144 Commits

Author SHA1 Message Date
Benjamin Block
d0dff2ac98 scsi: zfcp: Move allocation of the shost object to after xconf- and xport-data
At the moment we allocate and register the Scsi_Host object corresponding
to a zfcp adapter (FCP device) very early in the life cycle of the adapter
- even before we fully discover and initialize the underlying
firmware/hardware. This had the advantage that we could already use the
Scsi_Host object, and fill in all its information during said discover and
initialize.

Due to commit 737eb78e82d5 ("block: Delay default elevator initialization")
(first released in v5.4), we noticed a regression that would prevent us
from using any storage volume if zfcp is configured with support for DIF or
DIX (zfcp.dif=1 || zfcp.dix=1). Doing so would result in an illegal memory
access as soon as the first request is sent with such an configuration. As
example for a crash resulting from this:

  scsi host0: scsi_eh_0: sleeping
  scsi host0: zfcp
  qdio: 0.0.1900 ZFCP on SC 4bd using AI:1 QEBSM:0 PRI:1 TDD:1 SIGA: W AP
  scsi 0:0:0:0: scsi scan: INQUIRY pass 1 length 36
  Unable to handle kernel pointer dereference in virtual kernel address space
  Failing address: 0000000000000000 TEID: 0000000000000483
  Fault in home space mode while using kernel ASCE.
  AS:0000000035c7c007 R3:00000001effcc007 S:00000001effd1000 P:000000000000003d
  Oops: 0004 ilc:3 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: ...
  CPU: 1 PID: 783 Comm: kworker/u760:5 Kdump: loaded Not tainted 5.6.0-rc2-bb-next+ #1
  Hardware name: ...
  Workqueue: scsi_wq_0 fc_scsi_scan_rport [scsi_transport_fc]
  Krnl PSW : 0704e00180000000 000003ff801fcdae (scsi_queue_rq+0x436/0x740 [scsi_mod])
             R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
  Krnl GPRS: 0fffffffffffffff 0000000000000000 0000000187150120 0000000000000000
             000003ff80223d20 000000000000018e 000000018adc6400 0000000187711000
             000003e0062337e8 00000001ae719000 0000000187711000 0000000187150000
             00000001ab808100 0000000187150120 000003ff801fcd74 000003e0062336a0
  Krnl Code: 000003ff801fcd9e: e310a35c0012        lt      %r1,860(%r10)
             000003ff801fcda4: a7840010           brc     8,000003ff801fcdc4
            #000003ff801fcda8: e310b2900004       lg      %r1,656(%r11)
            >000003ff801fcdae: d71710001000       xc      0(24,%r1),0(%r1)
             000003ff801fcdb4: e310b2900004       lg      %r1,656(%r11)
             000003ff801fcdba: 41201018           la      %r2,24(%r1)
             000003ff801fcdbe: e32010000024       stg     %r2,0(%r1)
             000003ff801fcdc4: b904002b           lgr     %r2,%r11
  Call Trace:
   [<000003ff801fcdae>] scsi_queue_rq+0x436/0x740 [scsi_mod]
  ([<000003ff801fcd74>] scsi_queue_rq+0x3fc/0x740 [scsi_mod])
   [<00000000349c9970>] blk_mq_dispatch_rq_list+0x390/0x680
   [<00000000349d1596>] blk_mq_sched_dispatch_requests+0x196/0x1a8
   [<00000000349c7a04>] __blk_mq_run_hw_queue+0x144/0x160
   [<00000000349c7ab6>] __blk_mq_delay_run_hw_queue+0x96/0x228
   [<00000000349c7d5a>] blk_mq_run_hw_queue+0xd2/0xe0
   [<00000000349d194a>] blk_mq_sched_insert_request+0x192/0x1d8
   [<00000000349c17b8>] blk_execute_rq_nowait+0x80/0x90
   [<00000000349c1856>] blk_execute_rq+0x6e/0xb0
   [<000003ff801f8ac2>] __scsi_execute+0xe2/0x1f0 [scsi_mod]
   [<000003ff801fef98>] scsi_probe_and_add_lun+0x358/0x840 [scsi_mod]
   [<000003ff8020001c>] __scsi_scan_target+0xc4/0x228 [scsi_mod]
   [<000003ff80200254>] scsi_scan_target+0xd4/0x100 [scsi_mod]
   [<000003ff802d8b96>] fc_scsi_scan_rport+0x96/0xc0 [scsi_transport_fc]
   [<0000000034245ce8>] process_one_work+0x458/0x7d0
   [<00000000342462a2>] worker_thread+0x242/0x448
   [<0000000034250994>] kthread+0x15c/0x170
   [<0000000034e1979c>] ret_from_fork+0x30/0x38
  INFO: lockdep is turned off.
  Last Breaking-Event-Address:
   [<000003ff801fbc36>] scsi_add_cmd_to_list+0x9e/0xa8 [scsi_mod]
  Kernel panic - not syncing: Fatal exception: panic_on_oops

While this issue is exposed by the commit named above, this is only by
accident. The real issue exists for longer already - basically since it's
possible to use blk-mq via scsi-mq, and blk-mq pre-allocates all requests
for a tag-set during initialization of the same. For a given Scsi_Host
object this is done when adding the object to the midlayer
(`scsi_add_host()` and such). In `scsi_mq_setup_tags()` the midlayer
calculates how much memory is required for a single scsi_cmnd, and its
additional data, which also might include space for additional protection
data - depending on whether the Scsi_Host has any form of protection
capabilities (`scsi_host_get_prot()`).

The problem is now thus, because zfcp does this step before we actually
know whether the firmware/hardware has these capabilities, we don't set any
protection capabilities in the Scsi_Host object. And so, no space is
allocated for additional protection data for requests in the Scsi_Host
tag-set.

Once we go through discover and initialize the FCP device firmware/hardware
fully (this is done via the firmware commands "Exchange Config Data" and
"Exchange Port Data") we find out whether it actually supports DIF and DIX,
and we set the corresponding capabilities in the Scsi_Host object (in
`zfcp_scsi_set_prot()`). Now the Scsi_Host potentially has protection
capabilities, but the already allocated requests in the tag-set don't have
any space allocated for that.

When we then trigger target scanning or add scsi_devices manually, the
midlayer will use requests from that tag-set, and before sending most
requests, it will also call `scsi_mq_prep_fn()`. To prepare the scsi_cmnd
this function will check again whether the used Scsi_Host has any
protection capabilities - and now it potentially has - and if so, it will
try to initialize the assumed to be preallocated structures and thus it
causes the crash, like shown above.

Before delaying the default elevator initialization with the commit named
above, we always would also allocate an elevator for any scsi_device before
ever sending any requests - in contrast to now, where we do it after
device-probing. That elevator in turn would have its own tag-set, and that
is initialized after we went through discovery and initialization of the
underlying firmware/hardware. So requests from that tag-set can be
allocated properly, and if used - unless the user changes/disabled the
default elevator - this would hide the underlying issue.

To fix this for any configuration - with or without an elevator - we move
the allocation and registration of the Scsi_Host object for a given FCP
device to after the first complete discovery and initialization of the
underlying firmware/hardware. By doing that we can make all basic
properties of the Scsi_Host known to the midlayer by the time we call
`scsi_add_host()`, including whether we have any protection capabilities.

To do that we have to delay all the accesses that we would have done in the
past during discovery and initialization, and do them instead once we are
finished with it. The previous patches ramp up to this by fencing and
factoring out all these accesses, and make it possible to re-do them later
on. In addition we make also use of the diagnostic buffers we recently
added with

commit 92953c6e0aa7 ("scsi: zfcp: signal incomplete or error for sync exchange config/port data")
commit 7e418833e689 ("scsi: zfcp: diagnostics buffer caching and use for exchange port data")
commit 088210233e6f ("scsi: zfcp: add diagnostics buffer for exchange config data")

(first released in v5.5), because these already cache all the information
we need for that "re-do operation" - the information cached are always
updated during xconf or xport data, so it won't be stale.

In addition to the move and re-do, this patch also updates the
function-documentation of `zfcp_scsi_adapter_register()` and changes how it
reports if a Scsi_Host object already exists. In that case future
recovery-operations can skip this step completely and behave much like they
would do in the past - zfcp does not release a once allocated Scsi_Host
object unless the corresponding FCP device is deconstructed completely.

Link: https://lore.kernel.org/r/030dd6da318bbb529f0b5268ec65cebcd20fc0a3.1588956679.git.bblock@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-11 23:19:52 -04:00
Benjamin Block
52e61fde5e scsi: zfcp: Move fc_host updates during xport data handling into fenced function
When executing exchange port data for a FCP device for the first time, or
after an adapter recovery, we update several properties of the fibre
channel host object which represents that FCP device.

When moving the scsi host object allocation and registration - and thus
also the fibre channel host object allocation - to after the first exchange
config and exchange port data, this is not possible for the former case.

Move all these update into separate, and fenced function that first checks
whether the scsi host object already exists or not, before making the
updates.

During the first ever exchange port data in the adapter life cycle this
will make the exchange port data handler skip over this update step, but we
can repeat it later, after we allocated the scsi host object.

For any further recovery of that adapter the work flow is only changed
slightly because then the scsi host object already exists and we don't free
it until we release the adapter completely at the end of its life cycle.

Link: https://lore.kernel.org/r/ae454c2dc6da0b02907c489af91d0b211d331825.1588956679.git.bblock@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-11 23:19:48 -04:00
Benjamin Block
bd1684817d scsi: zfcp: Move shost updates during xconfig data handling into fenced function
When executing exchange config data for a FCP device for the first time, or
after an adapter recovery, we update several properties of the scsi host or
fibre channel host object that represent that FCP device.

When moving the scsi host object allocation and registration - and thus
also the fibre channel host object allocation - to after the first exchange
config and exchange port data, this is not possible for the former case.

Move all these update into separate, and fenced function that first checks
whether the scsi host object already exists or not, before making the
updates.

During the first ever exchange config data in the adapter life cycle this
will make the exchange config data handler skip over this update step, but
we can repeat it later, after we allocated the scsi host object.

For any further recovery of that adapter the work flow is only changed
slightly because then the scsi host object already exists and we don't free
it until we release the adapter completely at the end of its life cycle.

Link: https://lore.kernel.org/r/5fc3f4d38d4334f7aa595497c6f7865fb1102e0f.1588956679.git.bblock@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-11 23:19:47 -04:00
Benjamin Block
978857c7e3 scsi: zfcp: Move shost modification after QDIO (re-)open into fenced function
When establishing and activating the QDIO queue pair for a FCP device for
the first time, or after an adapter recovery, we publish some of its
characteristics to the scsi host object representing that FCP device.

When moving the scsi host object allocation and registration to after the
first exchange config and exchange port data, this is not possible for the
former case - QDIO open for the first time - because that happens before
exchange config and exchange port data.

Move the scsi host object update into a fenced function that checks whether
the object already exists or not. This way we can repeat that step later,
once we are past the allocation.

Once the first recovery succeeds we don't release the scsi host object
anymore, so further recoveries do work as before.

Link: https://lore.kernel.org/r/a214ebf508f71e3690113e3e90edab1cea0e24e3.1588956679.git.bblock@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-11 23:19:46 -04:00
Jens Remus
616da39e00 scsi: zfcp: trace FC Endpoint Security of FCP devices and connections
Trace changes in Fibre Channel Endpoint Security capabilities of FCP
devices as well as changes in Fibre Channel Endpoint Security state of
their connections to FC remote ports as FC Endpoint Security changes with
trace level 3 in HBA DBF.

A change in FC Endpoint Security capabilities of FCP devices is traced as
response to FSF command FSF_QTCB_EXCHANGE_PORT_DATA with a trace tag of
"fsfcesa" and a WWPN of ZFCP_DBF_INVALID_WWPN = 0x0000000000000000 (see
FC-FS-4 §18 "Name_Identifier Formats", NAA field).

A change in FC Endpoint Security state of connections between FCP devices
and FC remote ports is traced as response to FSF command
FSF_QTCB_OPEN_PORT_WITH_DID with a trace tag of "fsfcesp".

Example trace record of FC Endpoint Security capability change of FCP
device formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : HBA
Subarea        : 00
Level          : 3
Exception      : -
CPU ID         : ...
Caller         : 0x...
Record ID      : 5                    ZFCP_DBF_HBA_FCES
Tag            : fsfcesa              FSF FC Endpoint Security adapter
Request ID     : 0x...
Request status : 0x00000010
FSF cmnd       : 0x0000000e           FSF_QTCB_EXCHANGE_PORT_DATA
FSF sequence no: 0x...
FSF issued     : ...
FSF stat       : 0x00000000           FSF_GOOD
FSF stat qual  : n/a
Prot stat      : n/a
Prot stat qual : n/a
Port handle    : 0x00000000           none (invalid)
LUN handle     : n/a
WWPN           : 0x0000000000000000   ZFCP_DBF_INVALID_WWPN
FCES old       : 0x00000000           old FC Endpoint Security
FCES new       : 0x00000007           new FC Endpoint Security

Example trace record of FC Endpoint Security change of connection to
FC remote port formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : HBA
Subarea        : 00
Level          : 3
Exception      : -
CPU ID         : ...
Caller         : 0x...
Record ID      : 5                    ZFCP_DBF_HBA_FCES
Tag            : fsfcesp              FSF FC Endpoint Security port
Request ID     : 0x...
Request status : 0x00000010
FSF cmnd       : 0x00000005           FSF_QTCB_OPEN_PORT_WITH_DID
FSF sequence no: 0x...
FSF issued     : ...
FSF stat       : 0x00000000           FSF_GOOD
FSF stat qual  : n/a
Prot stat      : n/a
Prot stat qual : n/a
Port handle    : 0x...
WWPN           : 0x500507630401120c   WWPN
FCES old       : 0x00000000           old FC Endpoint Security
FCES new       : 0x00000004           new FC Endpoint Security

Link: https://lore.kernel.org/r/20200312174505.51294-9-maier@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-03-17 13:12:40 -04:00
Jens Remus
a17c784600 scsi: zfcp: report FC Endpoint Security in sysfs
Add an interface to read Fibre Channel Endpoint Security information of FCP
channels and their connections to FC remote ports. It comes in the form of
new sysfs attributes that are attached to the CCW device representing the
FCP device and its zfcp port objects.

The read-only sysfs attribute "fc_security" of a CCW device representing a
FCP device shows the FC Endpoint Security capabilities of the device.
Possible values are: "unknown", "unsupported", "none", or a comma-
separated list of one or more mnemonics and/or one hexadecimal value
representing the supported FC Endpoint Security:

  Authentication: Authentication supported
  Encryption    : Encryption supported

The read-only sysfs attribute "fc_security" of a zfcp port object shows the
FC Endpoint Security used on the connection between its parent FCP device
and the FC remote port. Possible values are: "unknown", "unsupported",
"none", or a mnemonic or hexadecimal value representing the FC Endpoint
Security used:

  Authentication: Connection has been authenticated
  Encryption    : Connection is encrypted

Both sysfs attributes may return hexadecimal values instead of mnemonics,
if the mnemonic lookup table does not contain an entry for the FC Endpoint
Security reported by the FCP device.

Link: https://lore.kernel.org/r/20200312174505.51294-7-maier@linux.ibm.com
Reviewed-by: Fedor Loshakov <loshakov@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-03-17 13:12:38 -04:00
Benjamin Block
6028f7c4cd scsi: zfcp: introduce sysfs interface for diagnostics of local SFP transceiver
This adds an interface to read the diagnostics of the local SFP transceiver
of an FCP-Channel from userspace. This comes in the form of new sysfs
entries that are attached to the CCW device representing the FCP
device. Each type of data gets its own sysfs entry; the whole collection of
entries is pooled into a new child-directory of the CCW device node:
"diagnostics".

Adds sysfs entries for:
 * sfp_invalid:    boolean value evaluating to whether the following 5
                   fields are invalid; {0, 1}; 1 - invalid
 * temperature:    transceiver temp.; unit 1/256°C;
                   range [-128°C, +128°C]
 * vcc:            supply voltage; unit 100μV; range [0, 6.55V]
 * tx_bias:        transmitter laser bias current; unit 2μA;
                   range [0, 131mA]
 * tx_power:       coupled TX output power; unit 0.1μW; range [0, 6.5mW]
 * rx_power:       received optical power; unit 0.1μW; range [0, 6.5mW]

 * optical_port:   boolean value evaluating to whether the FCP-Channel has
                   an optical port; {0, 1}; 1 - optical
 * fec_active:     boolean value evaluating to whether 16G FEC is active;
                   {0, 1}; 1 - active
 * port_tx_type:   nibble describing the port type; {0, 1, 2, 3};
                   0 - unknown,             1 - short wave,
                   2 - long wave LC 1310nm, 3 - long wave LL 1550nm
 * connector_type: two bits describing the connector type; {0, 1};
                   0 - unknown,             1 - SFP+

This is only supported if the FCP-Channel in turn supports reporting the
SFP Diagnostic Data, otherwise read() on these new entries will return
EOPNOTSUPP (this affects only adapters older than FICON Express8S, on
Mainframe generations older than z14). Other possible errors for read()
include ENOLINK, ENODEV and ENOMEM.

With this patch the userspace-interface will only read data stored in
the corresponding "diagnostic buffer" (that was stored during completion
of an previous Exchange Port Data command). Implicit updating will
follow later in this series.

Link: https://lore.kernel.org/r/1f9cce7c829c881e7d71a3f10c5b57f3dd84ab32.1572018132.git.bblock@linux.ibm.com
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-10-28 22:16:15 -04:00
Steffen Maier
ef4021fe5f scsi: zfcp: fix to prevent port_remove with pure auto scan LUNs (only sdevs)
When the user tries to remove a zfcp port via sysfs, we only rejected it if
there are zfcp unit children under the port. With purely automatically
scanned LUNs there are no zfcp units but only SCSI devices. In such cases,
the port_remove erroneously continued. We close the port and this
implicitly closes all LUNs under the port. The SCSI devices survive with
their private zfcp_scsi_dev still holding a reference to the "removed"
zfcp_port (still allocated but invisible in sysfs) [zfcp_get_port_by_wwpn
in zfcp_scsi_slave_alloc]. This is not a problem as long as the fc_rport
stays blocked. Once (auto) port scan brings back the removed port, we
unblock its fc_rport again by design.  However, there is no mechanism that
would recover (open) the LUNs under the port (no "ersfs_3" without
zfcp_unit [zfcp_erp_strategy_followup_success]).  Any pending or new I/O to
such LUN leads to repeated:

  Done: NEEDS_RETRY Result: hostbyte=DID_IMM_RETRY driverbyte=DRIVER_OK

See also v4.10 commit 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race
with LUN recovery"). Even a manual LUN recovery
(echo 0 > /sys/bus/scsi/devices/H:C:T:L/zfcp_failed)
does not help, as the LUN links to the old "removed" port which remains
to lack ZFCP_STATUS_COMMON_RUNNING [zfcp_erp_required_act].
The only workaround is to first ensure that the fc_rport is blocked
(e.g. port_remove again in case it was re-discovered by (auto) port scan),
then delete the SCSI devices, and finally re-discover by (auto) port scan.
The port scan includes an fc_rport unblock, which in turn triggers
a new scan on the scsi target to freshly get new pure auto scan LUNs.

Fix this by rejecting port_remove also if there are SCSI devices
(even without any zfcp_unit) under this port. Re-use mechanics from v3.7
commit d99b601b6338 ("[SCSI] zfcp: restore refcount check on port_remove").
However, we have to give up zfcp_sysfs_port_units_mutex earlier in unit_add
to prevent a deadlock with scsi_host scan taking shost->scan_mutex first
and then zfcp_sysfs_port_units_mutex now in our zfcp_scsi_slave_alloc().

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: b62a8d9b45b9 ("[SCSI] zfcp: Use SCSI device data zfcp scsi dev instead of zfcp unit")
Fixes: f8210e34887e ("[SCSI] zfcp: Allow midlayer to scan for LUNs when running in NPIV mode")
Cc: <stable@vger.kernel.org> #2.6.37+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-05-29 21:52:31 -04:00
Steffen Maier
242ec14551 scsi: zfcp: fix scsi_eh host reset with port_forced ERP for non-NPIV FCP devices
Suppose more than one non-NPIV FCP device is active on the same channel.
Send I/O to storage and have some of the pending I/O run into a SCSI
command timeout, e.g. due to bit errors on the fibre. Now the error
situation stops. However, we saw FCP requests continue to timeout in the
channel. The abort will be successful, but the subsequent TUR fails.
Scsi_eh starts. The LUN reset fails. The target reset fails.  The host
reset only did an FCP device recovery. However, for non-NPIV FCP devices,
this does not close and reopen ports on the SAN-side if other non-NPIV FCP
device(s) share the same open ports.

In order to resolve the continuing FCP request timeouts, we need to
explicitly close and reopen ports on the SAN-side.

This was missing since the beginning of zfcp in v2.6.0 history commit
ea127f975424 ("[PATCH] s390 (7/7): zfcp host adapter.").

Note: The FSF requests for forced port reopen could run into FSF request
timeouts due to other reasons. This would trigger an internal FCP device
recovery. Pending forced port reopen recoveries would get dismissed. So
some ports might not get fully reopened during this host reset handler.
However, subsequent I/O would trigger the above described escalation and
eventually all ports would be forced reopen to resolve any continuing FCP
request timeouts due to earlier bit errors.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: <stable@vger.kernel.org> #3.0+
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-03-27 21:26:12 -04:00
Fedor Loshakov
636db60b8e scsi: zfcp: make DIX experimental, disabled, and independent of DIF
Introduce separate zfcp module parameters to individually select support
for: DIF which should work (zfcp.dif, which used to be DIF+DIX, disabled)
or DIX+DIF which can cause trouble (zfcp.dix, new, disabled).

If DIX is enabled, we warn on zfcp driver initialization.  As before, this
also reduces the maximum I/O request size to half, to support the worst
case of merged single sector requests with one protection data scatter
gather element per sector. This can impact the maximum throughput.

In DIF-only mode (zfcp.dif=1 zfcp.dix=0), we can use the full maximum I/O
request size as there is no protection data for zfcp.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Fedor Loshakov <loshakov@linux.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-12-07 21:36:40 -05:00
Steffen Maier
208d096154 scsi: zfcp: clarify function argument name for trace tag string
v2.6.30 commit 5ffd51a5e495 ("[SCSI] zfcp: replace current ERP logging with
a more convenient version") changed trace record distinguishing from a
numerical ID to a 7 character string called "trace tag". While starting to
use function arguments with different type and semantics, it did not change
the argument name accordingly.

v2.6.38 commit ae0904f60fab ("[SCSI] zfcp: Redesign of the debug tracing
for recovery actions.") renamed variable names "id" into "tag" but only
within zfcp_dbf.*, not within zfcp_erp.c.

This was a bit confusing since the remainder of zfcp does use the term
"trace tag". Also "id" is quite generic and it's not obvious for what.
Just unify it consistently and use the "dbf" prefix to relate the arguments
to the code in zfcp_dbf.*.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-11-15 15:01:18 -05:00
Linus Torvalds
5f85942c2e SCSI misc on 20180610
This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
 xfcp, hisi_sas, cxlflash, qla2xxx.  In the absence of Nic, we're also
 taking target updates which are mostly minor except for the tcmu
 refactor. The only real core change to worry about is the removal of
 high page bouncing (in sas, storvsc and iscsi).  This has been well
 tested and no problems have shown up so far.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.vnet.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCWx1pbCYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishUucAP42pccS
 ziKyiOizuxv9fZ4Q+nXd1A9zhI5tqqpkHjcQegEA40qiZSi3EKGKR8W0UpX7Ntmo
 tqrZJGojx9lnrAM2RbQ=
 =NMXg
 -----END PGP SIGNATURE-----

Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull SCSI updates from James Bottomley:
 "This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
  xfcp, hisi_sas, cxlflash, qla2xxx.

  In the absence of Nic, we're also taking target updates which are
  mostly minor except for the tcmu refactor.

  The only real core change to worry about is the removal of high page
  bouncing (in sas, storvsc and iscsi). This has been well tested and no
  problems have shown up so far"

* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (268 commits)
  scsi: lpfc: update driver version to 12.0.0.4
  scsi: lpfc: Fix port initialization failure.
  scsi: lpfc: Fix 16gb hbas failing cq create.
  scsi: lpfc: Fix crash in blk_mq layer when executing modprobe -r lpfc
  scsi: lpfc: correct oversubscription of nvme io requests for an adapter
  scsi: lpfc: Fix MDS diagnostics failure (Rx < Tx)
  scsi: hisi_sas: Mark PHY as in reset for nexus reset
  scsi: hisi_sas: Fix return value when get_free_slot() failed
  scsi: hisi_sas: Terminate STP reject quickly for v2 hw
  scsi: hisi_sas: Add v2 hw force PHY function for internal ATA command
  scsi: hisi_sas: Include TMF elements in struct hisi_sas_slot
  scsi: hisi_sas: Try wait commands before before controller reset
  scsi: hisi_sas: Init disks after controller reset
  scsi: hisi_sas: Create a scsi_host_template per HW module
  scsi: hisi_sas: Reset disks when discovered
  scsi: hisi_sas: Add LED feature for v3 hw
  scsi: hisi_sas: Change common allocation mode of device id
  scsi: hisi_sas: change slot index allocation mode
  scsi: hisi_sas: Introduce hisi_sas_phy_set_linkrate()
  scsi: hisi_sas: fix a typo in hisi_sas_task_prep()
  ...
2018-06-10 13:01:12 -07:00
Steffen Maier
35e9111a1e scsi: zfcp: support SCSI_ADAPTER_RESET via scsi_host sysfs attribute host_reset
Make use of feature introduced with v3.2 commit 294436914454 ("[SCSI] scsi:
Added support for adapter and firmware reset").  The common code interface
was introduced for commit 95d31262b3c1 ("[SCSI] qla4xxx: Added support for
adapter and firmware reset").

$ echo adapter > /sys/class/scsi_host/host<N>/host_reset

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1                      ZFCP_DBF_REC_TRIG
Tag            : scshr_y                SCSI sysfs host_reset yes
LUN            : 0xffffffffffffffff                     none (invalid)
WWPN           : 0x0000000000000000                     none (invalid)
D_ID           : 0x00000000                             none (invalid)
Adapter status : 0x4500050b
Port status    : 0x00000000                             none (invalid)
LUN status     : 0x00000000                             none (invalid)
Ready count    : 0x00000001
Running count  : 0x00000000
ERP want       : 0x04                   ZFCP_ERP_ACTION_REOPEN_ADAPTER
ERP need       : 0x04                   ZFCP_ERP_ACTION_REOPEN_ADAPTER

This is the common code equivalent to the zfcp-specific
&dev_attr_adapter_failed.attr in zfcp_sysfs_adapter_attrs.attrs[]:

$ echo 0 > /sys/bus/ccw/drivers/zfcp/<devbusid>/failed

The unsupported case returns EOPNOTSUPP:

$ echo firmware > /sys/class/scsi_host/host<N>/host_reset
-bash: echo: write error: Operation not supported

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : scshr_n                        SCSI sysfs host_reset no
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0xffffffff                             none (invalid)
SCSI LUN       : 0xffffffff                             none (invalid)
SCSI LUN high  : 0xffffffff                             none (invalid)
SCSI result    : 0xffffffa1                     -EOPNOTSUPP==-95
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0xff                                   none (invalid)
FCP rsp IU     : 00000000 00000000 00000000 00000000    none (invalid)
                 00000000 00000000

For any other invalid value, common code returns EINVAL without invoking
our callback:

$ echo foo > /sys/class/scsi_host/host<N>/host_reset
-bash: echo: write error: Invalid argument

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:15 -04:00
Steffen Maier
2fdd45fd20 scsi: zfcp: remove unused return values of ERP trigger functions
Since v2.6.27 commit 553448f6c483 ("[SCSI] zfcp: Message cleanup"), none of
the callers has been interested any more.  Values were not returned
consistently in all ERP trigger functions.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:14 -04:00
Steffen Maier
26f5fa9d47 scsi: zfcp: decouple SCSI setup of TMF from scsi_cmnd
Actually change the signature of zfcp_fsf_fcp_task_mgmt().
Since it was prepared in the previous patch, we only need to delete
a local auto variable which is now the intended argument.

Prepare zfcp_fsf_fcp_task_mgmt's caller zfcp_task_mgmt_function()
to have its function body only depend on a scsi_device and derived objects.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier
8221211863 scsi: zfcp: decouple SCSI traces for scsi_eh / TMF from scsi_cmnd
The SCSI command pointer passed to scsi_eh callbacks is just one arbitrary
command of potentially many that are in the eh queue to be processed.  The
command is only used to indirectly pass the TMF scope in terms of SCSI
ID/target and SCSI LUN for LUN reset.

Hence, zfcp had filled in SCSI trace record fields which do not really
belong to the TMF. This was confusing.

Therefore, refactor the TMF tracing to work without SCSI command.  Since the
FCP channel always requires a valid LUN handle, we use SCSI device as common
context for any TMF (even target reset).  To make it even clearer, we set
all bits to 1 for the fields, which do not belong to the TMF, to indicate
that these fields are invalid.

The old zfcp_dbf_scsi() became zfcp_dbf_scsi_common() to now handle both
SCSI commands and TMFs. The old argument scsi_cmnd is now optional and can
be NULL with TMFs. The new argument scsi_device is mandatory to carry
context, as well as SCSI ID/target and SCSI LUN in case of TMFs.

New example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : [lt]r_....
Request ID     : 0x<reqid>              ID of FSF FCP request with TM flag
                 For cases without FSF request: 0x0 for none (invalid)
SCSI ID        : 0x<scsi_id>            SCSI ID/target denoting scope
SCSI LUN       : 0x<scsi_lun>           SCSI LUN denoting scope
SCSI LUN high  : 0x<scsi_lun_high>      SCSI LUN denoting scope
SCSI result    : 0xffffffff                             none (invalid)
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0x00                   FCP_RSP info code of TMF
FCP rsp IU     : 00000000 00000000 00000100 00000000 ext FCP_RSP IU
                 00000000 00000008                   ext FCP_RSP IU
FCP rsp IU len : 32                                  FCP_RSP IU length
Payload time   : ...
FCP rsp IU all : 00000000 00000000 00000100 00000000 full FCP_RSP IU
                 00000000 00000008 00000000 00000000 full FCP_RSP IU

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier
96d9270499 scsi: zfcp: fix missing REC trigger trace on terminate_rport_io early return
get_device() and its internally used kobject_get() only return NULL if they
get passed NULL as argument. zfcp_get_port_by_wwpn() loops over
adapter->port_list so the iteration variable port is always non-NULL.
Struct device is embedded in struct zfcp_port so &port->dev is always
non-NULL. This is the argument to get_device().  However, if we get an
fc_rport in terminate_rport_io() for which we cannot find a match within
zfcp_get_port_by_wwpn(), the latter can return NULL.  v2.6.30 commit
70932935b61e ("[SCSI] zfcp: Fix oops when port disappears") introduced an
early return without adding a trace record for this case.  Even if we don't
need recovery in this case, for debugging we should still see that our
callback was invoked originally by scsi_transport_fc.

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : sctrpin        SCSI terminate rport I/O, no zfcp port
LUN            : 0xffffffffffffffff                     none (invalid)
WWPN           : 0x<wwpn>               WWPN
D_ID           : 0x<n_port_id>          N_Port-ID
Adapter status : 0x...
Port status    : 0xffffffff             unknown (-1)
LUN status     : 0x00000000                             none (invalid)
Ready count    : 0x...
Running count  : 0x...
ERP want       : 0x03                   ZFCP_ERP_ACTION_REOPEN_PORT_FORCED
ERP need       : 0xc0                   ZFCP_ERP_ACTION_NONE

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: 70932935b61e ("[SCSI] zfcp: Fix oops when port disappears")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Steffen Maier
df30781699 scsi: zfcp: fix missing SCSI trace for result of eh_host_reset_handler
For problem determination we need to see whether and why we were successful
or not. This allows deduction of scsi_eh escalation.

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : schrh_r        SCSI host reset handler result
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0xffffffff                             none (invalid)
SCSI LUN       : 0xffffffff                             none (invalid)
SCSI LUN high  : 0xffffffff                             none (invalid)
SCSI result    : 0x00002002     field re-used for midlayer value: SUCCESS
                                or in other cases: 0x2009 == FAST_IO_FAIL
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0xff                                   none (invalid)
FCP rsp IU     : 00000000 00000000 00000000 00000000    none (invalid)
                 00000000 00000000

v2.6.35 commit a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from
fc_block_scsi_eh to scsi eh") introduced the first return with something
other than the previously hardcoded single SUCCESS return path.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Jens Remus
fa89adba19 scsi: zfcp: fix infinite iteration on ERP ready list
zfcp_erp_adapter_reopen() schedules blocking of all of the adapter's
rports via zfcp_scsi_schedule_rports_block() and enqueues a reopen
adapter ERP action via zfcp_erp_action_enqueue(). Both are separately
processed asynchronously and concurrently.

Blocking of rports is done in a kworker by zfcp_scsi_rport_work(). It
calls zfcp_scsi_rport_block(), which then traces a DBF REC "scpdely" via
zfcp_dbf_rec_trig().  zfcp_dbf_rec_trig() acquires the DBF REC spin lock
and then iterates with list_for_each() over the adapter's ERP ready list
without holding the ERP lock. This opens a race window in which the
current list entry can be moved to another list, causing list_for_each()
to iterate forever on the wrong list, as the erp_ready_head is never
encountered as terminal condition.

Meanwhile the ERP action can be processed in the ERP thread by
zfcp_erp_thread(). It calls zfcp_erp_strategy(), which acquires the ERP
lock and then calls zfcp_erp_action_to_running() to move the ERP action
from the ready to the running list.  zfcp_erp_action_to_running() can
move the ERP action using list_move() just during the aforementioned
race window. It then traces a REC RUN "erator1" via zfcp_dbf_rec_run().
zfcp_dbf_rec_run() tries to acquire the DBF REC spin lock. If this is
held by the infinitely looping kworker, it effectively spins forever.

Example Sequence Diagram:

Process                ERP Thread             rport_work
-------------------    -------------------    -------------------
zfcp_erp_adapter_reopen()
zfcp_erp_adapter_block()
zfcp_scsi_schedule_rports_block()
lock ERP                                      zfcp_scsi_rport_work()
zfcp_erp_action_enqueue(ZFCP_ERP_ACTION_REOPEN_ADAPTER)
list_add_tail() on ready                      !(rport_task==RPORT_ADD)
wake_up() ERP thread                          zfcp_scsi_rport_block()
zfcp_dbf_rec_trig()    zfcp_erp_strategy()    zfcp_dbf_rec_trig()
unlock ERP                                    lock DBF REC
zfcp_erp_wait()        lock ERP
|                      zfcp_erp_action_to_running()
|                                             list_for_each() ready
|                      list_move()              current entry
|                        ready to running
|                      zfcp_dbf_rec_run()       endless loop over running
|                      zfcp_dbf_rec_run_lvl()
|                      lock DBF REC spins forever

Any adapter recovery can trigger this, such as setting the device offline
or reboot.

V4.9 commit 4eeaa4f3f1d6 ("zfcp: close window with unblocked rport
during rport gone") introduced additional tracing of (un)blocking of
rports. It missed that the adapter->erp_lock must be held when calling
zfcp_dbf_rec_trig().

This fix uses the approach formerly introduced by commit aa0fec62391c
("[SCSI] zfcp: Fix sparse warning by providing new entry in dbf") that got
later removed by commit ae0904f60fab ("[SCSI] zfcp: Redesign of the debug
tracing for recovery actions.").

Introduce zfcp_dbf_rec_trig_lock(), a wrapper for zfcp_dbf_rec_trig() that
acquires and releases the adapter->erp_lock for read.

Reported-by: Sebastian Ott <sebott@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Fixes: 4eeaa4f3f1d6 ("zfcp: close window with unblocked rport during rport gone")
Cc: <stable@vger.kernel.org> # 2.6.32+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-08 00:01:01 -04:00
Steffen Maier
5c13db9b5d zfcp: purely mechanical update using timer API, plus blank lines
erp_memwait only occurs in seldom memory pressure situations.
The typical case never uses the associated timer and thus also
does not need to initialize the timer.
Also, we don't want to re-initialize the timer each time we re-use an
erp_action in zfcp_erp_setup_act() [see also v4.14-rc7 commit ab31fd0ce65e
("scsi: zfcp: fix erp_action use-before-initialize in REC action trace")
for erp_action life cycle].
Hence, retain the lazy inintialization of zfcp_erp_action.timer
in zfcp_erp_strategy_memwait().

Add an empty line after declarations in zfcp_erp_timeout_handler()
and zfcp_fsf_request_timeout_handler() even though it was also missing
before the timer conversion.

Fix checkpatch warning:
WARNING: function definition argument 'struct timer_list *' should also have an identifier name
+extern void zfcp_erp_timeout_handler(struct timer_list *);

Depends-on: v4.14-rc3 commit 686fef928bba ("timer: Prepare to change timer callback argument type")
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-16 15:06:19 +01:00
Kees Cook
75492a5156 s390/scsi: Convert timers to use timer_setup()
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.

Cc: Steffen Maier <maier@linux.vnet.ibm.com>
Cc: Benjamin Block <bblock@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-16 15:06:17 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Steffen Maier
46e5ee1f74 scsi: zfcp: clean up no longer existent prototype from zfcp API header
Commit a54ca0f62f95 ("[SCSI] zfcp: Redesign of the debug tracing for HBA
records.") refactored zfcp_dbf_hba_berr into zfcp_dbf_hba_bit_err
but added the prototype for the latter without removing it for the former.

Suggested-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:02 -04:00
Steffen Maier
6f2ce1c6af scsi: zfcp: fix rport unblock race with LUN recovery
It is unavoidable that zfcp_scsi_queuecommand() has to finish requests
with DID_IMM_RETRY (like fc_remote_port_chkready()) during the time
window when zfcp detected an unavailable rport but
fc_remote_port_delete(), which is asynchronous via
zfcp_scsi_schedule_rport_block(), has not yet blocked the rport.

However, for the case when the rport becomes available again, we should
prevent unblocking the rport too early.  In contrast to other FCP LLDDs,
zfcp has to open each LUN with the FCP channel hardware before it can
send I/O to a LUN.  So if a port already has LUNs attached and we
unblock the rport just after port recovery, recoveries of LUNs behind
this port can still be pending which in turn force
zfcp_scsi_queuecommand() to unnecessarily finish requests with
DID_IMM_RETRY.

This also opens a time window with unblocked rport (until the followup
LUN reopen recovery has finished).  If a scsi_cmnd timeout occurs during
this time window fc_timed_out() cannot work as desired and such command
would indeed time out and trigger scsi_eh. This prevents a clean and
timely path failover.  This should not happen if the path issue can be
recovered on FC transport layer such as path issues involving RSCNs.

Fix this by only calling zfcp_scsi_schedule_rport_register(), to
asynchronously trigger fc_remote_port_add(), after all LUN recoveries as
children of the rport have finished and no new recoveries of equal or
higher order were triggered meanwhile.  Finished intentionally includes
any recovery result no matter if successful or failed (still unblock
rport so other successful LUNs work).  For simplicity, we check after
each finished LUN recovery if there is another LUN recovery pending on
the same port and then do nothing.  We handle the special case of a
successful recovery of a port without LUN children the same way without
changing this case's semantics.

For debugging we introduce 2 new trace records written if the rport
unblock attempt was aborted due to still unfinished or freshly triggered
recovery. The records are only written above the default trace level.

Benjamin noticed the important special case of new recovery that can be
triggered between having given up the erp_lock and before calling
zfcp_erp_action_cleanup() within zfcp_erp_strategy().  We must avoid the
following sequence:

ERP thread                 rport_work      other context
-------------------------  --------------  --------------------------------
port is unblocked, rport still blocked,
 due to pending/running ERP action,
 so ((port->status & ...UNBLOCK) != 0)
 and (port->rport == NULL)
unlock ERP
zfcp_erp_action_cleanup()
case ZFCP_ERP_ACTION_REOPEN_LUN:
zfcp_erp_try_rport_unblock()
((status & ...UNBLOCK) != 0) [OLD!]
                                           zfcp_erp_port_reopen()
                                           lock ERP
                                           zfcp_erp_port_block()
                                           port->status clear ...UNBLOCK
                                           unlock ERP
                                           zfcp_scsi_schedule_rport_block()
                                           port->rport_task = RPORT_DEL
                                           queue_work(rport_work)
                           zfcp_scsi_rport_work()
                           (port->rport_task != RPORT_ADD)
                           port->rport_task = RPORT_NONE
                           zfcp_scsi_rport_block()
                           if (!port->rport) return
zfcp_scsi_schedule_rport_register()
port->rport_task = RPORT_ADD
queue_work(rport_work)
                           zfcp_scsi_rport_work()
                           (port->rport_task == RPORT_ADD)
                           port->rport_task = RPORT_NONE
                           zfcp_scsi_rport_register()
                           (port->rport == NULL)
                           rport = fc_remote_port_add()
                           port->rport = rport;

Now the rport was erroneously unblocked while the zfcp_port is blocked.
This is another situation we want to avoid due to scsi_eh
potential. This state would at least remain until the new recovery from
the other context finished successfully, or potentially forever if it
failed.  In order to close this race, we take the erp_lock inside
zfcp_erp_try_rport_unblock() when checking the status of zfcp_port or
LUN.  With that, the possible corresponding rport state sequences would
be: (unblock[ERP thread],block[other context]) if the ERP thread gets
erp_lock first and still sees ((port->status & ...UNBLOCK) != 0),
(block[other context],NOP[ERP thread]) if the ERP thread gets erp_lock
after the other context has already cleard ...UNBLOCK from port->status.

Since checking fields of struct erp_action is unsafe because they could
have been overwritten (re-used for new recovery) meanwhile, we only
check status of zfcp_port and LUN since these are only changed under
erp_lock elsewhere. Regarding the check of the proper status flags (port
or port_forced are similar to the shown adapter recovery):

[zfcp_erp_adapter_shutdown()]
zfcp_erp_adapter_reopen()
 zfcp_erp_adapter_block()
  * clear UNBLOCK ---------------------------------------+
 zfcp_scsi_schedule_rports_block()                       |
 write_lock_irqsave(&adapter->erp_lock, flags);-------+  |
 zfcp_erp_action_enqueue()                            |  |
  zfcp_erp_setup_act()                                |  |
   * set ERP_INUSE -----------------------------------|--|--+
 write_unlock_irqrestore(&adapter->erp_lock, flags);--+  |  |
.context-switch.                                         |  |
zfcp_erp_thread()                                        |  |
 zfcp_erp_strategy()                                     |  |
  write_lock_irqsave(&adapter->erp_lock, flags);------+  |  |
  ...                                                 |  |  |
  zfcp_erp_strategy_check_target()                    |  |  |
   zfcp_erp_strategy_check_adapter()                  |  |  |
    zfcp_erp_adapter_unblock()                        |  |  |
     * set UNBLOCK -----------------------------------|--+  |
  zfcp_erp_action_dequeue()                           |     |
   * clear ERP_INUSE ---------------------------------|-----+
  ...                                                 |
  write_unlock_irqrestore(&adapter->erp_lock, flags);-+

Hence, we should check for both UNBLOCK and ERP_INUSE because they are
interleaved.  Also we need to explicitly check ERP_FAILED for the link
down case which currently does not clear the UNBLOCK flag in
zfcp_fsf_link_down_info_eval().

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 8830271c4819 ("[SCSI] zfcp: Dont fail SCSI commands when transitioning to blocked fc_rport")
Fixes: a2fa0aede07c ("[SCSI] zfcp: Block FC transport rports early on errors")
Fixes: 5f852be9e11d ("[SCSI] zfcp: Fix deadlock between zfcp ERP and SCSI")
Fixes: 338151e06608 ("[SCSI] zfcp: make use of fc_remote_port_delete when target port is unavailable")
Fixes: 3859f6a248cb ("[PATCH] zfcp: add rports to enable scsi_add_device to work again")
Cc: <stable@vger.kernel.org> #2.6.32+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-12-14 15:17:20 -05:00
Johannes Thumshirn
75cc8cfc6e scsi: change FC drivers to use 'struct bsg_job'
Change FC drivers to use 'struct bsg_job' from bsg-lib.h instead of
'struct fc_bsg_job' from scsi_transport_fc.h and remove 'struct
fc_bsg_job'.

Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-11-17 20:15:25 -05:00
Steffen Maier
d27a7cb919 zfcp: trace on request for open and close of WKA port
Since commit a54ca0f62f953898b05549391ac2a8a4dad6482b
("[SCSI] zfcp: Redesign of the debug tracing for HBA records.")
HBA records no longer contain WWPN, D_ID, or LUN
to reduce duplicate information which is already in REC records.
In contrast to "regular" target ports, we don't use recovery to open
WKA ports such as directory/nameserver, so we don't get REC records.
Therefore, introduce pseudo REC running records without any
actual recovery action but including D_ID of WKA port on open/close.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: a54ca0f62f95 ("[SCSI] zfcp: Redesign of the debug tracing for HBA records.")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-08-12 16:17:12 -04:00
Steffen Maier
35f040df97 zfcp: retain trace level for SCSI and HBA FSF response records
While retaining the actual filtering according to trace level,
the following commits started to write such filtered records
with a hardcoded record level of 1 instead of the actual record level:
commit 250a1352b95e1db3216e5c5d4f4365bea5122f4a
("[SCSI] zfcp: Redesign of the debug tracing for SCSI records.")
commit a54ca0f62f953898b05549391ac2a8a4dad6482b
("[SCSI] zfcp: Redesign of the debug tracing for HBA records.")

Now we can distinguish written records again for offline level filtering.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 250a1352b95e ("[SCSI] zfcp: Redesign of the debug tracing for SCSI records.")
Fixes: a54ca0f62f95 ("[SCSI] zfcp: Redesign of the debug tracing for HBA records.")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-08-12 16:17:12 -04:00
Martin Peschke
18f87a67e6 zfcp: auto port scan resiliency
This patch improves the Fibre Channel port scan behaviour of the zfcp lldd.
Without it the zfcp device driver may churn up the storage area network by
excessive scanning and scan bursts, particularly in big virtual server
environments, potentially resulting in interference of virtual servers and
reduced availability of storage connectivity.

The two main issues as to the zfcp device drivers automatic port scan in
virtual server environments are frequency and simultaneity.
On the one hand, there is no point in allowing lots of ports scans
in a row. It makes sense, though, to make sure that a scan is conducted
eventually if there has been any indication for potential SAN changes.
On the other hand, lots of virtual servers receiving the same indication
for a SAN change had better not attempt to conduct a scan instantly,
that is, at the same time.

Hence this patch has a two-fold approach for better port scanning:
the introduction of a rate limit to amend frequency issues, and the
introduction of a short random backoff to amend simultaneity issues.
Both approaches boil down to deferred port scans, with delays
comprising parts for both approaches.

The new port scan behaviour is summarised best by:

                                               NEW:    NEW:
                          no_auto_port_rescan  random  rate    flush
                                               backoff limit   =wait

adapter resume/thaw       yes                  yes     no      yes*
adapter online (user)     no                   yes     no      yes*
port rescan (user)        no                   no      no      yes
adapter recovery (user)   yes                  yes     yes     no
adapter recovery (other)  yes                  yes     yes     no
incoming ELS              yes                  yes     yes     no
incoming ELS lost         yes                  yes     yes     no

Implementation is straight-forward by converting an existing worker to
a delayed worker. But care is needed whenever that worker is going to be
flushed (in order to make sure work has been completed), since a flush
operation cancels the timer set up for deferred execution (see * above).

There is a small race window whenever a port scan work starts
running up to the point in time of storing the time stamp for that port
scan. The impact is negligible. Closing that gap isn't trivial, though, and
would the destroy the beauty of a simple work-to-delayed-work conversion.

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-11-20 09:11:30 +01:00
Martin Peschke
ff5e5842c3 [SCSI] zfcp: dead code removal
Get rid of unused function zfcp_fsf_get_req and corresponding
prototype definition.

Commit a54ca0f62f953898b05549391ac2a8a4dad6482b in v2.6.28
"[SCSI] zfcp: Redesign of the debug tracing for HBA records."
accidentally introduced this code which was dead in the first place.

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-09-03 07:27:56 -07:00
Martin Peschke
663e0890e3 [SCSI] zfcp: remove access control tables interface
This patch removes an interface that was used to manage access control
tables within the HBA. The patch consequently removes the handling
for conditions related to those access control tables, too.

That initiator-based access control feature was only needed until the
introduction of NPIV and was withdrawn with z10 years ago.
It's time to cleanup the corresponding device driver code.

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-05-31 16:32:38 -07:00
Sebastian Ott
bd3238667b [SCSI] zfcp: remove unused device_unregister wrapper
Remove the now unused function zfcp_device_unregister since all
users have been converted to use device_unregister directly.

Reviewed-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-05-31 16:32:37 -07:00
Sebastian Ott
86bdf218a7 [SCSI] zfcp: cleanup unit sysfs attribute usage
Let the driver core handle device attribute creation and removal. This
will simplify the code and eliminates races between attribute
availability and userspace notification via uevents.

Reviewed-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-05-31 16:32:37 -07:00
Sebastian Ott
83d4e1c33d [SCSI] zfcp: cleanup port sysfs attribute usage
Let the driver core handle device attribute creation and removal. This
will simplify the code and eliminates races between attribute
availability and userspace notification via uevents.

Reviewed-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-05-31 16:32:36 -07:00
Steffen Maier
43f60cbd56 [SCSI] zfcp: No automatic port_rescan on events
In FC fabrics with large zones, the automatic port_rescan on incoming ELS
and any adapter recovery can cause quite some traffic at the very same
time, especially if lots of Linux images share an HBA, which is common on
s390. This can cause trouble and failures. Fix this by making such port
rescans dependent on a user configurable module parameter.

The following unconditional automatic port rescans remain as is:
On setting an adapter online and
on manual user-triggered writes to the sysfs attribute port_rescan.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-09-24 12:11:02 +04:00
Steffen Maier
d99b601b63 [SCSI] zfcp: restore refcount check on port_remove
Upstream commit f3450c7b917201bb49d67032e9f60d5125675d6a
"[SCSI] zfcp: Replace local reference counting with common kref"
accidentally dropped a reference count check before tearing down
zfcp_ports that are potentially in use by zfcp_units.
Even remote ports in use can be removed causing
unreachable garbage objects zfcp_ports with zfcp_units.
Thus units won't come back even after a manual port_rescan.
The kref of zfcp_port->dev.kobj is already used by the driver core.
We cannot re-use it to track the number of zfcp_units.
Re-introduce our own counter for units per port
and check on port_remove.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@vger.kernel.org> #2.6.33+
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-09-24 12:11:02 +04:00
Steffen Maier
cb45214960 [SCSI] zfcp: Do not wakeup while suspended
If the mapping of FCP device bus ID and corresponding subchannel
is modified while the Linux image is suspended, the resume of FCP
devices can fail. During resume, zfcp gets callbacks from cio regarding
the modified subchannels but they can be arbitrarily mixed with the
restore/resume callback. Since the cio callbacks would trigger
adapter recovery, zfcp could wakeup before the resume callback.
Therefore, ignore the cio callbacks regarding subchannels while
being suspended. We can safely do so, since zfcp does not deal itself
with subchannels. For problem determination purposes, we still trace the
ignored callback events.

The following kernel messages could be seen on resume:

kernel: <WWPN>: parent <FCP device bus ID> should not be sleeping

As part of adapter reopen recovery, zfcp performs auto port scanning
which can erroneously try to register new remote ports with
scsi_transport_fc and the device core code complains about the parent
(adapter) still sleeping.

kernel: zfcp.3dff9c: <FCP device bus ID>:\
 Setting up the QDIO connection to the FCP adapter failed
<last kernel message repeated 3 more times>
kernel: zfcp.574d43: <FCP device bus ID>:\
 ERP cannot recover an error on the FCP device

In such cases, the adapter gave up recovery and remained blocked along
with its child objects: remote ports and LUNs/scsi devices. Even the
adapter shutdown as part of giving up recovery failed because the ccw
device state remained disconnected. Later, the corresponding remote
ports ran into dev_loss_tmo. As a result, the LUNs were erroneously
not available again after resume.

Even a manually triggered adapter recovery (e.g. sysfs attribute
failed, or device offline/online via sysfs) could not recover the
adapter due to the remaining disconnected state of the corresponding
ccw device.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> #2.6.32+
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-09-24 12:11:01 +04:00
Heiko Carstens
a53c8fab3f s390/comments: unify copyright messages and remove file names
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.

Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2012-07-20 11:15:04 +02:00
Swen Schillig
86a9668a8d [SCSI] zfcp: support for hardware data router
FICON Express8S supports hardware data router, which requires an
adapted qdio request format.
This part 2/2 exploits the functionality in zfcp.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-08-27 08:37:03 -06:00
Christof Schmitt
038d9446a9 [SCSI] zfcp: Add information to symbolic port name when running in NPIV mode
Query the FC symbolic port name for reporting in the fc_host sysfs and
enable the symbolic_name attribute in the fc_host sysfs. When running
in NPIV mode, extend the symbolic port name with the devno and the
hostname. This allows better identification of Linux systems for SAN
and storage administrators.

Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-02-25 12:02:21 -05:00
Christof Schmitt
1947c72a12 [SCSI] zfcp: Move SCSI host and transport templates out of struct zfcp_data
The SCSI host and transport templates are the only members left in the
global zfcp_data struct. Move them out of zfcp_data  and remove the
now unused zfcp_data struct. Also update the names of the register and
unregister functions to use the zfcp_scsi prefix.

Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-02-25 12:02:17 -05:00
Christof Schmitt
259afe2ed9 [SCSI] zfcp: Move qtcb kmem_cache to zfcp_fsf.c
Move the kmem_cache for allocating the qtcb to zfcp_fsf.c and rename
it accordingly.

Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-02-25 12:02:12 -05:00
Christof Schmitt
087897e369 [SCSI] zfcp: Introduce new kmem_cache for FC request and response data
A data buffer that is passed to the hardware must not cross a page
boundary. zfcp uses a series of kmem_caches to align the data to not
cross a page boundary. Introduce a new kmem_cache for the FC requests
sent from the zfcp driver and use it for the ELS ADISC data.  The goal
is to migrate to the FC kmem_cache in later patches and remove the
request specific kmem_caches.

Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-02-25 12:02:03 -05:00
Swen Schillig
ea4a3a6ac4 [SCSI] zfcp: Redesign of the debug tracing final cleanup.
This patch is the final cleanup of the redesign from the zfcp tracing.
Structures and elements which were used by multiple areas of the
former debug tracing are now changed to the new scheme.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-21 12:24:46 -06:00
Swen Schillig
250a1352b9 [SCSI] zfcp: Redesign of the debug tracing for SCSI records.
This patch is the continuation to redesign the zfcp tracing to a more
straight-forward and easy to extend scheme.

This patch deals with all trace records of the zfcp SCSI area.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-21 12:24:46 -06:00
Swen Schillig
a54ca0f62f [SCSI] zfcp: Redesign of the debug tracing for HBA records.
This patch is the continuation to redesign the zfcp tracing to a more
straight-forward and easy to extend scheme.

This patch deals with all trace records of the zfcp HBA area.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-21 12:24:45 -06:00
Swen Schillig
2c55b750a8 [SCSI] zfcp: Redesign of the debug tracing for SAN records.
This patch is the continuation to redesign the zfcp tracing to a more
straight-forward and easy to extend scheme.

This patch deals with all trace records of the zfcp SAN area.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-21 12:24:45 -06:00
Swen Schillig
ae0904f60f [SCSI] zfcp: Redesign of the debug tracing for recovery actions.
The tracing environment of the zfcp LLD has become very bulky and hard
to maintain. Small changes involve a large modification process which
is error-prone and not effective.  This patch is the first of a set to
redesign the zfcp tracing to a more straight-forward and easy to
extend scheme.  It removes all interpretation and visualization parts
and focuses on bare logging of the information.

This patch deals with all trace records of the zfcp error recovery.

Signed-off-by: Swen schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-21 12:24:44 -06:00
Swen Schillig
edaed859e6 [SCSI] zfcp: Replace status modifier functions.
Replace the zfcp_modify_<xxx>_status functions and its accompanying wrappers
with dedicated status modifier functions. This eases code readability and
maintenance.

Signed-off-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-09-16 22:54:23 -04:00
Christof Schmitt
a1ca48319a [SCSI] zfcp: Move ACL/CFDC code to zfcp_cfdc.c
Move the code evaluating the ACL/CFDC specific errors to the file
zfcp_cfdc.c. With this change, all code related to the old access
control feature is kept in one file, not split across zfcp_erp.c and
zfcp_fsf.c.

Reviewed-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-09-16 22:54:21 -04:00
Christof Schmitt
b62a8d9b45 [SCSI] zfcp: Use SCSI device data zfcp_scsi_dev instead of zfcp_unit
This is the large change to switch from using the data in
zfcp_unit to zfcp_scsi_dev. Keeping everything working requires doing
the switch in one piece. To ensure that no code keeps using the data
in zfcp_unit, this patch also removes the data from zfcp_unit that is
now being replaced with zfcp_scsi_dev.

For zfcp, the scsi_device together with zfcp_scsi_dev exist from the
call of slave_alloc to the call of slave_destroy. The data in
zfcp_scsi_dev is initialized in zfcp_scsi_slave_alloc and the LUN is
opened; the final shutdown for the LUN is run from slave_destroy.

Where the scsi_device or zfcp_scsi_dev is needed, the pointer to the
scsi_device is passed as function argument and inside the function
converted to the pointer to zfcp_scsi_dev; this avoids back and forth
conversion betweeen scsi_device and zfcp_scsi_dev.

While changing the function arguments from zfcp_unit to scsi_device,
the functions names are renamed form "unit" to "lun". This is to have
a seperation between zfcp_scsi_dev/LUN and the zfcp_unit; only code
referring to the remaining configuration information in zfcp_unit
struct uses "unit".

Reviewed-by: Swen Schillig <swen@vnet.ibm.com>
Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-09-16 22:54:17 -04:00