// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_foreground.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "inode.h" #include "io.h" #include "journal_reclaim.h" #include "keylist.h" #include "move.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include #include #define SECTORS_IN_FLIGHT_PER_DEVICE 2048 struct moving_io { struct list_head list; struct closure cl; bool read_completed; unsigned read_sectors; unsigned write_sectors; struct bch_read_bio rbio; struct migrate_write write; /* Must be last since it is variable size */ struct bio_vec bi_inline_vecs[0]; }; struct moving_context { /* Closure for waiting on all reads and writes to complete */ struct closure cl; struct bch_move_stats *stats; struct list_head reads; /* in flight sectors: */ atomic_t read_sectors; atomic_t write_sectors; wait_queue_head_t wait; }; static int bch2_migrate_index_update(struct bch_write_op *op) { struct bch_fs *c = op->c; struct migrate_write *m = container_of(op, struct migrate_write, op); struct keylist *keys = &op->insert_keys; struct btree_iter iter; int ret = 0; bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, bkey_start_pos(&bch2_keylist_front(keys)->k), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); while (1) { struct bkey_s_c k = bch2_btree_iter_peek_slot(&iter); struct bkey_i_extent *insert, *new = bkey_i_to_extent(bch2_keylist_front(keys)); BKEY_PADDED(k) _new, _insert; const union bch_extent_entry *entry; struct extent_ptr_decoded p; bool did_work = false; int nr; if (btree_iter_err(k)) { ret = bch2_btree_iter_unlock(&iter); break; } if (bversion_cmp(k.k->version, new->k.version) || !bkey_extent_is_data(k.k) || !bch2_extent_matches_ptr(c, bkey_s_c_to_extent(k), m->ptr, m->offset)) goto nomatch; if (m->data_cmd == DATA_REWRITE && !bch2_extent_has_device(bkey_s_c_to_extent(k), m->data_opts.rewrite_dev)) goto nomatch; bkey_reassemble(&_insert.k, k); insert = bkey_i_to_extent(&_insert.k); bkey_copy(&_new.k, bch2_keylist_front(keys)); new = bkey_i_to_extent(&_new.k); bch2_cut_front(iter.pos, &insert->k_i); bch2_cut_back(new->k.p, &insert->k); bch2_cut_back(insert->k.p, &new->k); if (m->data_cmd == DATA_REWRITE) { struct bch_extent_ptr *ptr = (void *) bch2_extent_has_device(extent_i_to_s_c(insert), m->data_opts.rewrite_dev); BUG_ON(!ptr); bch2_extent_drop_ptr(extent_i_to_s(insert), ptr); } extent_for_each_ptr_decode(extent_i_to_s(new), p, entry) { if (bch2_extent_has_device(extent_i_to_s_c(insert), p.ptr.dev)) { /* * raced with another move op? extent already * has a pointer to the device we just wrote * data to */ continue; } bch2_extent_crc_append(insert, p.crc); extent_ptr_append(insert, p.ptr); did_work = true; } if (!did_work) goto nomatch; bch2_extent_narrow_crcs(insert, (struct bch_extent_crc_unpacked) { 0 }); bch2_extent_normalize(c, extent_i_to_s(insert).s); bch2_extent_mark_replicas_cached(c, extent_i_to_s(insert), op->opts.background_target, op->opts.data_replicas); /* * It's possible we race, and for whatever reason the extent now * has fewer replicas than when we last looked at it - meaning * we need to get a disk reservation here: */ nr = bch2_extent_nr_dirty_ptrs(bkey_i_to_s_c(&insert->k_i)) - (bch2_extent_nr_dirty_ptrs(k) + m->nr_ptrs_reserved); if (nr > 0) { /* * can't call bch2_disk_reservation_add() with btree * locks held, at least not without a song and dance */ bch2_btree_iter_unlock(&iter); ret = bch2_disk_reservation_add(c, &op->res, keylist_sectors(keys) * nr, 0); if (ret) goto out; m->nr_ptrs_reserved += nr; goto next; } ret = bch2_mark_bkey_replicas(c, BCH_DATA_USER, extent_i_to_s_c(insert).s_c); if (ret) break; ret = bch2_btree_insert_at(c, &op->res, op_journal_seq(op), BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| m->data_opts.btree_insert_flags, BTREE_INSERT_ENTRY(&iter, &insert->k_i)); if (!ret) atomic_long_inc(&c->extent_migrate_done); if (ret == -EINTR) ret = 0; if (ret) break; next: while (bkey_cmp(iter.pos, bch2_keylist_front(keys)->k.p) >= 0) { bch2_keylist_pop_front(keys); if (bch2_keylist_empty(keys)) goto out; } bch2_cut_front(iter.pos, bch2_keylist_front(keys)); continue; nomatch: if (m->ctxt) atomic64_add(k.k->p.offset - iter.pos.offset, &m->ctxt->stats->sectors_raced); atomic_long_inc(&c->extent_migrate_raced); trace_move_race(&new->k); bch2_btree_iter_next_slot(&iter); goto next; } out: bch2_btree_iter_unlock(&iter); return ret; } void bch2_migrate_read_done(struct migrate_write *m, struct bch_read_bio *rbio) { /* write bio must own pages: */ BUG_ON(!m->op.wbio.bio.bi_vcnt); m->ptr = rbio->pick.ptr; m->offset = rbio->pos.offset - rbio->pick.crc.offset; m->op.devs_have = rbio->devs_have; m->op.pos = rbio->pos; m->op.version = rbio->version; m->op.crc = rbio->pick.crc; m->op.wbio.bio.bi_iter.bi_size = m->op.crc.compressed_size << 9; if (bch2_csum_type_is_encryption(m->op.crc.csum_type)) { m->op.nonce = m->op.crc.nonce + m->op.crc.offset; m->op.csum_type = m->op.crc.csum_type; } if (m->data_cmd == DATA_REWRITE) bch2_dev_list_drop_dev(&m->op.devs_have, m->data_opts.rewrite_dev); } int bch2_migrate_write_init(struct bch_fs *c, struct migrate_write *m, struct write_point_specifier wp, struct bch_io_opts io_opts, enum data_cmd data_cmd, struct data_opts data_opts, struct bkey_s_c k) { int ret; m->data_cmd = data_cmd; m->data_opts = data_opts; m->nr_ptrs_reserved = 0; bch2_write_op_init(&m->op, c, io_opts); m->op.compression_type = bch2_compression_opt_to_type[io_opts.background_compression ?: io_opts.compression]; m->op.target = data_opts.target, m->op.write_point = wp; if (m->data_opts.btree_insert_flags & BTREE_INSERT_USE_RESERVE) m->op.alloc_reserve = RESERVE_MOVINGGC; m->op.flags |= BCH_WRITE_ONLY_SPECIFIED_DEVS| BCH_WRITE_PAGES_STABLE| BCH_WRITE_PAGES_OWNED| BCH_WRITE_DATA_ENCODED| BCH_WRITE_NOMARK_REPLICAS; m->op.nr_replicas = 1; m->op.nr_replicas_required = 1; m->op.index_update_fn = bch2_migrate_index_update; switch (data_cmd) { case DATA_ADD_REPLICAS: { int nr = (int) io_opts.data_replicas - bch2_extent_nr_dirty_ptrs(k); if (nr > 0) { m->op.nr_replicas = m->nr_ptrs_reserved = nr; ret = bch2_disk_reservation_get(c, &m->op.res, k.k->size, m->op.nr_replicas, 0); if (ret) return ret; } break; } case DATA_REWRITE: break; case DATA_PROMOTE: m->op.flags |= BCH_WRITE_ALLOC_NOWAIT; m->op.flags |= BCH_WRITE_CACHED; break; default: BUG(); } return 0; } static void move_free(struct closure *cl) { struct moving_io *io = container_of(cl, struct moving_io, cl); struct moving_context *ctxt = io->write.ctxt; struct bvec_iter_all iter; struct bio_vec *bv; bch2_disk_reservation_put(io->write.op.c, &io->write.op.res); bio_for_each_segment_all(bv, &io->write.op.wbio.bio, iter) if (bv->bv_page) __free_page(bv->bv_page); wake_up(&ctxt->wait); kfree(io); } static void move_write_done(struct closure *cl) { struct moving_io *io = container_of(cl, struct moving_io, cl); atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors); closure_return_with_destructor(cl, move_free); } static void move_write(struct closure *cl) { struct moving_io *io = container_of(cl, struct moving_io, cl); if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) { closure_return_with_destructor(cl, move_free); return; } bch2_migrate_read_done(&io->write, &io->rbio); atomic_add(io->write_sectors, &io->write.ctxt->write_sectors); closure_call(&io->write.op.cl, bch2_write, NULL, cl); continue_at(cl, move_write_done, NULL); } static inline struct moving_io *next_pending_write(struct moving_context *ctxt) { struct moving_io *io = list_first_entry_or_null(&ctxt->reads, struct moving_io, list); return io && io->read_completed ? io : NULL; } static void move_read_endio(struct bio *bio) { struct moving_io *io = container_of(bio, struct moving_io, rbio.bio); struct moving_context *ctxt = io->write.ctxt; atomic_sub(io->read_sectors, &ctxt->read_sectors); io->read_completed = true; if (next_pending_write(ctxt)) wake_up(&ctxt->wait); closure_put(&ctxt->cl); } static void do_pending_writes(struct moving_context *ctxt) { struct moving_io *io; while ((io = next_pending_write(ctxt))) { list_del(&io->list); closure_call(&io->cl, move_write, NULL, &ctxt->cl); } } #define move_ctxt_wait_event(_ctxt, _cond) \ do { \ do_pending_writes(_ctxt); \ \ if (_cond) \ break; \ __wait_event((_ctxt)->wait, \ next_pending_write(_ctxt) || (_cond)); \ } while (1) static void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt) { unsigned sectors_pending = atomic_read(&ctxt->write_sectors); move_ctxt_wait_event(ctxt, !atomic_read(&ctxt->write_sectors) || atomic_read(&ctxt->write_sectors) != sectors_pending); } static int bch2_move_extent(struct bch_fs *c, struct moving_context *ctxt, struct write_point_specifier wp, struct bch_io_opts io_opts, struct bkey_s_c_extent e, enum data_cmd data_cmd, struct data_opts data_opts) { struct moving_io *io; const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned sectors = e.k->size, pages; int ret = -ENOMEM; move_ctxt_wait_event(ctxt, atomic_read(&ctxt->write_sectors) < SECTORS_IN_FLIGHT_PER_DEVICE); move_ctxt_wait_event(ctxt, atomic_read(&ctxt->read_sectors) < SECTORS_IN_FLIGHT_PER_DEVICE); /* write path might have to decompress data: */ extent_for_each_ptr_decode(e, p, entry) sectors = max_t(unsigned, sectors, p.crc.uncompressed_size); pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); io = kzalloc(sizeof(struct moving_io) + sizeof(struct bio_vec) * pages, GFP_KERNEL); if (!io) goto err; io->write.ctxt = ctxt; io->read_sectors = e.k->size; io->write_sectors = e.k->size; bio_init(&io->write.op.wbio.bio, NULL, io->bi_inline_vecs, pages, 0); bio_set_prio(&io->write.op.wbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9, GFP_KERNEL)) goto err_free; io->rbio.opts = io_opts; bio_init(&io->rbio.bio, NULL, io->bi_inline_vecs, pages, 0); io->rbio.bio.bi_vcnt = pages; bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); io->rbio.bio.bi_iter.bi_size = sectors << 9; io->rbio.bio.bi_opf = REQ_OP_READ; io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(e.k); io->rbio.bio.bi_end_io = move_read_endio; ret = bch2_migrate_write_init(c, &io->write, wp, io_opts, data_cmd, data_opts, e.s_c); if (ret) goto err_free_pages; atomic64_inc(&ctxt->stats->keys_moved); atomic64_add(e.k->size, &ctxt->stats->sectors_moved); trace_move_extent(e.k); atomic_add(io->read_sectors, &ctxt->read_sectors); list_add_tail(&io->list, &ctxt->reads); /* * dropped by move_read_endio() - guards against use after free of * ctxt when doing wakeup */ closure_get(&ctxt->cl); bch2_read_extent(c, &io->rbio, e.s_c, BCH_READ_NODECODE| BCH_READ_LAST_FRAGMENT); return 0; err_free_pages: bio_free_pages(&io->write.op.wbio.bio); err_free: kfree(io); err: trace_move_alloc_fail(e.k); return ret; } int bch2_move_data(struct bch_fs *c, struct bch_ratelimit *rate, struct write_point_specifier wp, struct bpos start, struct bpos end, move_pred_fn pred, void *arg, struct bch_move_stats *stats) { bool kthread = (current->flags & PF_KTHREAD) != 0; struct moving_context ctxt = { .stats = stats }; struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); BKEY_PADDED(k) tmp; struct bkey_s_c k; struct bkey_s_c_extent e; struct data_opts data_opts; enum data_cmd data_cmd; u64 delay, cur_inum = U64_MAX; int ret = 0, ret2; closure_init_stack(&ctxt.cl); INIT_LIST_HEAD(&ctxt.reads); init_waitqueue_head(&ctxt.wait); stats->data_type = BCH_DATA_USER; bch2_btree_iter_init(&stats->iter, c, BTREE_ID_EXTENTS, start, BTREE_ITER_PREFETCH); if (rate) bch2_ratelimit_reset(rate); while (1) { do { delay = rate ? bch2_ratelimit_delay(rate) : 0; if (delay) { bch2_btree_iter_unlock(&stats->iter); set_current_state(TASK_INTERRUPTIBLE); } if (kthread && (ret = kthread_should_stop())) { __set_current_state(TASK_RUNNING); goto out; } if (delay) schedule_timeout(delay); if (unlikely(freezing(current))) { bch2_btree_iter_unlock(&stats->iter); move_ctxt_wait_event(&ctxt, list_empty(&ctxt.reads)); try_to_freeze(); } } while (delay); peek: k = bch2_btree_iter_peek(&stats->iter); if (!k.k) break; ret = btree_iter_err(k); if (ret) break; if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) break; if (!bkey_extent_is_data(k.k)) goto next_nondata; e = bkey_s_c_to_extent(k); if (cur_inum != k.k->p.inode) { struct bch_inode_unpacked inode; /* don't hold btree locks while looking up inode: */ bch2_btree_iter_unlock(&stats->iter); io_opts = bch2_opts_to_inode_opts(c->opts); if (!bch2_inode_find_by_inum(c, k.k->p.inode, &inode)) bch2_io_opts_apply(&io_opts, bch2_inode_opts_get(&inode)); cur_inum = k.k->p.inode; goto peek; } switch ((data_cmd = pred(c, arg, BKEY_TYPE_EXTENTS, e, &io_opts, &data_opts))) { case DATA_SKIP: goto next; case DATA_SCRUB: BUG(); case DATA_ADD_REPLICAS: case DATA_REWRITE: case DATA_PROMOTE: break; default: BUG(); } /* unlock before doing IO: */ bkey_reassemble(&tmp.k, k); k = bkey_i_to_s_c(&tmp.k); bch2_btree_iter_unlock(&stats->iter); ret2 = bch2_move_extent(c, &ctxt, wp, io_opts, bkey_s_c_to_extent(k), data_cmd, data_opts); if (ret2) { if (ret2 == -ENOMEM) { /* memory allocation failure, wait for some IO to finish */ bch2_move_ctxt_wait_for_io(&ctxt); continue; } /* XXX signal failure */ goto next; } if (rate) bch2_ratelimit_increment(rate, k.k->size); next: atomic64_add(k.k->size * bch2_extent_nr_dirty_ptrs(k), &stats->sectors_seen); next_nondata: bch2_btree_iter_next(&stats->iter); bch2_btree_iter_cond_resched(&stats->iter); } out: bch2_btree_iter_unlock(&stats->iter); move_ctxt_wait_event(&ctxt, list_empty(&ctxt.reads)); closure_sync(&ctxt.cl); EBUG_ON(atomic_read(&ctxt.write_sectors)); trace_move_data(c, atomic64_read(&stats->sectors_moved), atomic64_read(&stats->keys_moved)); return ret; } static int bch2_gc_data_replicas(struct bch_fs *c) { struct btree_iter iter; struct bkey_s_c k; int ret; mutex_lock(&c->replicas_gc_lock); bch2_replicas_gc_start(c, (1 << BCH_DATA_USER)|(1 << BCH_DATA_CACHED)); for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_PREFETCH, k) { ret = bch2_mark_bkey_replicas(c, BCH_DATA_USER, k); if (ret) break; } ret = bch2_btree_iter_unlock(&iter) ?: ret; bch2_replicas_gc_end(c, ret); mutex_unlock(&c->replicas_gc_lock); return ret; } static int bch2_gc_btree_replicas(struct bch_fs *c) { struct btree_iter iter; struct btree *b; unsigned id; int ret = 0; mutex_lock(&c->replicas_gc_lock); bch2_replicas_gc_start(c, 1 << BCH_DATA_BTREE); for (id = 0; id < BTREE_ID_NR; id++) { for_each_btree_node(&iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) { ret = bch2_mark_bkey_replicas(c, BCH_DATA_BTREE, bkey_i_to_s_c(&b->key)); bch2_btree_iter_cond_resched(&iter); } ret = bch2_btree_iter_unlock(&iter) ?: ret; } bch2_replicas_gc_end(c, ret); mutex_unlock(&c->replicas_gc_lock); return ret; } static int bch2_move_btree(struct bch_fs *c, move_pred_fn pred, void *arg, struct bch_move_stats *stats) { struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); struct btree *b; unsigned id; struct data_opts data_opts; enum data_cmd cmd; int ret = 0; stats->data_type = BCH_DATA_BTREE; for (id = 0; id < BTREE_ID_NR; id++) { for_each_btree_node(&stats->iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) { switch ((cmd = pred(c, arg, BKEY_TYPE_BTREE, bkey_i_to_s_c_extent(&b->key), &io_opts, &data_opts))) { case DATA_SKIP: goto next; case DATA_SCRUB: BUG(); case DATA_ADD_REPLICAS: case DATA_REWRITE: break; default: BUG(); } ret = bch2_btree_node_rewrite(c, &stats->iter, b->data->keys.seq, 0) ?: ret; next: bch2_btree_iter_cond_resched(&stats->iter); } ret = bch2_btree_iter_unlock(&stats->iter) ?: ret; } return ret; } #if 0 static enum data_cmd scrub_pred(struct bch_fs *c, void *arg, enum bkey_type type, struct bkey_s_c_extent e, struct bch_io_opts *io_opts, struct data_opts *data_opts) { return DATA_SCRUB; } #endif static enum data_cmd rereplicate_pred(struct bch_fs *c, void *arg, enum bkey_type type, struct bkey_s_c_extent e, struct bch_io_opts *io_opts, struct data_opts *data_opts) { unsigned nr_good = bch2_extent_durability(c, e); unsigned replicas = type == BKEY_TYPE_BTREE ? c->opts.metadata_replicas : io_opts->data_replicas; if (!nr_good || nr_good >= replicas) return DATA_SKIP; data_opts->target = 0; data_opts->btree_insert_flags = 0; return DATA_ADD_REPLICAS; } static enum data_cmd migrate_pred(struct bch_fs *c, void *arg, enum bkey_type type, struct bkey_s_c_extent e, struct bch_io_opts *io_opts, struct data_opts *data_opts) { struct bch_ioctl_data *op = arg; if (!bch2_extent_has_device(e, op->migrate.dev)) return DATA_SKIP; data_opts->target = 0; data_opts->btree_insert_flags = 0; data_opts->rewrite_dev = op->migrate.dev; return DATA_REWRITE; } int bch2_data_job(struct bch_fs *c, struct bch_move_stats *stats, struct bch_ioctl_data op) { int ret = 0; switch (op.op) { case BCH_DATA_OP_REREPLICATE: stats->data_type = BCH_DATA_JOURNAL; ret = bch2_journal_flush_device_pins(&c->journal, -1); ret = bch2_move_btree(c, rereplicate_pred, c, stats) ?: ret; ret = bch2_gc_btree_replicas(c) ?: ret; ret = bch2_move_data(c, NULL, writepoint_hashed((unsigned long) current), op.start, op.end, rereplicate_pred, c, stats) ?: ret; ret = bch2_gc_data_replicas(c) ?: ret; break; case BCH_DATA_OP_MIGRATE: if (op.migrate.dev >= c->sb.nr_devices) return -EINVAL; stats->data_type = BCH_DATA_JOURNAL; ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev); ret = bch2_move_btree(c, migrate_pred, &op, stats) ?: ret; ret = bch2_gc_btree_replicas(c) ?: ret; ret = bch2_move_data(c, NULL, writepoint_hashed((unsigned long) current), op.start, op.end, migrate_pred, &op, stats) ?: ret; ret = bch2_gc_data_replicas(c) ?: ret; break; default: ret = -EINVAL; } return ret; }