Rust supports KASAN via LLVM, but prior to this patch, the flags aren't
set properly.
Suggested-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Matthew Maurer <mmaurer@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20240820194910.187826-4-mmaurer@google.com
[ Applied "SW_TAGS KASAN" nit. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Make it possible to use the Control Flow Integrity (CFI) sanitizer when
Rust is enabled. Enabling CFI with Rust requires that CFI is configured
to normalize integer types so that all integer types of the same size
and signedness are compatible under CFI.
Rust and C use the same LLVM backend for code generation, so Rust KCFI
is compatible with the KCFI used in the kernel for C. In the case of
FineIBT, CFI also depends on -Zpatchable-function-entry for rewriting
the function prologue, so we set that flag for Rust as well. The flag
for FineIBT requires rustc 1.80.0 or later, so include a Kconfig
requirement for that.
Enabling Rust will select CFI_ICALL_NORMALIZE_INTEGERS because the flag
is required to use Rust with CFI. Using select rather than `depends on`
avoids the case where Rust is not visible in menuconfig due to
CFI_ICALL_NORMALIZE_INTEGERS not being enabled. One disadvantage of
select is that RUST must `depends on` all of the things that
CFI_ICALL_NORMALIZE_INTEGERS depends on to avoid invalid configurations.
Alice has been using KCFI on her phone for several months, so it is
reasonably well tested on arm64.
Signed-off-by: Matthew Maurer <mmaurer@google.com>
Co-developed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Acked-by: Kees Cook <kees@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240801-kcfi-v2-2-c93caed3d121@google.com
[ Replaced `!FINEIBT` requirement with `!CALL_PADDING` to prevent
a build error on older Rust compilers. Fixed typo. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Some configuration options such as the supported sanitizer list are
arrays. To support using Rust with sanitizers on x86, we must update the
target.json generator to support this case.
The Push trait is removed in favor of the From trait because the Push
trait doesn't work well in the nested case where you are not really
pushing values to a TargetSpec.
Signed-off-by: Matthew Maurer <mmaurer@google.com>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Tested-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Link: https://lore.kernel.org/r/20240730-target-json-arrays-v1-1-2b376fd0ecf4@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Support `MITIGATION_SLS` by enabling the target features that Clang does.
Without this, `objtool` would complain if enabled for Rust, e.g.:
rust/core.o: warning: objtool:
_R...next_up+0x44: missing int3 after ret
These should be eventually enabled via `-Ctarget-feature` when `rustc`
starts recognizing them (or via a new dedicated flag) [1].
Link: https://github.com/rust-lang/rust/issues/116851 [1]
Reviewed-by: Gary Guo <gary@garyguo.net>
Tested-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Benno Lossin <benno.lossin@proton.me>
Link: https://lore.kernel.org/r/20240725183325.122827-5-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Support `MITIGATION_RETPOLINE` by enabling the target features that
Clang does.
The existing target feature being enabled was a leftover from
our old `rust` branch, and it is not enough: the target feature
`retpoline-external-thunk` only implies `retpoline-indirect-calls`, but
not `retpoline-indirect-branches` (see LLVM's `X86.td`), unlike Clang's
flag of the same name `-mretpoline-external-thunk` which does imply both
(see Clang's `lib/Driver/ToolChains/Arch/X86.cpp`).
Without this, `objtool` would complain if enabled for Rust, e.g.:
rust/core.o: warning: objtool:
_R...escape_default+0x13: indirect jump found in RETPOLINE build
In addition, change the comment to note that LLVM is the one disabling
jump tables when retpoline is enabled, thus we do not need to use
`-Zno-jump-tables` for Rust here -- see commit c58f2166ab39 ("Introduce
the "retpoline" x86 mitigation technique ...") [1]:
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In
many cases, the compiler can simply use directed conditional
branches and a small search tree. LLVM already has support for
lowering switches in this way and the first step of this patch is
to disable jump-table lowering of switches and introduce a pass to
rewrite explicit indirectbr sequences into a switch over integers.
As well as a live example at [2].
These should be eventually enabled via `-Ctarget-feature` when `rustc`
starts recognizing them (or via a new dedicated flag) [3].
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: c58f2166ab [1]
Link: https://godbolt.org/z/G4YPr58qG [2]
Link: https://github.com/rust-lang/rust/issues/116852 [3]
Reviewed-by: Gary Guo <gary@garyguo.net>
Tested-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Benno Lossin <benno.lossin@proton.me>
Link: https://github.com/Rust-for-Linux/linux/issues/945
Link: https://lore.kernel.org/r/20240725183325.122827-3-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
LLVM 19 is dropping support for 3DNow! in commit f0eb5587ceeb ("Remove
support for 3DNow!, both intrinsics and builtins. (#96246)"):
Remove support for 3DNow!, both intrinsics and builtins. (#96246)
This set of instructions was only supported by AMD chips starting in
the K6-2 (introduced 1998), and before the "Bulldozer" family
(2011). They were never much used, as they were effectively superseded
by the more-widely-implemented SSE (first implemented on the AMD side
in Athlon XP in 2001).
This is being done as a predecessor towards general removal of MMX
register usage. Since there is almost no usage of the 3DNow!
intrinsics, and no modern hardware even implements them, simple
removal seems like the best option.
Thus we should avoid passing these to the backend, since otherwise we
get a diagnostic about it:
'-3dnow' is not a recognized feature for this target (ignoring feature)
'-3dnowa' is not a recognized feature for this target (ignoring feature)
We could try to disable them only up to LLVM 19 (not the C side one,
but the one used by `rustc`, which may be built with a range of
LLVMs). However, to avoid more complexity, we can likely just remove
them altogether. According to Nikita [2]:
> I don't think it's needed because LLVM should not generate 3dnow
> instructions unless specifically asked to, using intrinsics that
> Rust does not provide in the first place.
Thus do so, like Rust did for one of their builtin targets [3].
For those curious: Clang will warn only about trying to enable them
(`-m3dnow{,a}`), but not about disabling them (`-mno-3dnow{,a}`), so
there is no change needed there.
Cc: Nikita Popov <github@npopov.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: x86@kernel.org
Link: f0eb5587ce [1]
Link: https://github.com/rust-lang/rust/pull/127864#issuecomment-2235898760 [2]
Link: https://github.com/rust-lang/rust/pull/127864 [3]
Closes: https://github.com/Rust-for-Linux/linux/issues/1094
Tested-by: Benno Lossin <benno.lossin@proton.me>
Tested-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240806144558.114461-1-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
At present, Rust in the kernel only supports 64-bit x86, so UML has
followed suit. However, it's significantly easier to support 32-bit i386
on UML than on bare metal, as UML does not use the -mregparm option
(which alters the ABI), which is not yet supported by rustc[1].
Add support for CONFIG_RUST on um/i386, by adding a new target config to
generate_rust_target, and replacing various checks on CONFIG_X86_64 to
also support CONFIG_X86_32.
We still use generate_rust_target, rather than a built-in rustc target,
in order to match x86_64, provide a future place for -mregparm, and more
easily disable floating point instructions.
With these changes, the KUnit tests pass with:
kunit.py run --make_options LLVM=1 --kconfig_add CONFIG_RUST=y
--kconfig_add CONFIG_64BIT=n --kconfig_add CONFIG_FORTIFY_SOURCE=n
An earlier version of these changes was proposed on the Rust-for-Linux
github[2].
[1]: https://github.com/rust-lang/rust/issues/116972
[2]: https://github.com/Rust-for-Linux/linux/pull/966
Signed-off-by: David Gow <davidgow@google.com>
Link: https://patch.msgid.link/20240604224052.3138504-1-davidgow@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
* Support for byte/half-word compare-and-exchange, emulated via LR/SC
loops.
* Support for Rust.
* Support for Zihintpause in hwprobe.
* Support for the PR_RISCV_SET_ICACHE_FLUSH_CTX prctl().
* Support for lockless lockrefs.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmZN/hcTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiVrGEACUT3gsbTx1q7fa11iQNxOjVkpl66Qn
7+kI+V9xt5+GuH2EjJk6AsSNHPKeQ8totbSTA8AZjINFvgVjXslN+DPpcjCFKvnh
NN5/Lyd64X0PZMsxGWlN9SHTFWf2b7lalCnY51BlX/IpBbHWc/no9XUsPSVixx6u
9q+JoS3D1DDV92nGcA/UK9ICCsDcf4omWgZW7KbjnVWnuY9jt4ctTy11jtF2RM9R
Z9KAWh0RqPzjz0vNbBBf9Iw7E4jt/Px6HDYPfZAiE2dVsCTHjdsC7TcGRYXzKt6F
4q9zg8kzwvUG5GaBl7/XprXO1vaeOUmPcTVoE7qlRkSdkknRH/iBz1P4hk+r0fze
f+h5ZUV/oJP7vDb+vHm/BExtGufgLuJ2oMA2Bp9qI17EMcMsGiRMt7DsBMEafWDk
bNrFcJdqqYBz6HxfTwzNH5ErxfS/59PuwYl913BTSOH//raCZCFXOfyrSICH7qXd
UFOLLmBpMuApLa8ayFeI9Mp3flWfbdQHR52zLRLiUvlpWNEDKrNQN417juVwTXF0
DYkjJDhFPLfFOr/sJBboftOMOUdA9c/CJepY9o4kPvBXUvPtRHN1jdXDNSCVDZRb
nErnsJ9rv0PzfxQU7Xjhd2QmCMeMlbCQDpXAKKETyyimpTbgF33rovN0i5ixX3m4
KG6RvKDubOzZdA==
=YLoD
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Add byte/half-word compare-and-exchange, emulated via LR/SC loops
- Support for Rust
- Support for Zihintpause in hwprobe
- Add PR_RISCV_SET_ICACHE_FLUSH_CTX prctl()
- Support lockless lockrefs
* tag 'riscv-for-linus-6.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (42 commits)
riscv: defconfig: Enable CONFIG_CLK_SOPHGO_CV1800
riscv: select ARCH_HAS_FAST_MULTIPLIER
riscv: mm: still create swiotlb buffer for kmalloc() bouncing if required
riscv: Annotate pgtable_l{4,5}_enabled with __ro_after_init
riscv: Remove redundant CONFIG_64BIT from pgtable_l{4,5}_enabled
riscv: mm: Always use an ASID to flush mm contexts
riscv: mm: Preserve global TLB entries when switching contexts
riscv: mm: Make asid_bits a local variable
riscv: mm: Use a fixed layout for the MM context ID
riscv: mm: Introduce cntx2asid/cntx2version helper macros
riscv: Avoid TLB flush loops when affected by SiFive CIP-1200
riscv: Apply SiFive CIP-1200 workaround to single-ASID sfence.vma
riscv: mm: Combine the SMP and UP TLB flush code
riscv: Only send remote fences when some other CPU is online
riscv: mm: Broadcast kernel TLB flushes only when needed
riscv: Use IPIs for remote cache/TLB flushes by default
riscv: Factor out page table TLB synchronization
riscv: Flush the instruction cache during SMP bringup
riscv: hwprobe: export Zihintpause ISA extension
riscv: misaligned: remove CONFIG_RISCV_M_MODE specific code
...
1, Select some options in Kconfig;
2, Give a chance to build with !CONFIG_SMP;
3, Switch to use built-in rustc target;
4, Add new supported device nodes to dts;
5, Some bug fixes and other small changes;
6, Update the default config file.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmZKCycWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImeoXWD/9pFhbbJj49T1xiwc2j/XgQL8HI
s88/h4z5AXEbHFO8XIG1Cpw/Z3a1DsCiWBsOkCogagILzYuN0r7UqcrI02ZoeY6N
fbuDatB3i+hJWCBzcl1HPkFy/9av4j4EktZs0+X/wVgKkd0aIh78qs8+1RwKhshf
FoOv+cMu7zFS8Jrt+w16diNCY1JsDv7TCkCVhvJxAodrtGg4oo2NPfrGOrKAP8Dq
LClvFEqDcXq1kKcipw3Q7BwDlBpJEvLZ0iAl19BnLAmBzI3Wfze9ouoYv8WiUyaY
br0GPShGf16I3DKtTdHsHH/zmayQ7JSmFzZ9JEHzcBrE4AprfWLuwsUjd2WXDD6U
wK+p4tWd0AUFf+/h4u1yQB9/rlt+JZ2ny/A2u4YR/BPtthiYqp8SDSH62vpCSFOE
dByDeTbfjTdJsWr+bsI2gOO0sVwDYpph9SJfAyBn4miKw7v8w+2rI1oqo/ZQkP59
0SczM9C9jzpgXSGDc4yQbnqoA4KA9U6zljd12mYL5HV/AjhD19va3FmENgByZUuE
Z7A0RZsiU5T401xEZiOUhwzy9m/USc1O2ivCmeowx9kP/gWic0KeAsmlMiro0jeR
y9jthci8iOgjjLmCEVC06GWGUojP2roXI/38We6enVevy2GXbEEDRa1QGbQ5ndoJ
MEPm4NvW1wsBgWIYmg==
=WR15
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Select some options in Kconfig
- Give a chance to build with !CONFIG_SMP
- Switch to use built-in rustc target
- Add new supported device nodes to dts
- Some bug fixes and other small changes
- Update the default config file
* tag 'loongarch-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson:
LoongArch: Update Loongson-3 default config file
LoongArch: dts: Add new supported device nodes to Loongson-2K2000
LoongArch: dts: Add new supported device nodes to Loongson-2K0500
LoongArch: dts: Remove "disabled" state of clock controller node
LoongArch: rust: Switch to use built-in rustc target
LoongArch: Fix callchain parse error with kernel tracepoint events again
LoongArch: Give a chance to build with !CONFIG_SMP
LoongArch: Select THP_SWAP if HAVE_ARCH_TRANSPARENT_HUGEPAGE
LoongArch: Select ARCH_WANT_DEFAULT_BPF_JIT
LoongArch: Select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
LoongArch: Select ARCH_HAS_FAST_MULTIPLIER
This commit switches to use the LoongArch's built-in rustc target
'loongarch64-unknown-none-softfloat'. The Rust samples have been tested.
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Tested-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: WANG Rui <wangrui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This is the next upgrade to the Rust toolchain, from 1.77.1 to 1.78.0
(i.e. the latest) [1].
See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4da06e ("rust: upgrade to Rust 1.68.2").
It is much smaller than previous upgrades, since the `alloc` fork was
dropped in commit 9d0441bab775 ("rust: alloc: remove our fork of the
`alloc` crate") [3].
# Unstable features
There have been no changes to the set of unstable features used in
our own code. Therefore, the only unstable features allowed to be used
outside the `kernel` crate is still `new_uninit`.
However, since we finally dropped our `alloc` fork [3], all the unstable
features used by `alloc` (~30 language ones, ~60 library ones) are not
a concern anymore. This reduces the maintenance burden, increases the
chances of new compiler versions working without changes and gets us
closer to the goal of supporting several compiler versions.
It also means that, ignoring non-language/library features, we are
currently left with just the few language features needed to implement the
kernel `Arc`, the `new_uninit` library feature, the `compiler_builtins`
marker and the few `no_*` `cfg`s we pass when compiling `core`/`alloc`.
Please see [4] for details.
# Required changes
## LLVM's data layout
Rust 1.77.0 (i.e. the previous upgrade) introduced a check for matching
LLVM data layouts [5]. Then, Rust 1.78.0 upgraded LLVM's bundled major
version from 17 to 18 [6], which changed the data layout in x86 [7]. Thus
update the data layout in our custom target specification for x86 so
that the compiler does not complain about the mismatch:
error: data-layout for target `target-5559158138856098584`,
`e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128`,
differs from LLVM target's `x86_64-linux-gnu` default layout,
`e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128`
In the future, the goal is to drop the custom target specifications.
Meanwhile, if we want to support other LLVM versions used in `rustc`
(e.g. for LTO), we will need to add some extra logic (e.g. conditional on
LLVM's version, or extracting the data layout from an existing built-in
target specification).
## `unused_imports`
Rust's `unused_imports` lint covers both unused and redundant imports.
Now, in 1.78.0, the lint detects more cases of redundant imports [8].
Thus one of the previous patches cleaned them up.
## Clippy's `new_without_default`
Clippy now suggests to implement `Default` even when `new()` is `const`,
since `Default::default()` may call `const` functions even if it is not
`const` itself [9]. Thus one of the previous patches implemented it.
# Other changes in Rust
Rust 1.78.0 introduced `feature(asm_goto)` [10] [11]. This feature was
discussed in the past [12].
Rust 1.78.0 introduced `feature(const_refs_to_static)` [13] to allow
referencing statics in constants and extended `feature(const_mut_refs)`
to allow raw mutable pointers in constants. Together, this should cover
the kernel's `VTABLE` use case. In fact, the implementation [14] in
upstream Rust added a test case for it [15].
Rust 1.78.0 with debug assertions enabled (i.e. `-Cdebug-assertions=y`,
kernel's `CONFIG_RUST_DEBUG_ASSERTIONS=y`) now always checks all unsafe
preconditions, though without a way to opt-out for particular cases [16].
It would be ideal to have a way to selectively disable certain checks
per-call site for this one (i.e. not just per check but for particular
instances of a check), even if the vast majority of the checks remain
in place [17].
Rust 1.78.0 also improved a couple issues we reported when giving feedback
for the new `--check-cfg` feature [18] [19].
# `alloc` upgrade and reviewing
As mentioned above, compiler upgrades will not update `alloc` anymore,
since we dropped our `alloc` fork [3].
Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1780-2024-05-02 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: https://lore.kernel.org/rust-for-linux/20240328013603.206764-1-wedsonaf@gmail.com/ [3]
Link: https://github.com/Rust-for-Linux/linux/issues/2 [4]
Link: https://github.com/rust-lang/rust/pull/120062 [5]
Link: https://github.com/rust-lang/rust/pull/120055 [6]
Link: https://reviews.llvm.org/D86310 [7]
Link: https://github.com/rust-lang/rust/pull/117772 [8]
Link: https://github.com/rust-lang/rust-clippy/pull/10903 [9]
Link: https://github.com/rust-lang/rust/pull/119365 [10]
Link: https://github.com/rust-lang/rust/issues/119364 [11]
Link: https://lore.kernel.org/rust-for-linux/ZWipTZysC2YL7qsq@Boquns-Mac-mini.home/ [12]
Link: https://github.com/rust-lang/rust/issues/119618 [13]
Link: https://github.com/rust-lang/rust/pull/120932 [14]
Link: https://github.com/rust-lang/rust/pull/120932/files#diff-e6fc1622c46054cd46b1d225c5386c5554564b3b0fa8a03c2dc2d8627a1079d9 [15]
Link: https://github.com/rust-lang/rust/issues/120969 [16]
Link: https://github.com/Rust-for-Linux/linux/issues/354 [17]
Link: https://github.com/rust-lang/rust/pull/121202 [18]
Link: https://github.com/rust-lang/rust/pull/121237 [19]
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240401212303.537355-4-ojeda@kernel.org
[ Added a few more details and links I mentioned in the list. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
The rust modules work on 64-bit RISC-V, with no twiddling required.
Select HAVE_RUST and provide the required flags to kbuild so that the
modules can be used. The Makefile and Kconfig changes are lifted from
work done by Miguel in the Rust-for-Linux tree, hence his authorship.
Following the rabbit hole, the Makefile changes originated in a script,
created based on config files originally added by Gary, hence his
co-authorship.
32-bit is broken in core rust code, so support is limited to 64-bit:
ld.lld: error: undefined symbol: __udivdi3
As 64-bit RISC-V is now supported, add it to the arch support table.
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Co-developed-by: Conor Dooley <conor.dooley@microchip.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20240409-silencer-book-ce1320f06aab@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* Reorganise the arm64 kernel VA space and add support for LPA2 (at
stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address range
with 4KB and 16KB pages
* Enable Rust on arm64
* Support for the 2023 dpISA extensions (data processing ISA), host only
* arm64 perf updates:
- StarFive's StarLink (integrates one or more CPU cores with a shared
L3 memory system) PMU support
- Enable HiSilicon Erratum 162700402 quirk for HIP09
- Several updates for the HiSilicon PCIe PMU driver
- Arm CoreSight PMU support
- Convert all drivers under drivers/perf/ to use .remove_new()
* Miscellaneous:
- Don't enable workarounds for "rare" errata by default
- Clean up the DAIF flags handling for EL0 returns (in preparation for
NMI support)
- Kselftest update for ptrace()
- Update some of the sysreg field definitions
- Slight improvement in the code generation for inline asm I/O
accessors to permit offset addressing
- kretprobes: acquire regs via a BRK exception (previously done via a
trampoline handler)
- SVE/SME cleanups, comment updates
- Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously disabled
due to gcc silently ignoring -falign-functions=N)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmXxiSgACgkQa9axLQDI
XvHd7hAAjQrQqxJogPT2ahM5/gxct8qTrXpIgX0B1Y7bb5R8ztvOUN9MJNuDyRsj
0s28SSZw387LReM5OUu+U6G/iahcuNAyP/8d9qeac32Tidd255fV3KPEh4C4eC+u
0HeOqLBZ+stmNoa71tBC2K6SmchizhYyYduvRnri8km8K4OMDawHWqWRTXl0PNRT
RMVJvZTDJMPfMBFeD4+B7EnSFOoP14tKCw9MZvlbpT2PEV0kINjhCQiojW2jJgqv
w36vm/dhwsg1avSzT1xhy3KE+m+7n28+IC/wr1HB7c1WumvYKv7Z84ieCp3PlO3Z
owvVO7dKJC6X3RkoY6Kge5p2RHU6poDerDVHYiAvG+Zi57nrDmHyAubskThsGTGR
AibSEeJ5nQ0yM6hx7zAIQa5XEo4l0svD1ZM7NynY+5JR44W9cdAH3SnEsvIBMGIf
/ja+iZ1W4ZQnIESQXD5uDPSxILfqQ8Ebhdorpw+Qg3rB7OhdTdGSSGQCi6V2PcJH
d/ErFO+i0lFRBPJtBbUAN4EEu3HJcVYEoEnVJYQahC+6KyNGLxO+7L6sH0YO7Pag
P1LRa6h8ktuBMrbCrOPWdmJYNDYCbb5rRtmcCwO0ItZ4g5tYWp9djFc8pyctCaNB
MZxxRrUCNwXTOcFTDiYzyk+JCvpf3EvXfvj8AH+P8BMjFWgqHqw=
=KTD/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The major features are support for LPA2 (52-bit VA/PA with 4K and 16K
pages), the dpISA extension and Rust enabled on arm64. The changes are
mostly contained within the usual arch/arm64/, drivers/perf, the arm64
Documentation and kselftests. The exception is the Rust support which
touches some generic build files.
Summary:
- Reorganise the arm64 kernel VA space and add support for LPA2 (at
stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address
range with 4KB and 16KB pages
- Enable Rust on arm64
- Support for the 2023 dpISA extensions (data processing ISA), host
only
- arm64 perf updates:
- StarFive's StarLink (integrates one or more CPU cores with a
shared L3 memory system) PMU support
- Enable HiSilicon Erratum 162700402 quirk for HIP09
- Several updates for the HiSilicon PCIe PMU driver
- Arm CoreSight PMU support
- Convert all drivers under drivers/perf/ to use .remove_new()
- Miscellaneous:
- Don't enable workarounds for "rare" errata by default
- Clean up the DAIF flags handling for EL0 returns (in preparation
for NMI support)
- Kselftest update for ptrace()
- Update some of the sysreg field definitions
- Slight improvement in the code generation for inline asm I/O
accessors to permit offset addressing
- kretprobes: acquire regs via a BRK exception (previously done
via a trampoline handler)
- SVE/SME cleanups, comment updates
- Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously
disabled due to gcc silently ignoring -falign-functions=N)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (134 commits)
Revert "mm: add arch hook to validate mmap() prot flags"
Revert "arm64: mm: add support for WXN memory translation attribute"
Revert "ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512"
ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
kselftest/arm64: Add 2023 DPISA hwcap test coverage
kselftest/arm64: Add basic FPMR test
kselftest/arm64: Handle FPMR context in generic signal frame parser
arm64/hwcap: Define hwcaps for 2023 DPISA features
arm64/ptrace: Expose FPMR via ptrace
arm64/signal: Add FPMR signal handling
arm64/fpsimd: Support FEAT_FPMR
arm64/fpsimd: Enable host kernel access to FPMR
arm64/cpufeature: Hook new identification registers up to cpufeature
docs: perf: Fix build warning of hisi-pcie-pmu.rst
perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
MAINTAINERS: Add entry for StarFive StarLink PMU
docs: perf: Add description for StarFive's StarLink PMU
dt-bindings: perf: starfive: Add JH8100 StarLink PMU
perf: starfive: Add StarLink PMU support
docs: perf: Update usage for target filter of hisi-pcie-pmu
...
This commit provides the build flags for Rust for AArch64. The core Rust
support already in the kernel does the rest. This enables the PAC ret
and BTI options in the Rust build flags to match the options that are
used when building C.
The Rust samples have been tested with this commit.
Signed-off-by: Jamie Cunliffe <Jamie.Cunliffe@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Dirk Behme <dirk.behme@de.bosch.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Fabien Parent <fabien.parent@linaro.org>
Link: https://lore.kernel.org/r/20231020155056.3495121-3-Jamie.Cunliffe@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Enable initial Rust support for LoongArch.
Tested-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: WANG Rui <wangrui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options.
[ mingo: Converted a few more uses in comments/messages as well. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ariel Miculas <amiculas@cisco.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
Note that only x86_64 is covered and not all features nor mitigations
are handled, but it is enough as a starting point and showcases
the basics needed to add Rust support for a new architecture.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: David Gow <davidgow@google.com>
Signed-off-by: David Gow <davidgow@google.com>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This script takes care of generating the custom target specification
file for `rustc`, based on the kernel configuration.
It also serves as an example of a Rust host program.
A dummy architecture is kept in this patch so that a later patch
adds x86 support on top with as few changes as possible.
Reviewed-by: Kees Cook <keescook@chromium.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: David Gow <davidgow@google.com>
Signed-off-by: David Gow <davidgow@google.com>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>