1878 Commits

Author SHA1 Message Date
Pi-Cheng Chen
89b56047f6 cpufreq: mt8173: Move resources allocation into ->probe()
Since the return value of ->init() of cpufreq driver is not propagated
to the device driver model now, move resources allocation into
->probe() to handle -EPROBE_DEFER properly.

Signed-off-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-12 02:27:16 +01:00
Arnd Bergmann
b5832e4b62 cpufreq: tegra: add regulator dependency for T124
This driver is the only one that calls regulator_sync_voltage(), but it
can currently be built with CONFIG_REGULATOR disabled, producing
this build error:

drivers/cpufreq/tegra124-cpufreq.c: In function 'tegra124_cpu_switch_to_pllx':
drivers/cpufreq/tegra124-cpufreq.c:68:2: error: implicit declaration of function 'regulator_sync_voltage' [-Werror=implicit-function-declaration]
  regulator_sync_voltage(priv->vdd_cpu_reg);

My first attempt was to implement a helper for this function
for regulator_sync_voltage, but Mark Brown explained:

   We don't do this for *all* regulator API functions - there's some where
   using them strongly suggests that there is actually a dependency on
   the regulator API.  This does seem like it might be falling into the
   specialist category [...]
   Looking at the code I'm pretty unclear on what the authors think the
   use of _sync_voltage() is doing in the first place so it may be even
   better to just remove the call.  It seems to have been included in the
   first commit so there's not changelog explaining things and there's
   no comment either.  I'd *expect* it to be a noop as far as I can see.

This adds the dependency to make the driver always build successfully
or not be enabled at all. Alternatively, we could investigate if the
driver should stop calling regulator_sync_voltage instead.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-12 02:25:56 +01:00
Arnd Bergmann
789d73b384 Fixes for Exynos:
1. Fix potential NULL pointer dereference in Exynos PMU driver.
 2. Remove incorrect __init annotation from s3c24xx cpufreq driver
    structures.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWV66yAAoJEME3ZuaGi4PXxdkP/jHTVeUGKt0NmDuAQ8oHLXsL
 AGAFF0KdkrWvAcjiLBfyNw4DTQwZu6pyF4E+PFffhXRjJFp3ku7pKcGcf2+vvrdt
 mc5Sg9dvICoqqQiJmnyMymG+dKXWGEK5NF8HPZSATAl+7DrTsACRWU4UPMLlOjmQ
 /U2KABSJFcwuAPBd0wKL6B5Wbx7ijWaUI1xnNxqpuZW6YsXEqz4GYxJ41UWqNrN/
 htoOgYCDTh9aATWpJeDRUALEYiIPS+pAjdCYaiZzrmJerCDiNO8RdMKqVX2LG+sk
 tqBem2cy9TlCuJFdZX50Y700nK6G+iniTVaGoJO93w4XLRwTKAJROr/+7uNGqWqq
 Q/Ofkh6SEJpOiNunREqf7zCLOwUs6d2bQSTp6FilAsSxQCeRVSvXkTfTv388UWOk
 vD3TtfCPPokPwyWubtPeRYn6lDTfXUZr8cVkh1+/lcTCXEMvlK9AyDp3BsKDQHyQ
 zG5yZuZ6VQ2bmhE4B43yCMdqxFTLe+vf+GetJl4aDSAQNMuBdXZ84tyLwQqAMpvK
 PXTjL9RqgA78YurlS5LamqChQEI4abVnWvwBk5rTxwaqL5B5BC9i7U5Q8DuOFPv2
 W52GcBCdYriFmPhpXSVLDn47s1eyE360mBknUh2V0p6+GQzaAjzyjiTxU9/suoHQ
 IPGSkgxOfIiBMiHYPG0O
 =jNcR
 -----END PGP SIGNATURE-----

Merge tag 'samsung-fixes-4.4' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux into fixes

Merge "Fixes for Exynos" from Krzysztof Kozlowski:

1. Fix potential NULL pointer dereference in Exynos PMU driver.
2. Remove incorrect __init annotation from s3c24xx cpufreq driver
   structures.

* tag 'samsung-fixes-4.4' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux:
  cpufreq: s3c24xx: Do not mark s3c2410_plls_add as __init
  ARM: EXYNOS: Fix potential NULL pointer access in exynos_sys_powerdown_conf
2015-12-11 00:19:37 +01:00
Philippe Longepe
63d1d656a5 cpufreq: intel_pstate: Account for IO wait time
In cases where we have many IOs, the global load becomes low and the
load algorithm will decrease the requested P-State. Because of that,
the IOs overheads will increase and impact the IO performances.

To improve IO bound work, we can count the io-wait time as busy time
in calculating CPU busy.

This change uses get_cpu_iowait_time_us() to obtain the IO wait time value
and converts time into number of cycles spent waiting on IO at the TSC
rate. At the moment, this trick is only used for Atom.

Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 01:17:40 +01:00
Philippe Longepe
e70eed2b64 cpufreq: intel_pstate: Account for non C0 time
The current function to calculate cpu utilization uses the average P-state
ratio (APerf/Mperf) scaled by the ratio of the current P-state to the
max available non-turbo one. This leads to an overestimation of
utilization which causes higher-performance P-states to be selected more
often and that leads to increased energy consumption.

This is a problem for low-power systems, so it is better to use a
different utilization calculation algorithm for them.

Namely, the Percent Busy value (or load) can be estimated as the ratio of the
MPERF counter that runs at a constant rate only during active periods (C0) to
the time stamp counter (TSC) that also runs (at the same rate) during idle.
That is:

Percent Busy = 100 * (delta_mperf / delta_tsc)

Use this algorithm for platforms with SoCs based on the Airmont and Silvermont
Atom cores.

Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 01:17:40 +01:00
Philippe Longepe
157386b6fc cpufreq: intel_pstate: Configurable algorithm to get target pstate
Target systems using different cpus have different power and performance
requirements. They may use different algorithms to get the next P-state
based on their power or performance preference.

For example, power-constrained systems may not want to use
high-performance P-states as aggressively as a full-size desktop or a
server platform. A server platform may want to run close to the max to
achieve better performance, while laptop-like systems may prefer
sacrificing performance for longer battery lifes.

For the above reasons, modify intel_pstate to allow the target P-state
selection algorithm to be depend on the CPU ID.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 01:17:40 +01:00
Pi-Cheng Chen
40be4c3ccb cpufreq: mt8173: check return value of regulator_get_voltage() call
Sometimes regulator_get_voltage() call returns negative values for
reasons(e.g. underlying I2C bus timeout). Add check for the return
values and fail out early.

Signed-off-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:27:33 +01:00
Pi-Cheng Chen
93625d52e7 cpufreq: mt8173: remove redundant regulator_get_voltage() call
Remove redundant regulator_get_voltage() call to get Vsram value
since it will be obtained later at the beginning of voltage tracking
loop.

Signed-off-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:27:33 +01:00
Pi-Cheng Chen
9bb46b87d6 cpufreq: mt8173: add CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag
Add CPUFREQ_HAVE_GOVERNOR_PER_POLICY to have individual set of tunables
for each cluster of MT8173.

Signed-off-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:27:32 +01:00
Hongtao Jia
8ae1702a0d cpufreq: qoriq: Register cooling device based on device tree
Register the qoriq cpufreq driver as a cooling device, based on the
thermal device tree framework. When temperature crosses the passive trip
point cpufreq is used to throttle CPUs.

Signed-off-by: Jia Hongtao <hongtao.jia@freescale.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:19:35 +01:00
Jacob Tanenbaum
790d849bf8 cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency
The cpufreq documentation specifies

policy->cpuinfo.transition_latency   the time it takes on this CPU to
                                switch between two frequencies in
                                nanoseconds (if appropriate, else
                                specify CPUFREQ_ETERNAL)

currently pcc-cpufreq does not expose the value and sets it to zero. I
changed the pcc-cpufreq driver and it's documentation to conform to the
default value specified in Documentation/cpu-freq/cpu-drivers.txt

Signed-off-by: Jacob Tanenbaum <jtanenba@redhat.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:17:03 +01:00
Punit Agrawal
2f7e8a175d cpufreq: arm_big_little: Add support to register a cpufreq cooling device
Register passive cooling devices when initialising cpufreq on
big.LITTLE systems. If the device tree provides a dynamic power
coefficient for the CPUs then the bound cooling device will support
the extensions that allow it to be used with all the existing thermal
governors including the power allocator governor.

A cooling device will be created per individual frequency domain and
can be bound to thermal zones via the thermal DT bindings.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:14:58 +01:00
Punit Agrawal
f8fa8ae06b cpufreq-dt: Supply power coefficient when registering cooling devices
Support registering cooling devices with dynamic power coefficient
where provided by the device tree. This allows OF registered cooling
devices driver to be used with the power_allocator thermal governor.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Javi Merino <javi.merino@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-10 00:14:58 +01:00
Rafael J. Wysocki
2dd3e724b4 cpufreq: governor: Use lockless timer function
It is possible to get rid of the timer_lock spinlock used by the
governor timer function for synchronization, but a couple of races
need to be avoided.

The first race is between multiple dbs_timer_handler() instances
that may be running in parallel with each other on different
CPUs.  Namely, one of them has to queue up the work item, but it
cannot be queued up more than once.  To achieve that,
atomic_inc_return() can be used on the skip_work field of
struct cpu_common_dbs_info.

The second race is between an already running dbs_timer_handler()
and gov_cancel_work().  In that case the dbs_timer_handler() might
not notice the skip_work incrementation in gov_cancel_work() and
it might queue up its work item after gov_cancel_work() had
returned (and that work item would corrupt skip_work going
forward).  To prevent that from happening, gov_cancel_work()
can be made wait for the timer function to complete (on all CPUs)
right after skip_work has been incremented.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2015-12-09 22:26:13 +01:00
Viresh Kumar
f08f638b9c cpufreq: ondemand: update update_sampling_rate() to make it more efficient
Currently update_sampling_rate() runs over each online CPU and
cancels/queues timers on all policy->cpus every time. This should be
done just once for any cpu belonging to a policy.

Create a cpumask and keep on clearing it as and when we process
policies, so that we don't have to traverse through all CPUs of the same
policy.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-09 22:26:12 +01:00
Viresh Kumar
70f43e5e79 cpufreq: governor: replace per-CPU delayed work with timers
cpufreq governors evaluate load at sampling rate and based on that they
update frequency for a group of CPUs belonging to the same cpufreq
policy.

This is required to be done in a single thread for all policy->cpus, but
because we don't want to wakeup idle CPUs to do just that, we use
deferrable work for this. If we would have used a single delayed
deferrable work for the entire policy, there were chances that the CPU
required to run the handler can be in idle and we might end up not
changing the frequency for the entire group with load variations.

And so we were forced to keep per-cpu works, and only the one that
expires first need to do the real work and others are rescheduled for
next sampling time.

We have been using the more complex solution until now, where we used a
delayed deferrable work for this, which is a combination of a timer and
a work.

This could be made lightweight by keeping per-cpu deferred timers with a
single work item, which is scheduled by the first timer that expires.

This patch does just that and here are important changes:
- The timer handler will run in irq context and so we need to use a
  spin_lock instead of the timer_mutex. And so a separate timer_lock is
  created. This also makes the use of the mutex and lock quite clear, as
  we know what exactly they are protecting.
- A new field 'skip_work' is added to track when the timer handlers can
  queue a work. More comments present in code.

Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-09 22:26:00 +01:00
Viresh Kumar
5e4500d8db cpufreq: governor: initialize/destroy timer_mutex with 'shared'
timer_mutex is required to be initialized only while memory for 'shared'
is allocated and in a similar way it is required to be destroyed only
when memory for 'shared' is freed.

There is no need to do the same every time we start/stop the governor.
Move code to initialize/destroy timer_mutex to the relevant places.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:23 +01:00
Viresh Kumar
affde5d06a cpufreq: governor: Pass policy as argument to ->gov_dbs_timer()
Pass 'policy' as argument to ->gov_dbs_timer() instead of cdbs and
dbs_data.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:22 +01:00
Viresh Kumar
e68fe18c5b cpufreq: ondemand: Work is guaranteed to be pending
We are guaranteed to have works scheduled for policy->cpus, as the
policy isn't stopped yet. And so there is no need to check that again.
Drop it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:21 +01:00
Viresh Kumar
e128c86407 cpufreq: ondemand: Update sampling rate only for concerned policies
We are comparing policy->governor against cpufreq_gov_ondemand to make
sure that we update sampling rate only for the concerned CPUs. But that
isn't enough.

In case of governor_per_policy, there can be multiple instances of
ondemand governor and we will always end up updating all of them with
current code. What we rather need to do, is to compare dbs_data with
poilcy->governor_data, which will match only for the policies governed
by dbs_data.

This code is also racy as the governor might be getting stopped at that
time and we may end up scheduling work for a policy, which we have just
disabled.

Fix that by protecting the entire function with &od_dbs_cdata.mutex,
which will prevent against races with policy START/STOP/etc.

After these locks are in place, we can safely get the policy via per-cpu
dbs_info.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:10 +01:00
Rafael J. Wysocki
d441fe25e7 Merge branches 'pm-domains' and 'pm-cpufreq'
* pm-domains:
  PM / Domains: Fix bad of_node_put() in failure paths of genpd_dev_pm_attach()
  PM / Domains: Validate cases of a non-bound driver in genpd governor

* pm-cpufreq:
  cpufreq: use last policy after online for drivers with ->setpolicy
2015-12-04 14:01:42 +01:00
Srinivas Pandruvada
69030dd1c3 cpufreq: use last policy after online for drivers with ->setpolicy
For cpufreq drivers which use setpolicy interface, after offline->online
the policy is set to default. This can be reproduced by setting the
default policy of intel_pstate or longrun to ondemand and then change to
"performance". After offline and online, the setpolicy will be called with
the policy=ondemand.

For drivers using governors this condition is handled by storing
last_governor, during offline and restoring during online. The same should
be done for drivers using setpolicy interface. Storing last_policy during
offline and restoring during online.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-02 23:50:33 +01:00
Rafael J. Wysocki
f28a1b0df7 Merge branches 'pm-cpufreq' and 'acpi-cppc'
* pm-cpufreq:
  intel_pstate: Fix "performance" mode behavior with HWP enabled
  cpufreq: SCPI: Depend on SCPI clk driver
  cpufreq: intel_pstate: Fix limits->max_perf rounding error
  cpufreq: intel_pstate: Fix limits->max_policy_pct rounding error
  cpufreq: Always remove sysfs cpuX/cpufreq link on ->remove_dev()

* acpi-cppc:
  cpufreq: CPPC: Initialize and check CPUFreq CPU co-ord type correctly
2015-11-27 16:23:59 +01:00
Arnd Bergmann
62f49ee26f cpufreq: s3c24xx: Do not mark s3c2410_plls_add as __init
s3c2410_plls_add is a device notifier that may be called at runtime and
is correctly not marked __init. However it calls s3c_plltab_register()
which is marked __init, and that triggers a build error when we are
checking for section mismatches:

WARNING: vmlinux.o(.text+0x195e0): Section mismatch in reference from the function s3c2410_plls_add() to the function .init.text:s3c_plltab_register()
The function s3c2410_plls_add() references
the function __init s3c_plltab_register().
This is often because s3c2410_plls_add lacks a __init
annotation or the annotation of s3c_plltab_register is wrong.

This removes the __init annotation from s3c2410_plls_add as well as the
__initdata section annotations from s3c2440_plls_12 and s3c2440_plls_169344,
which in turn are referenced from s3c2410_plls_add.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
2015-11-27 10:10:32 +09:00
Alexandra Yates
584ee3dcb1 intel_pstate: Fix "performance" mode behavior with HWP enabled
If hardware-driven P-state selection (HWP) is enabled, the
"performance" mode of intel_pstate should only allow the processor
to use the highest-performance P-state available.  That is not
the case currently, so make it actually happen.

Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Alexandra Yates <alexandra.yates@linux.intel.com>
[ rjw: Subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-25 23:37:44 +01:00
Punit Agrawal
73124ced9c cpufreq: SCPI: Depend on SCPI clk driver
The SCPI clk driver registers the virtual cpufreq device that kicks off
initialisation of the SCPI cpufreq driver. Also, clk_get() will fail for
the cpufreq driver if the SCPI clk driver is missing.

Fix this by making the SCPI cpufreq driver explicitly depend on the SCPI
clk driver.

Fixes: 8def31034d03 (cpufreq: arm_big_little: add SCPI interface driver)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-23 23:50:27 +01:00
Rafael J. Wysocki
b0ceed0685 Merge back earlier cpufreq fixes for v4.4. 2015-11-23 23:49:57 +01:00
Prarit Bhargava
785ee27881 cpufreq: intel_pstate: Fix limits->max_perf rounding error
A rounding error was found in the calculation of limits->max_perf
in intel_pstate_set_policy(), which is used to calculate the max and min
pstate values in intel_pstate_get_min_max().  In that code,
limits->max_perf is truncated to 2 hex digits such that, for example,
0x169 was incorrectly calculated to 0x16 instead of 0x17.  This resulted in
the pstate being set one level too low.  This patch rounds the value of
limits->max_perf up instead of down so that the correct max pstate can
be reached.

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-23 23:15:34 +01:00
Prarit Bhargava
8478f53946 cpufreq: intel_pstate: Fix limits->max_policy_pct rounding error
I have a Intel (6,63) processor with a "marketing" frequency (from
/proc/cpuinfo) of 2100MHz, and a max turbo frequency of 2600MHz.  I
can execute

cpupower frequency-set -g powersave --min 1200MHz --max 2100MHz

and the max_freq_pct is set to 80.  When adding load to the system I noticed
that the cpu frequency only reached 2000MHZ and not 2100MHz as expected.

This is because limits->max_policy_pct is calculated as 2100 * 100 /2600 = 80.7
and is rounded down to 80 when it should be rounded up to 81.  This patch
adds a DIV_ROUND_UP() which will return the correct value.

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-23 23:14:10 +01:00
Viresh Kumar
f344dae0fe cpufreq: Always remove sysfs cpuX/cpufreq link on ->remove_dev()
Subsys interface's ->remove_dev() is called when the cpufreq driver is
unregistering or the CPU is getting physically removed. We keep removing
the cpuX/cpufreq link for all CPUs except the last one, which is a
mistake as all CPUs contain a link now.

Because of this, one CPU from each policy will still contain a link (to
an already removed policyX directory), after the cpufreq driver is
unregistered.

Fix that by removing the link first and then only see if the policy is
required to be freed. That will make sure that no links are left out.

Fixes: 96bdda61f58b ("cpufreq: create cpu/cpufreq/policyX directories")
Reported-and-tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-23 22:49:42 +01:00
Ashwin Chaugule
9dc1791773 cpufreq: CPPC: Initialize and check CPUFreq CPU co-ord type correctly
The CPU policy struct indicates the co-ordination type
for all CPUs of a common freq domain. Initialize it
correctly using the CPU specific data gathered from
CPPC ACPI lib via acpi_get_psd_map().

The PSD object is optional, so the cpu->shared_type
can also be 0. So instead of assuming any value other
than SW_ANY(0xFD) is unsupported, explictly check
if shared_type is SW_ALL and then bail.

Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-23 22:21:18 +01:00
Rafael J. Wysocki
9832bf3a35 Merge branches 'pm-cpufreq' and 'acpi-cppc'
* pm-cpufreq:
  Revert "Documentation: kernel_parameters for Intel P state driver"
  cpufreq: mediatek: fix build error
  cpufreq: intel_pstate: Add separate support for Airmont cores
  cpufreq: intel_pstate: Replace BYT with ATOM
  Revert "cpufreq: intel_pstate: Use ACPI perf configuration"
  Revert "cpufreq: intel_pstate: Avoid calculation for max/min"

* acpi-cppc:
  ACPI / CPPC: Use h/w reduced version of the PCCT structure
2015-11-20 01:22:10 +01:00
Arnd Bergmann
2d4ee30367 cpufreq: mediatek: fix build error
The recently added mt8173 cpufreq driver relies on the cpu topology
that is always present on ARM64 but optional on ARM32:

drivers/cpufreq/mt8173-cpufreq.c: In function 'mtk_cpufreq_init':
drivers/cpufreq/mt8173-cpufreq.c:441:30: error: 'cpu_topology' undeclared (first use in this function)
  cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling);

This refines the Kconfig dependencies so that we can still build on
ARM32, but only if COMPILE_TEST is selected and the CPU topology
code is present.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-19 00:21:47 +01:00
Philippe Longepe
1421df63c3 cpufreq: intel_pstate: Add separate support for Airmont cores
There are two flavors of Atom cores to be supported by intel_pstate,
Silvermont and Airmont, so make the driver distinguish between them by
adding separate frequency tables.

Separate the CPU defaults params for each of them and match the CPU IDs
against them as appropriate.

Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-19 00:21:46 +01:00
Philippe Longepe
938d21a2a6 cpufreq: intel_pstate: Replace BYT with ATOM
Rename symbol and function names starting with "BYT" or "byt" to
start with "ATOM" or "atom", respectively, so as to make it clear
that they may apply to Atom in general and not just to Baytrail
(the goal is to support several Atoms architectures eventually).

This should not lead to any functional changes.

Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw : Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-19 00:21:46 +01:00
Rafael J. Wysocki
6ee11e413c Revert "cpufreq: intel_pstate: Use ACPI perf configuration"
Revert commit 37afb0003242 (cpufreq: intel_pstate: Use ACPI perf
configuration) that is reported to cause a regression to happen
on a system where invalid data are returned by the ACPI _PSS object.

Since that commit makes assumptions regarding the _PSS output
correctness that may turn out to be overly optimistic in general,
there is a concern that it may introduce regression on more
systems, so it's better to revert it now and we'll revisit the
underlying issue in the next cycle with a more robust solution.

Conflicts:
        drivers/cpufreq/intel_pstate.c

Fixes: 37afb0003242 (cpufreq: intel_pstate: Use ACPI perf configuration)
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-19 00:20:42 +01:00
Rafael J. Wysocki
799281a3c4 Revert "cpufreq: intel_pstate: Avoid calculation for max/min"
Revert commit 4ef451487019 (cpufreq: intel_pstate: Avoid calculation for
max/min) as it depends on commit 37afb0003242 (cpufreq: intel_pstate: Use
ACPI perf configuration) that causes problems to happen and needs to be
reverted.

Conflicts:
	drivers/cpufreq/intel_pstate.c

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-18 23:29:56 +01:00
Linus Torvalds
be23c9d20b More power management and ACPI updates for v4.4-rc1
- Support for the ACPI _CCA configuration object intended to tell
    the OS whether or not a bus master device supports hardware
    managed cache coherency and a new set of functions to allow
    drivers to check the cache coherency support for devices in a
    platform firmware interface agnostic way (Suravee Suthikulpanit,
    Jeremy Linton).
 
  - ACPI backlight quirks for ESPRIMO Mobile M9410 and Dell XPS L421X
    (Aaron Lu, Hans de Goede).
 
  - Fixes for the arm_big_little and s5pv210-cpufreq cpufreq drivers
    (Jon Medhurst, Nicolas Pitre).
 
  - kfree()-related fixup for the recently introduced CPPC cpufreq
    frontend (Markus Elfring).
 
  - intel_pstate fix reducing kernel log noise on systems where
    P-states are managed by hardware (Prarit Bhargava).
 
  - intel_pstate maintainers information update (Srinivas Pandruvada).
 
  - cpufreq core optimization related to the handling of delayed work
    items used by governors (Viresh Kumar).
 
  - Locking fixes and cleanups of the Operating Performance Points
    (OPP) framework (Viresh Kumar).
 
  - Generic power domains framework cleanups (Lina Iyer).
 
  - cpupower tool updates (Jacob Tanenbaum, Sriram Raghunathan,
    Thomas Renninger).
 
  - turbostat tool updates (Len Brown).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJWQ96OAAoJEILEb/54YlRxyYYQALJ1HXu76SvYX1re2aawOw6Y
 WgzF3Ly7JX034E1VvA2xP6wgkWpBRBDcpnRDeltNA4dYXPBDei/eTcRZTLX12N3g
 AfFRGjGWTtLJfpNPecNMmUyF5xHjgDgMIQRabY+Is5NfP5STkPHJeqULnEpvTtx8
 bd0lnC5jc4vuZiPEh1xVb+ClYDqWS8YQPyFJVjV/BaIf8Qwe5+oRX36byMBaKc9D
 ZgmvmCk5n/HLQQ1uQsqe4xnhFLHN2rypt2BLvFrOtlnSz9VNNpQyB+OIW1mgCD4f
 LhpKIwjP8NhZNQUq8HFu7nDlm8ciQtWmeMPB5NdGQ+OESu7yfKAOzQ+3U6Gl2Gaf
 66zVGyV6SOJJwfDVJ3qKTtroWps9QV7ZClOJ+zJGgiujwU+tJ3pDQyZM9pa7CL3C
 s7ZAUsI6IigSBjD3nJVOyG4DO0a8KQFCIE1mDmyqId45Qz8xJoOrYP33/ZnDuOdo
 2OtL/emyfWsz9ixbHVfwIhb7EC6aoaUxQrhSWmNraaQS43YfioZR7h4we8gwenph
 X4E1KY4SdML+uFf2VKIcd45NM3IBprCxx5UgFAJdrqe8+otqPNF2AVosG4iqhg/b
 k4nxwuIvw2a8Fm77U9ytyXDYMItU/wIlAHMbnmgx+oTwRv6AbZ07MHkyfuQLYuhD
 tq5Y14qSiTS7prNacx98
 =XZiP
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-4.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management and ACPI updates from Rafael Wysocki:
 "The only new feature in this batch is support for the ACPI _CCA device
  configuration object, which it a pre-requisite for future ACPI PCI
  support on ARM64, but should not affect the other architectures.

  The rest is fixes and cleanups, mostly in cpufreq (including
  intel_pstate), the Operating Performace Points (OPP) framework and
  tools (cpupower and turbostat).

  Specifics:

   - Support for the ACPI _CCA configuration object intended to tell the
     OS whether or not a bus master device supports hardware managed
     cache coherency and a new set of functions to allow drivers to
     check the cache coherency support for devices in a platform
     firmware interface agnostic way (Suravee Suthikulpanit, Jeremy
     Linton).

   - ACPI backlight quirks for ESPRIMO Mobile M9410 and Dell XPS L421X
     (Aaron Lu, Hans de Goede).

   - Fixes for the arm_big_little and s5pv210-cpufreq cpufreq drivers
     (Jon Medhurst, Nicolas Pitre).

   - kfree()-related fixup for the recently introduced CPPC cpufreq
     frontend (Markus Elfring).

   - intel_pstate fix reducing kernel log noise on systems where
     P-states are managed by hardware (Prarit Bhargava).

   - intel_pstate maintainers information update (Srinivas Pandruvada).

   - cpufreq core optimization related to the handling of delayed work
     items used by governors (Viresh Kumar).

   - Locking fixes and cleanups of the Operating Performance Points
     (OPP) framework (Viresh Kumar).

   - Generic power domains framework cleanups (Lina Iyer).

   - cpupower tool updates (Jacob Tanenbaum, Sriram Raghunathan, Thomas
     Renninger).

   - turbostat tool updates (Len Brown)"

* tag 'pm+acpi-4.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (32 commits)
  PCI: ACPI: Add support for PCI device DMA coherency
  PCI: OF: Move of_pci_dma_configure() to pci_dma_configure()
  of/pci: Fix pci_get_host_bridge_device leak
  device property: ACPI: Remove unused DMA APIs
  device property: ACPI: Make use of the new DMA Attribute APIs
  device property: Adding DMA Attribute APIs for Generic Devices
  ACPI: Adding DMA Attribute APIs for ACPI Device
  device property: Introducing enum dev_dma_attr
  ACPI: Honor ACPI _CCA attribute setting
  cpufreq: CPPC: Delete an unnecessary check before the function call kfree()
  PM / OPP: Add opp_rcu_lockdep_assert() to _find_device_opp()
  PM / OPP: Hold dev_opp_list_lock for writers
  PM / OPP: Protect updates to list_dev with mutex
  PM / OPP: Propagate error properly from dev_pm_opp_set_sharing_cpus()
  cpufreq: s5pv210-cpufreq: fix wrong do_div() usage
  MAINTAINERS: update for intel P-state driver
  Creating a common structure initialization pattern for struct option
  cpupower: Enable disabled Cstates if they are below max latency
  cpupower: Remove debug message when using cpupower idle-set -D switch
  cpupower: cpupower monitor reports uninitialized values for offline cpus
  ...
2015-11-12 11:50:33 -08:00
Linus Torvalds
b44a3d2a85 ARM: SoC driver updates for v4.4
As we've enabled multiplatform kernels on ARM, and greatly done away with
 the contents under arch/arm/mach-*, there's still need for SoC-related
 drivers to go somewhere.
 
 Many of them go in through other driver trees, but we still have
 drivers/soc to hold some of the "doesn't fit anywhere" lowlevel code
 that might be shared between ARM and ARM64 (or just in general makes
 sense to not have under the architecture directory).
 
 This branch contains mostly such code:
 
 - Drivers for qualcomm SoCs for SMEM, SMD and SMD-RPM, used to communicate
   with power management blocks on these SoCs for use by clock, regulator and
   bus frequency drivers.
 - Allwinner Reduced Serial Bus driver, again used to communicate with PMICs.
 - Drivers for ARM's SCPI (System Control Processor). Not to be confused with
   PSCI (Power State Coordination Interface). SCPI is used to communicate with
   the assistant embedded cores doing power management, and we have yet to see
   how many of them will implement this for their hardware vs abstracting in
   other ways (or not at all like in the past).
 - To make confusion between SCPI and PSCI more likely, this release also
   includes an update of PSCI to interface version 1.0.
 - Rockchip support for power domains.
 - A driver to talk to the firmware on Raspberry Pi.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWQC+cAAoJEIwa5zzehBx3jEUP/0GpxfDVanEUkudVLLe7J0RH
 CNlRan107Cw6hXRUJo7elEsuCALjccXjc1CAH4+RnNpOAeBKW97n+WU7trTv+wUZ
 sQX4SkBPKFBlgwGF2qhsi5q74gms/BrgtCa4kNb9joOYso039tlfIOPzK80DMkOm
 TkyIJdUCgFJMjCQLhX6kGT0PDcrbIjb6aA2cF3FAVeaJA7uz8lNe/eHJr3oHxIEY
 CvC651yJ2mIHQUU4BJx/AJo+wXg3dRUXNCAtBjwLRPEAzduYZXYm1ZTVIby/1q9r
 dR2KDFEuibODXmXrDBzKNJwCu/TLJEwo/1oPaEIVfY91XLKfiWUhgVqa1o1I+d9U
 XoGPibCW461qFahjQW87MfInALpCOA7/RbTNjFp+MVyipCYvkaYq7KFiYEldgFDx
 z4Qx/J4hYc2TlDWrpNiUCZMfmhwi7y+Ib+tnenYTO1eyMuw0e9mfnVdjk5iU3Pvk
 Ye4qPqpYclJruyHbYi164878+1lLaW2NCUgC3rkBO/GWPAzp7d9iLWoZ3PuyD5i5
 PEjs668UcRdZYbI4rdrhGHL8Eq9Gnuc4Rthu7HxPOK+DG0XgP8r97PhM8aYGYVDO
 +yikBtjWRsA9fPj3rMKA3UsQ61DAeR9LmZ0XPGjWFMCjCG0JlUoIMaA+Uu0i8fr8
 95qxBVxbO7rhL39r1rhV
 =dm+I
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC driver updates from Olof Johansson:
 "As we've enabled multiplatform kernels on ARM, and greatly done away
  with the contents under arch/arm/mach-*, there's still need for
  SoC-related drivers to go somewhere.

  Many of them go in through other driver trees, but we still have
  drivers/soc to hold some of the "doesn't fit anywhere" lowlevel code
  that might be shared between ARM and ARM64 (or just in general makes
  sense to not have under the architecture directory).

  This branch contains mostly such code:

   - Drivers for qualcomm SoCs for SMEM, SMD and SMD-RPM, used to
     communicate with power management blocks on these SoCs for use by
     clock, regulator and bus frequency drivers.

   - Allwinner Reduced Serial Bus driver, again used to communicate with
     PMICs.

   - Drivers for ARM's SCPI (System Control Processor).  Not to be
     confused with PSCI (Power State Coordination Interface).  SCPI is
     used to communicate with the assistant embedded cores doing power
     management, and we have yet to see how many of them will implement
     this for their hardware vs abstracting in other ways (or not at all
     like in the past).

   - To make confusion between SCPI and PSCI more likely, this release
     also includes an update of PSCI to interface version 1.0.

   - Rockchip support for power domains.

   - A driver to talk to the firmware on Raspberry Pi"

* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (57 commits)
  soc: qcom: smd-rpm: Correct size of outgoing message
  bus: sunxi-rsb: Add driver for Allwinner Reduced Serial Bus
  bus: sunxi-rsb: Add Allwinner Reduced Serial Bus (RSB) controller bindings
  ARM: bcm2835: add mutual inclusion protection
  drivers: psci: make PSCI 1.0 functions initialization version dependent
  dt-bindings: Correct paths in Rockchip power domains binding document
  soc: rockchip: power-domain: don't try to print the clock name in error case
  soc: qcom/smem: add HWSPINLOCK dependency
  clk: berlin: add cpuclk
  ARM: berlin: dts: add CLKID_CPU for BG2Q
  ARM: bcm2835: Add the Raspberry Pi firmware driver
  soc: qcom: smem: Move RPM message ram out of smem DT node
  soc: qcom: smd-rpm: Correct the active vs sleep state flagging
  soc: qcom: smd: delete unneeded of_node_put
  firmware: qcom-scm: build for correct architecture level
  soc: qcom: smd: Correct SMEM items for upper channels
  qcom-scm: add missing prototype for qcom_scm_is_available()
  qcom-scm: fix endianess issue in __qcom_scm_is_call_available
  soc: qcom: smd: Reject send of too big packets
  soc: qcom: smd: Handle big endian CPUs
  ...
2015-11-10 15:00:03 -08:00
Rafael J. Wysocki
1f47b0ddf3 Merge branch 'pm-cpufreq'
* pm-cpufreq:
  cpufreq: s5pv210-cpufreq: fix wrong do_div() usage
  MAINTAINERS: update for intel P-state driver
  cpufreq: governor: Quit work-handlers early if governor is stopped
  intel_pstate: decrease number of "HWP enabled" messages
  cpufreq: arm_big_little: fix frequency check when bL switcher is active
2015-11-07 01:30:49 +01:00
Rafael J. Wysocki
3930f660b4 Merge branches 'acpi-video' and 'acpi-cppc'
* acpi-video:
  ACPI / video: only register backlight for LCD device
  ACPI / video: Add a quirk to force acpi-video backlight on Dell XPS L421X

* acpi-cppc:
  cpufreq: CPPC: Delete an unnecessary check before the function call kfree()
2015-11-07 01:30:22 +01:00
Markus Elfring
efb2d3be53 cpufreq: CPPC: Delete an unnecessary check before the function call kfree()
The kfree() function tests whether its argument is NULL and then
returns immediately. Thus the test around the call is not needed.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-07 00:03:18 +01:00
Nicolas Pitre
d7e53e35f9 cpufreq: s5pv210-cpufreq: fix wrong do_div() usage
It is wrong to use do_div() with 32-bit dividends (unsigned long is
32 bits on 32-bit architectures).

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-05 22:50:48 +01:00
Viresh Kumar
3a91b069ea cpufreq: governor: Quit work-handlers early if governor is stopped
gov_queue_work() acquires cpufreq_governor_lock to allow
cpufreq_governor_stop() to drain delayed work items possibly scheduled
on CPUs that share the policy with a CPU being taken offline.

However, the same goal may be achieved in a more straightforward way if
the policy pointer in the struct cpu_dbs_info matching the policy CPU is
reset upfront by cpufreq_governor_stop() under the timer_mutex belonging
to it and checked against NULL, under the same lock, at the beginning of
dbs_timer().

In that case every instance of dbs_timer() run for a struct cpu_dbs_info
sharing the policy pointer in question after cpufreq_governor_stop() has
started will notice that that pointer is NULL and bail out immediately
without queuing up any new work items.  In turn, gov_cancel_work()
called by cpufreq_governor_stop() before destroying timer_mutex will
wait for all of the delayed work items currently running on the CPUs
sharing the policy to drop the mutex, so it may be destroyed safely.

Make cpufreq_governor_stop() and dbs_timer() work as described and
modify gov_queue_work() so it does not acquire cpufreq_governor_lock any
more.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-02 02:07:11 +01:00
Prarit Bhargava
539342f60b intel_pstate: decrease number of "HWP enabled" messages
When booting an HWP enabled system the kernel displays one "HWP enabled"
message for each cpu.  The messages are superfluous since HWP is globally
enabled across all CPUs. This patch also adds an informational message
when HWP is disabled via intel_pstate=no_hwp.

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-02 02:01:18 +01:00
Jon Medhurst \(Tixy\)
14f1ba3af6 cpufreq: arm_big_little: fix frequency check when bL switcher is active
The check for correct frequency being set in bL_cpufreq_set_rate is
broken when the big.LITTLE switcher is active, for two reasons.

 1. The 'new_rate' variable gets overwritten before the test by the
 code calculating the frequency of the old cluster.

 2. The frequency returned by bL_cpufreq_get_rate will be the virtual
 frequency, not the actual one the intended version of new_rate contains.

This means the function always returns an error causing an endless
stream of: "cpufreq: __target_index: Failed to change cpu frequency: -5"

As the intent is to check for errors that clk_set_rate doesn't report
lets move the check to immediately after that and directly use
clk_get_rate, rather than the arm_big_little helpers which only confuse
matters. Also, update the comment to be hopefully clearer about the
purpose of the code.

Fixes: 0a95e630b49a (cpufreq: arm_big_little: check if the frequency is set correctly)
Signed-off-by: Jon Medhurst <tixy@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Michael Turquette <mturquette@baylibre.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-02 01:58:27 +01:00
Rafael J. Wysocki
394f7164e6 Merge branch 'pm-opp'
* pm-opp:
  PM / OPP: passing NULL to PTR_ERR()
  PM / OPP: Move cpu specific code to opp/cpu.c
  PM / OPP: Move opp core to its own directory
  PM / OPP: Prefix exported opp routines with dev_pm_opp_
  PM / OPP: Rename opp init/free table routines
  PM / OPP: reuse of_parse_phandle()
2015-11-02 00:54:37 +01:00
Rafael J. Wysocki
69f8947b8c Merge branches 'pm-cpufreq' and 'pm-cpuidle'
* pm-cpufreq:
  cpufreq: postfix policy directory with the first CPU in related_cpus
  cpufreq: create cpu/cpufreq/policyX directories
  cpufreq: remove cpufreq_sysfs_{create|remove}_file()
  cpufreq: create cpu/cpufreq at boot time
  cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
  cpufreq: ondemand: Drop unnecessary locks from update_sampling_rate()
  cpufreq: intel_pstate: Fix intel_pstate powersave min_perf_pct value
  cpufreq: intel_pstate: Avoid calculation for max/min
  Documentation: kernel_parameters for Intel P state driver
  cpufreq: intel_pstate: Use ACPI perf configuration
  cpufreq: intel-pstate: Use separate max pstate for scaling
  cpufreq: intel_pstate: get P1 from TAR when available
  cpufreq: Drop redundant check for inactive policies
  cpufreq : powernv: Report Pmax throttling if capped below nominal frequency
  cpufreq: imx: update the clock switch flow to support imx6ul
  cpufreq: tegra20: remove superfluous CONFIG_PM ifdefs
  cpufreq: conservative: remove 'enable' field
  cpufreq: integrator: Fix module autoload for OF platform driver

* pm-cpuidle:
  cpuidle: mvebu: disable the bind/unbind attributes and use builtin_platform_driver
  cpuidle: mvebu: clean up multiple platform drivers
2015-11-02 00:54:10 +01:00
Rafael J. Wysocki
62839e2d01 Merge branch 'acpi-processor'
* acpi-processor:
  ACPI / CPPC: Fix potential memory leak
  ACPI / CPPC: signedness bug in register_pcc_channel()
  ACPI: Allow selection of the ACPI processor driver for ARM64
  CPPC: Probe for CPPC tables for each ACPI Processor object
  ACPI: Add weak routines for ACPI CPU Hotplug
  ACPI / CPPC: Add a CPUFreq driver for use with CPPC
  ACPI: Introduce CPU performance controls using CPPC
2015-11-02 00:50:37 +01:00
Viresh Kumar
3510fac454 cpufreq: postfix policy directory with the first CPU in related_cpus
The sysfs policy directory is postfixed currently with the CPU number
for which the policy was created, which isn't necessarily the first CPU
in related_cpus mask.

To make it more consistent and predictable, lets postfix the policy with
the first cpu in related-cpus mask.

Suggested-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-10-28 09:21:12 +01:00