom_method effectively allows arbitrary access to system memory, making
it possible for an attacker to circumvent restrictions on module loading.
Disable it if the kernel is locked down.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: linux-acpi@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Writing to MSRs should not be allowed if the kernel is locked down, since
it could lead to execution of arbitrary code in kernel mode. Based on a
patch by Kees Cook.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
IO port access would permit users to gain access to PCI configuration
registers, which in turn (on a lot of hardware) give access to MMIO
register space. This would potentially permit root to trigger arbitrary
DMA, so lock it down by default.
This also implicitly locks down the KDADDIO, KDDELIO, KDENABIO and
KDDISABIO console ioctls.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Any hardware that can potentially generate DMA has to be locked down in
order to avoid it being possible for an attacker to modify kernel code,
allowing them to circumvent disabled module loading or module signing.
Default to paranoid - in future we can potentially relax this for
sufficiently IOMMU-isolated devices.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: linux-pci@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
There is currently no way to verify the resume image when returning
from hibernate. This might compromise the signed modules trust model,
so until we can work with signed hibernate images we disable it when the
kernel is locked down.
Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: rjw@rjwysocki.net
Cc: pavel@ucw.cz
cc: linux-pm@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
The kexec_load() syscall permits the loading and execution of arbitrary
code in ring 0, which is something that lock-down is meant to prevent. It
makes sense to disable kexec_load() in this situation.
This does not affect kexec_file_load() syscall which can check for a
signature on the image to be booted.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Dave Young <dyoung@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
Allowing users to read and write to core kernel memory makes it possible
for the kernel to be subverted, avoiding module loading restrictions, and
also to steal cryptographic information.
Disallow /dev/mem and /dev/kmem from being opened this when the kernel has
been locked down to prevent this.
Also disallow /dev/port from being opened to prevent raw ioport access and
thus DMA from being used to accomplish the same thing.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
If the kernel is locked down, require that all modules have valid
signatures that we can verify.
I have adjusted the errors generated:
(1) If there's no signature (ENODATA) or we can't check it (ENOPKG,
ENOKEY), then:
(a) If signatures are enforced then EKEYREJECTED is returned.
(b) If there's no signature or we can't check it, but the kernel is
locked down then EPERM is returned (this is then consistent with
other lockdown cases).
(2) If the signature is unparseable (EBADMSG, EINVAL), the signature fails
the check (EKEYREJECTED) or a system error occurs (eg. ENOMEM), we
return the error we got.
Note that the X.509 code doesn't check for key expiry as the RTC might not
be valid or might not have been transferred to the kernel's clock yet.
[Modified by Matthew Garrett to remove the IMA integration. This will
be replaced with integration with the IMA architecture policy
patchset.]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <matthewgarrett@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Jessica Yu <jeyu@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
While existing LSMs can be extended to handle lockdown policy,
distributions generally want to be able to apply a straightforward
static policy. This patch adds a simple LSM that can be configured to
reject either integrity or all lockdown queries, and can be configured
at runtime (through securityfs), boot time (via a kernel parameter) or
build time (via a kconfig option). Based on initial code by David
Howells.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>