/* SPDX-License-Identifier: GPL-2.0 */ /* * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst * * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. * Copyright (c) 2022 Tejun Heo * Copyright (c) 2022 David Vernet */ #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) enum scx_consts { SCX_DSP_DFL_MAX_BATCH = 32, SCX_DSP_MAX_LOOPS = 32, SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, SCX_EXIT_BT_LEN = 64, SCX_EXIT_MSG_LEN = 1024, SCX_EXIT_DUMP_DFL_LEN = 32768, SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, }; enum scx_exit_kind { SCX_EXIT_NONE, SCX_EXIT_DONE, SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ }; /* * An exit code can be specified when exiting with scx_bpf_exit() or * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN * respectively. The codes are 64bit of the format: * * Bits: [63 .. 48 47 .. 32 31 .. 0] * [ SYS ACT ] [ SYS RSN ] [ USR ] * * SYS ACT: System-defined exit actions * SYS RSN: System-defined exit reasons * USR : User-defined exit codes and reasons * * Using the above, users may communicate intention and context by ORing system * actions and/or system reasons with a user-defined exit code. */ enum scx_exit_code { /* Reasons */ SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, /* Actions */ SCX_ECODE_ACT_RESTART = 1LLU << 48, }; /* * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is * being disabled. */ struct scx_exit_info { /* %SCX_EXIT_* - broad category of the exit reason */ enum scx_exit_kind kind; /* exit code if gracefully exiting */ s64 exit_code; /* textual representation of the above */ const char *reason; /* backtrace if exiting due to an error */ unsigned long *bt; u32 bt_len; /* informational message */ char *msg; /* debug dump */ char *dump; }; /* sched_ext_ops.flags */ enum scx_ops_flags { /* * Keep built-in idle tracking even if ops.update_idle() is implemented. */ SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, /* * By default, if there are no other task to run on the CPU, ext core * keeps running the current task even after its slice expires. If this * flag is specified, such tasks are passed to ops.enqueue() with * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. */ SCX_OPS_ENQ_LAST = 1LLU << 1, /* * An exiting task may schedule after PF_EXITING is set. In such cases, * bpf_task_from_pid() may not be able to find the task and if the BPF * scheduler depends on pid lookup for dispatching, the task will be * lost leading to various issues including RCU grace period stalls. * * To mask this problem, by default, unhashed tasks are automatically * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't * depend on pid lookups and wants to handle these tasks directly, the * following flag can be used. */ SCX_OPS_ENQ_EXITING = 1LLU << 2, /* * If set, only tasks with policy set to SCHED_EXT are attached to * sched_ext. If clear, SCHED_NORMAL tasks are also included. */ SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | SCX_OPS_ENQ_LAST | SCX_OPS_ENQ_EXITING | SCX_OPS_SWITCH_PARTIAL, }; /* argument container for ops.init_task() */ struct scx_init_task_args { /* * Set if ops.init_task() is being invoked on the fork path, as opposed * to the scheduler transition path. */ bool fork; }; /* argument container for ops.exit_task() */ struct scx_exit_task_args { /* Whether the task exited before running on sched_ext. */ bool cancelled; }; enum scx_cpu_preempt_reason { /* next task is being scheduled by &sched_class_rt */ SCX_CPU_PREEMPT_RT, /* next task is being scheduled by &sched_class_dl */ SCX_CPU_PREEMPT_DL, /* next task is being scheduled by &sched_class_stop */ SCX_CPU_PREEMPT_STOP, /* unknown reason for SCX being preempted */ SCX_CPU_PREEMPT_UNKNOWN, }; /* * Argument container for ops->cpu_acquire(). Currently empty, but may be * expanded in the future. */ struct scx_cpu_acquire_args {}; /* argument container for ops->cpu_release() */ struct scx_cpu_release_args { /* the reason the CPU was preempted */ enum scx_cpu_preempt_reason reason; /* the task that's going to be scheduled on the CPU */ struct task_struct *task; }; /* * Informational context provided to dump operations. */ struct scx_dump_ctx { enum scx_exit_kind kind; s64 exit_code; const char *reason; u64 at_ns; u64 at_jiffies; }; /** * struct sched_ext_ops - Operation table for BPF scheduler implementation * * Userland can implement an arbitrary scheduling policy by implementing and * loading operations in this table. */ struct sched_ext_ops { /** * select_cpu - Pick the target CPU for a task which is being woken up * @p: task being woken up * @prev_cpu: the cpu @p was on before sleeping * @wake_flags: SCX_WAKE_* * * Decision made here isn't final. @p may be moved to any CPU while it * is getting dispatched for execution later. However, as @p is not on * the rq at this point, getting the eventual execution CPU right here * saves a small bit of overhead down the line. * * If an idle CPU is returned, the CPU is kicked and will try to * dispatch. While an explicit custom mechanism can be added, * select_cpu() serves as the default way to wake up idle CPUs. * * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p * is dispatched, the ops.enqueue() callback will be skipped. Finally, * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the * local DSQ of whatever CPU is returned by this callback. */ s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); /** * enqueue - Enqueue a task on the BPF scheduler * @p: task being enqueued * @enq_flags: %SCX_ENQ_* * * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() * or enqueue on the BPF scheduler. If not directly dispatched, the bpf * scheduler owns @p and if it fails to dispatch @p, the task will * stall. * * If @p was dispatched from ops.select_cpu(), this callback is * skipped. */ void (*enqueue)(struct task_struct *p, u64 enq_flags); /** * dequeue - Remove a task from the BPF scheduler * @p: task being dequeued * @deq_flags: %SCX_DEQ_* * * Remove @p from the BPF scheduler. This is usually called to isolate * the task while updating its scheduling properties (e.g. priority). * * The ext core keeps track of whether the BPF side owns a given task or * not and can gracefully ignore spurious dispatches from BPF side, * which makes it safe to not implement this method. However, depending * on the scheduling logic, this can lead to confusing behaviors - e.g. * scheduling position not being updated across a priority change. */ void (*dequeue)(struct task_struct *p, u64 deq_flags); /** * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs * @cpu: CPU to dispatch tasks for * @prev: previous task being switched out * * Called when a CPU's local dsq is empty. The operation should dispatch * one or more tasks from the BPF scheduler into the DSQs using * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using * scx_bpf_consume(). * * The maximum number of times scx_bpf_dispatch() can be called without * an intervening scx_bpf_consume() is specified by * ops.dispatch_max_batch. See the comments on top of the two functions * for more details. * * When not %NULL, @prev is an SCX task with its slice depleted. If * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in * @prev->scx.flags, it is not enqueued yet and will be enqueued after * ops.dispatch() returns. To keep executing @prev, return without * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. */ void (*dispatch)(s32 cpu, struct task_struct *prev); /** * tick - Periodic tick * @p: task running currently * * This operation is called every 1/HZ seconds on CPUs which are * executing an SCX task. Setting @p->scx.slice to 0 will trigger an * immediate dispatch cycle on the CPU. */ void (*tick)(struct task_struct *p); /** * runnable - A task is becoming runnable on its associated CPU * @p: task becoming runnable * @enq_flags: %SCX_ENQ_* * * This and the following three functions can be used to track a task's * execution state transitions. A task becomes ->runnable() on a CPU, * and then goes through one or more ->running() and ->stopping() pairs * as it runs on the CPU, and eventually becomes ->quiescent() when it's * done running on the CPU. * * @p is becoming runnable on the CPU because it's * * - waking up (%SCX_ENQ_WAKEUP) * - being moved from another CPU * - being restored after temporarily taken off the queue for an * attribute change. * * This and ->enqueue() are related but not coupled. This operation * notifies @p's state transition and may not be followed by ->enqueue() * e.g. when @p is being dispatched to a remote CPU, or when @p is * being enqueued on a CPU experiencing a hotplug event. Likewise, a * task may be ->enqueue()'d without being preceded by this operation * e.g. after exhausting its slice. */ void (*runnable)(struct task_struct *p, u64 enq_flags); /** * running - A task is starting to run on its associated CPU * @p: task starting to run * * See ->runnable() for explanation on the task state notifiers. */ void (*running)(struct task_struct *p); /** * stopping - A task is stopping execution * @p: task stopping to run * @runnable: is task @p still runnable? * * See ->runnable() for explanation on the task state notifiers. If * !@runnable, ->quiescent() will be invoked after this operation * returns. */ void (*stopping)(struct task_struct *p, bool runnable); /** * quiescent - A task is becoming not runnable on its associated CPU * @p: task becoming not runnable * @deq_flags: %SCX_DEQ_* * * See ->runnable() for explanation on the task state notifiers. * * @p is becoming quiescent on the CPU because it's * * - sleeping (%SCX_DEQ_SLEEP) * - being moved to another CPU * - being temporarily taken off the queue for an attribute change * (%SCX_DEQ_SAVE) * * This and ->dequeue() are related but not coupled. This operation * notifies @p's state transition and may not be preceded by ->dequeue() * e.g. when @p is being dispatched to a remote CPU. */ void (*quiescent)(struct task_struct *p, u64 deq_flags); /** * yield - Yield CPU * @from: yielding task * @to: optional yield target task * * If @to is NULL, @from is yielding the CPU to other runnable tasks. * The BPF scheduler should ensure that other available tasks are * dispatched before the yielding task. Return value is ignored in this * case. * * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf * scheduler can implement the request, return %true; otherwise, %false. */ bool (*yield)(struct task_struct *from, struct task_struct *to); /** * core_sched_before - Task ordering for core-sched * @a: task A * @b: task B * * Used by core-sched to determine the ordering between two tasks. See * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on * core-sched. * * Both @a and @b are runnable and may or may not currently be queued on * the BPF scheduler. Should return %true if @a should run before @b. * %false if there's no required ordering or @b should run before @a. * * If not specified, the default is ordering them according to when they * became runnable. */ bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); /** * set_weight - Set task weight * @p: task to set weight for * @weight: new weight [1..10000] * * Update @p's weight to @weight. */ void (*set_weight)(struct task_struct *p, u32 weight); /** * set_cpumask - Set CPU affinity * @p: task to set CPU affinity for * @cpumask: cpumask of cpus that @p can run on * * Update @p's CPU affinity to @cpumask. */ void (*set_cpumask)(struct task_struct *p, const struct cpumask *cpumask); /** * update_idle - Update the idle state of a CPU * @cpu: CPU to udpate the idle state for * @idle: whether entering or exiting the idle state * * This operation is called when @rq's CPU goes or leaves the idle * state. By default, implementing this operation disables the built-in * idle CPU tracking and the following helpers become unavailable: * * - scx_bpf_select_cpu_dfl() * - scx_bpf_test_and_clear_cpu_idle() * - scx_bpf_pick_idle_cpu() * * The user also must implement ops.select_cpu() as the default * implementation relies on scx_bpf_select_cpu_dfl(). * * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle * tracking. */ void (*update_idle)(s32 cpu, bool idle); /** * cpu_acquire - A CPU is becoming available to the BPF scheduler * @cpu: The CPU being acquired by the BPF scheduler. * @args: Acquire arguments, see the struct definition. * * A CPU that was previously released from the BPF scheduler is now once * again under its control. */ void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); /** * cpu_release - A CPU is taken away from the BPF scheduler * @cpu: The CPU being released by the BPF scheduler. * @args: Release arguments, see the struct definition. * * The specified CPU is no longer under the control of the BPF * scheduler. This could be because it was preempted by a higher * priority sched_class, though there may be other reasons as well. The * caller should consult @args->reason to determine the cause. */ void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); /** * init_task - Initialize a task to run in a BPF scheduler * @p: task to initialize for BPF scheduling * @args: init arguments, see the struct definition * * Either we're loading a BPF scheduler or a new task is being forked. * Initialize @p for BPF scheduling. This operation may block and can * be used for allocations, and is called exactly once for a task. * * Return 0 for success, -errno for failure. An error return while * loading will abort loading of the BPF scheduler. During a fork, it * will abort that specific fork. */ s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); /** * exit_task - Exit a previously-running task from the system * @p: task to exit * * @p is exiting or the BPF scheduler is being unloaded. Perform any * necessary cleanup for @p. */ void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); /** * enable - Enable BPF scheduling for a task * @p: task to enable BPF scheduling for * * Enable @p for BPF scheduling. enable() is called on @p any time it * enters SCX, and is always paired with a matching disable(). */ void (*enable)(struct task_struct *p); /** * disable - Disable BPF scheduling for a task * @p: task to disable BPF scheduling for * * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. * Disable BPF scheduling for @p. A disable() call is always matched * with a prior enable() call. */ void (*disable)(struct task_struct *p); /** * dump - Dump BPF scheduler state on error * @ctx: debug dump context * * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. */ void (*dump)(struct scx_dump_ctx *ctx); /** * dump_cpu - Dump BPF scheduler state for a CPU on error * @ctx: debug dump context * @cpu: CPU to generate debug dump for * @idle: @cpu is currently idle without any runnable tasks * * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for * @cpu. If @idle is %true and this operation doesn't produce any * output, @cpu is skipped for dump. */ void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); /** * dump_task - Dump BPF scheduler state for a runnable task on error * @ctx: debug dump context * @p: runnable task to generate debug dump for * * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for * @p. */ void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); /* * All online ops must come before ops.cpu_online(). */ /** * cpu_online - A CPU became online * @cpu: CPU which just came up * * @cpu just came online. @cpu will not call ops.enqueue() or * ops.dispatch(), nor run tasks associated with other CPUs beforehand. */ void (*cpu_online)(s32 cpu); /** * cpu_offline - A CPU is going offline * @cpu: CPU which is going offline * * @cpu is going offline. @cpu will not call ops.enqueue() or * ops.dispatch(), nor run tasks associated with other CPUs afterwards. */ void (*cpu_offline)(s32 cpu); /* * All CPU hotplug ops must come before ops.init(). */ /** * init - Initialize the BPF scheduler */ s32 (*init)(void); /** * exit - Clean up after the BPF scheduler * @info: Exit info */ void (*exit)(struct scx_exit_info *info); /** * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch */ u32 dispatch_max_batch; /** * flags - %SCX_OPS_* flags */ u64 flags; /** * timeout_ms - The maximum amount of time, in milliseconds, that a * runnable task should be able to wait before being scheduled. The * maximum timeout may not exceed the default timeout of 30 seconds. * * Defaults to the maximum allowed timeout value of 30 seconds. */ u32 timeout_ms; /** * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default * value of 32768 is used. */ u32 exit_dump_len; /** * hotplug_seq - A sequence number that may be set by the scheduler to * detect when a hotplug event has occurred during the loading process. * If 0, no detection occurs. Otherwise, the scheduler will fail to * load if the sequence number does not match @scx_hotplug_seq on the * enable path. */ u64 hotplug_seq; /** * name - BPF scheduler's name * * Must be a non-zero valid BPF object name including only isalnum(), * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the * BPF scheduler is enabled. */ char name[SCX_OPS_NAME_LEN]; }; enum scx_opi { SCX_OPI_BEGIN = 0, SCX_OPI_NORMAL_BEGIN = 0, SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), SCX_OPI_END = SCX_OP_IDX(init), }; enum scx_wake_flags { /* expose select WF_* flags as enums */ SCX_WAKE_FORK = WF_FORK, SCX_WAKE_TTWU = WF_TTWU, SCX_WAKE_SYNC = WF_SYNC, }; enum scx_enq_flags { /* expose select ENQUEUE_* flags as enums */ SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, SCX_ENQ_HEAD = ENQUEUE_HEAD, /* high 32bits are SCX specific */ /* * Set the following to trigger preemption when calling * scx_bpf_dispatch() with a local dsq as the target. The slice of the * current task is cleared to zero and the CPU is kicked into the * scheduling path. Implies %SCX_ENQ_HEAD. */ SCX_ENQ_PREEMPT = 1LLU << 32, /* * The task being enqueued was previously enqueued on the current CPU's * %SCX_DSQ_LOCAL, but was removed from it in a call to the * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was * invoked in a ->cpu_release() callback, and the task is again * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the * task will not be scheduled on the CPU until at least the next invocation * of the ->cpu_acquire() callback. */ SCX_ENQ_REENQ = 1LLU << 40, /* * The task being enqueued is the only task available for the cpu. By * default, ext core keeps executing such tasks but when * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the * %SCX_ENQ_LAST flag set. * * If the BPF scheduler wants to continue executing the task, * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately. * If the task gets queued on a different dsq or the BPF side, the BPF * scheduler is responsible for triggering a follow-up scheduling event. * Otherwise, Execution may stall. */ SCX_ENQ_LAST = 1LLU << 41, /* high 8 bits are internal */ __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, SCX_ENQ_CLEAR_OPSS = 1LLU << 56, SCX_ENQ_DSQ_PRIQ = 1LLU << 57, }; enum scx_deq_flags { /* expose select DEQUEUE_* flags as enums */ SCX_DEQ_SLEEP = DEQUEUE_SLEEP, /* high 32bits are SCX specific */ /* * The generic core-sched layer decided to execute the task even though * it hasn't been dispatched yet. Dequeue from the BPF side. */ SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, }; enum scx_pick_idle_cpu_flags { SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ }; enum scx_kick_flags { /* * Kick the target CPU if idle. Guarantees that the target CPU goes * through at least one full scheduling cycle before going idle. If the * target CPU can be determined to be currently not idle and going to go * through a scheduling cycle before going idle, noop. */ SCX_KICK_IDLE = 1LLU << 0, /* * Preempt the current task and execute the dispatch path. If the * current task of the target CPU is an SCX task, its ->scx.slice is * cleared to zero before the scheduling path is invoked so that the * task expires and the dispatch path is invoked. */ SCX_KICK_PREEMPT = 1LLU << 1, /* * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will * return after the target CPU finishes picking the next task. */ SCX_KICK_WAIT = 1LLU << 2, }; enum scx_ops_enable_state { SCX_OPS_PREPPING, SCX_OPS_ENABLING, SCX_OPS_ENABLED, SCX_OPS_DISABLING, SCX_OPS_DISABLED, }; static const char *scx_ops_enable_state_str[] = { [SCX_OPS_PREPPING] = "prepping", [SCX_OPS_ENABLING] = "enabling", [SCX_OPS_ENABLED] = "enabled", [SCX_OPS_DISABLING] = "disabling", [SCX_OPS_DISABLED] = "disabled", }; /* * sched_ext_entity->ops_state * * Used to track the task ownership between the SCX core and the BPF scheduler. * State transitions look as follows: * * NONE -> QUEUEING -> QUEUED -> DISPATCHING * ^ | | * | v v * \-------------------------------/ * * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call * sites for explanations on the conditions being waited upon and why they are * safe. Transitions out of them into NONE or QUEUED must store_release and the * waiters should load_acquire. * * Tracking scx_ops_state enables sched_ext core to reliably determine whether * any given task can be dispatched by the BPF scheduler at all times and thus * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler * to try to dispatch any task anytime regardless of its state as the SCX core * can safely reject invalid dispatches. */ enum scx_ops_state { SCX_OPSS_NONE, /* owned by the SCX core */ SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ /* * QSEQ brands each QUEUED instance so that, when dispatch races * dequeue/requeue, the dispatcher can tell whether it still has a claim * on the task being dispatched. * * As some 32bit archs can't do 64bit store_release/load_acquire, * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on * 32bit machines. The dispatch race window QSEQ protects is very narrow * and runs with IRQ disabled. 30 bits should be sufficient. */ SCX_OPSS_QSEQ_SHIFT = 2, }; /* Use macros to ensure that the type is unsigned long for the masks */ #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) /* * During exit, a task may schedule after losing its PIDs. When disabling the * BPF scheduler, we need to be able to iterate tasks in every state to * guarantee system safety. Maintain a dedicated task list which contains every * task between its fork and eventual free. */ static DEFINE_SPINLOCK(scx_tasks_lock); static LIST_HEAD(scx_tasks); /* ops enable/disable */ static struct kthread_worker *scx_ops_helper; static DEFINE_MUTEX(scx_ops_enable_mutex); DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); static bool scx_switching_all; DEFINE_STATIC_KEY_FALSE(__scx_switched_all); static struct sched_ext_ops scx_ops; static bool scx_warned_zero_slice; static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); struct static_key_false scx_has_op[SCX_OPI_END] = { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); static struct scx_exit_info *scx_exit_info; static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); /* * The maximum amount of time in jiffies that a task may be runnable without * being scheduled on a CPU. If this timeout is exceeded, it will trigger * scx_ops_error(). */ static unsigned long scx_watchdog_timeout; /* * The last time the delayed work was run. This delayed work relies on * ksoftirqd being able to run to service timer interrupts, so it's possible * that this work itself could get wedged. To account for this, we check that * it's not stalled in the timer tick, and trigger an error if it is. */ static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; static struct delayed_work scx_watchdog_work; /* idle tracking */ #ifdef CONFIG_SMP #ifdef CONFIG_CPUMASK_OFFSTACK #define CL_ALIGNED_IF_ONSTACK #else #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp #endif static struct { cpumask_var_t cpu; cpumask_var_t smt; } idle_masks CL_ALIGNED_IF_ONSTACK; #endif /* CONFIG_SMP */ /* for %SCX_KICK_WAIT */ static unsigned long __percpu *scx_kick_cpus_pnt_seqs; /* * Direct dispatch marker. * * Non-NULL values are used for direct dispatch from enqueue path. A valid * pointer points to the task currently being enqueued. An ERR_PTR value is used * to indicate that direct dispatch has already happened. */ static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); /* dispatch queues */ static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; static const struct rhashtable_params dsq_hash_params = { .key_len = 8, .key_offset = offsetof(struct scx_dispatch_q, id), .head_offset = offsetof(struct scx_dispatch_q, hash_node), }; static struct rhashtable dsq_hash; static LLIST_HEAD(dsqs_to_free); /* dispatch buf */ struct scx_dsp_buf_ent { struct task_struct *task; unsigned long qseq; u64 dsq_id; u64 enq_flags; }; static u32 scx_dsp_max_batch; struct scx_dsp_ctx { struct rq *rq; u32 cursor; u32 nr_tasks; struct scx_dsp_buf_ent buf[]; }; static struct scx_dsp_ctx __percpu *scx_dsp_ctx; /* string formatting from BPF */ struct scx_bstr_buf { u64 data[MAX_BPRINTF_VARARGS]; char line[SCX_EXIT_MSG_LEN]; }; static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); static struct scx_bstr_buf scx_exit_bstr_buf; /* ops debug dump */ struct scx_dump_data { s32 cpu; bool first; s32 cursor; struct seq_buf *s; const char *prefix; struct scx_bstr_buf buf; }; struct scx_dump_data scx_dump_data = { .cpu = -1, }; /* /sys/kernel/sched_ext interface */ static struct kset *scx_kset; static struct kobject *scx_root_kobj; #define CREATE_TRACE_POINTS #include static void process_ddsp_deferred_locals(struct rq *rq); static void scx_bpf_kick_cpu(s32 cpu, u64 flags); static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, s64 exit_code, const char *fmt, ...); #define scx_ops_error_kind(err, fmt, args...) \ scx_ops_exit_kind((err), 0, fmt, ##args) #define scx_ops_exit(code, fmt, args...) \ scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) #define scx_ops_error(fmt, args...) \ scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) static long jiffies_delta_msecs(unsigned long at, unsigned long now) { if (time_after(at, now)) return jiffies_to_msecs(at - now); else return -(long)jiffies_to_msecs(now - at); } /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ static u32 higher_bits(u32 flags) { return ~((1 << fls(flags)) - 1); } /* return the mask with only the highest bit set */ static u32 highest_bit(u32 flags) { int bit = fls(flags); return ((u64)1 << bit) >> 1; } static bool u32_before(u32 a, u32 b) { return (s32)(a - b) < 0; } /* * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check * whether it's running from an allowed context. * * @mask is constant, always inline to cull the mask calculations. */ static __always_inline void scx_kf_allow(u32 mask) { /* nesting is allowed only in increasing scx_kf_mask order */ WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", current->scx.kf_mask, mask); current->scx.kf_mask |= mask; barrier(); } static void scx_kf_disallow(u32 mask) { barrier(); current->scx.kf_mask &= ~mask; } #define SCX_CALL_OP(mask, op, args...) \ do { \ if (mask) { \ scx_kf_allow(mask); \ scx_ops.op(args); \ scx_kf_disallow(mask); \ } else { \ scx_ops.op(args); \ } \ } while (0) #define SCX_CALL_OP_RET(mask, op, args...) \ ({ \ __typeof__(scx_ops.op(args)) __ret; \ if (mask) { \ scx_kf_allow(mask); \ __ret = scx_ops.op(args); \ scx_kf_disallow(mask); \ } else { \ __ret = scx_ops.op(args); \ } \ __ret; \ }) /* * Some kfuncs are allowed only on the tasks that are subjects of the * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such * restrictions, the following SCX_CALL_OP_*() variants should be used when * invoking scx_ops operations that take task arguments. These can only be used * for non-nesting operations due to the way the tasks are tracked. * * kfuncs which can only operate on such tasks can in turn use * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on * the specific task. */ #define SCX_CALL_OP_TASK(mask, op, task, args...) \ do { \ BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ current->scx.kf_tasks[0] = task; \ SCX_CALL_OP(mask, op, task, ##args); \ current->scx.kf_tasks[0] = NULL; \ } while (0) #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ ({ \ __typeof__(scx_ops.op(task, ##args)) __ret; \ BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ current->scx.kf_tasks[0] = task; \ __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ current->scx.kf_tasks[0] = NULL; \ __ret; \ }) #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ ({ \ __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ current->scx.kf_tasks[0] = task0; \ current->scx.kf_tasks[1] = task1; \ __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ current->scx.kf_tasks[0] = NULL; \ current->scx.kf_tasks[1] = NULL; \ __ret; \ }) /* @mask is constant, always inline to cull unnecessary branches */ static __always_inline bool scx_kf_allowed(u32 mask) { if (unlikely(!(current->scx.kf_mask & mask))) { scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", mask, current->scx.kf_mask); return false; } if (unlikely((mask & SCX_KF_SLEEPABLE) && in_interrupt())) { scx_ops_error("sleepable kfunc called from non-sleepable context"); return false; } /* * Enforce nesting boundaries. e.g. A kfunc which can be called from * DISPATCH must not be called if we're running DEQUEUE which is nested * inside ops.dispatch(). We don't need to check the SCX_KF_SLEEPABLE * boundary thanks to the above in_interrupt() check. */ if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { scx_ops_error("cpu_release kfunc called from a nested operation"); return false; } if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { scx_ops_error("dispatch kfunc called from a nested operation"); return false; } return true; } /* see SCX_CALL_OP_TASK() */ static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, struct task_struct *p) { if (!scx_kf_allowed(mask)) return false; if (unlikely((p != current->scx.kf_tasks[0] && p != current->scx.kf_tasks[1]))) { scx_ops_error("called on a task not being operated on"); return false; } return true; } /** * nldsq_next_task - Iterate to the next task in a non-local DSQ * @dsq: user dsq being interated * @cur: current position, %NULL to start iteration * @rev: walk backwards * * Returns %NULL when iteration is finished. */ static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, struct task_struct *cur, bool rev) { struct list_head *list_node; struct scx_dsq_list_node *dsq_lnode; lockdep_assert_held(&dsq->lock); if (cur) list_node = &cur->scx.dsq_list.node; else list_node = &dsq->list; /* find the next task, need to skip BPF iteration cursors */ do { if (rev) list_node = list_node->prev; else list_node = list_node->next; if (list_node == &dsq->list) return NULL; dsq_lnode = container_of(list_node, struct scx_dsq_list_node, node); } while (dsq_lnode->is_bpf_iter_cursor); return container_of(dsq_lnode, struct task_struct, scx.dsq_list); } #define nldsq_for_each_task(p, dsq) \ for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ (p) = nldsq_next_task((dsq), (p), false)) /* * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] * dispatch order. BPF-visible iterator is opaque and larger to allow future * changes without breaking backward compatibility. Can be used with * bpf_for_each(). See bpf_iter_scx_dsq_*(). */ enum scx_dsq_iter_flags { /* iterate in the reverse dispatch order */ SCX_DSQ_ITER_REV = 1U << 0, __SCX_DSQ_ITER_ALL_FLAGS = SCX_DSQ_ITER_REV, }; struct bpf_iter_scx_dsq_kern { struct scx_dsq_list_node cursor; struct scx_dispatch_q *dsq; u32 dsq_seq; u32 flags; } __attribute__((aligned(8))); struct bpf_iter_scx_dsq { u64 __opaque[6]; } __attribute__((aligned(8))); /* * SCX task iterator. */ struct scx_task_iter { struct sched_ext_entity cursor; struct task_struct *locked; struct rq *rq; struct rq_flags rf; }; /** * scx_task_iter_init - Initialize a task iterator * @iter: iterator to init * * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, * @iter must eventually be exited with scx_task_iter_exit(). * * scx_tasks_lock may be released between this and the first next() call or * between any two next() calls. If scx_tasks_lock is released between two * next() calls, the caller is responsible for ensuring that the task being * iterated remains accessible either through RCU read lock or obtaining a * reference count. * * All tasks which existed when the iteration started are guaranteed to be * visited as long as they still exist. */ static void scx_task_iter_init(struct scx_task_iter *iter) { lockdep_assert_held(&scx_tasks_lock); iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; list_add(&iter->cursor.tasks_node, &scx_tasks); iter->locked = NULL; } /** * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator * @iter: iterator to unlock rq for * * If @iter is in the middle of a locked iteration, it may be locking the rq of * the task currently being visited. Unlock the rq if so. This function can be * safely called anytime during an iteration. * * Returns %true if the rq @iter was locking is unlocked. %false if @iter was * not locking an rq. */ static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) { if (iter->locked) { task_rq_unlock(iter->rq, iter->locked, &iter->rf); iter->locked = NULL; return true; } else { return false; } } /** * scx_task_iter_exit - Exit a task iterator * @iter: iterator to exit * * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. * If the iterator holds a task's rq lock, that rq lock is released. See * scx_task_iter_init() for details. */ static void scx_task_iter_exit(struct scx_task_iter *iter) { lockdep_assert_held(&scx_tasks_lock); scx_task_iter_rq_unlock(iter); list_del_init(&iter->cursor.tasks_node); } /** * scx_task_iter_next - Next task * @iter: iterator to walk * * Visit the next task. See scx_task_iter_init() for details. */ static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) { struct list_head *cursor = &iter->cursor.tasks_node; struct sched_ext_entity *pos; lockdep_assert_held(&scx_tasks_lock); list_for_each_entry(pos, cursor, tasks_node) { if (&pos->tasks_node == &scx_tasks) return NULL; if (!(pos->flags & SCX_TASK_CURSOR)) { list_move(cursor, &pos->tasks_node); return container_of(pos, struct task_struct, scx); } } /* can't happen, should always terminate at scx_tasks above */ BUG(); } /** * scx_task_iter_next_locked - Next non-idle task with its rq locked * @iter: iterator to walk * @include_dead: Whether we should include dead tasks in the iteration * * Visit the non-idle task with its rq lock held. Allows callers to specify * whether they would like to filter out dead tasks. See scx_task_iter_init() * for details. */ static struct task_struct * scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead) { struct task_struct *p; retry: scx_task_iter_rq_unlock(iter); while ((p = scx_task_iter_next(iter))) { /* * is_idle_task() tests %PF_IDLE which may not be set for CPUs * which haven't yet been onlined. Test sched_class directly. */ if (p->sched_class != &idle_sched_class) break; } if (!p) return NULL; iter->rq = task_rq_lock(p, &iter->rf); iter->locked = p; /* * If we see %TASK_DEAD, @p already disabled preemption, is about to do * the final __schedule(), won't ever need to be scheduled again and can * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter * the final __schedle() while we're locking its rq and thus will stay * alive until the rq is unlocked. */ if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD) goto retry; return p; } static enum scx_ops_enable_state scx_ops_enable_state(void) { return atomic_read(&scx_ops_enable_state_var); } static enum scx_ops_enable_state scx_ops_set_enable_state(enum scx_ops_enable_state to) { return atomic_xchg(&scx_ops_enable_state_var, to); } static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, enum scx_ops_enable_state from) { int from_v = from; return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); } static bool scx_ops_bypassing(void) { return unlikely(atomic_read(&scx_ops_bypass_depth)); } /** * wait_ops_state - Busy-wait the specified ops state to end * @p: target task * @opss: state to wait the end of * * Busy-wait for @p to transition out of @opss. This can only be used when the * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also * has load_acquire semantics to ensure that the caller can see the updates made * in the enqueueing and dispatching paths. */ static void wait_ops_state(struct task_struct *p, unsigned long opss) { do { cpu_relax(); } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); } /** * ops_cpu_valid - Verify a cpu number * @cpu: cpu number which came from a BPF ops * @where: extra information reported on error * * @cpu is a cpu number which came from the BPF scheduler and can be any value. * Verify that it is in range and one of the possible cpus. If invalid, trigger * an ops error. */ static bool ops_cpu_valid(s32 cpu, const char *where) { if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { return true; } else { scx_ops_error("invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); return false; } } /** * ops_sanitize_err - Sanitize a -errno value * @ops_name: operation to blame on failure * @err: -errno value to sanitize * * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return * -%EPROTO. This is necessary because returning a rogue -errno up the chain can * cause misbehaviors. For an example, a large negative return from * ops.init_task() triggers an oops when passed up the call chain because the * value fails IS_ERR() test after being encoded with ERR_PTR() and then is * handled as a pointer. */ static int ops_sanitize_err(const char *ops_name, s32 err) { if (err < 0 && err >= -MAX_ERRNO) return err; scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); return -EPROTO; } static void run_deferred(struct rq *rq) { process_ddsp_deferred_locals(rq); } #ifdef CONFIG_SMP static void deferred_bal_cb_workfn(struct rq *rq) { run_deferred(rq); } #endif static void deferred_irq_workfn(struct irq_work *irq_work) { struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); raw_spin_rq_lock(rq); run_deferred(rq); raw_spin_rq_unlock(rq); } /** * schedule_deferred - Schedule execution of deferred actions on an rq * @rq: target rq * * Schedule execution of deferred actions on @rq. Must be called with @rq * locked. Deferred actions are executed with @rq locked but unpinned, and thus * can unlock @rq to e.g. migrate tasks to other rqs. */ static void schedule_deferred(struct rq *rq) { lockdep_assert_rq_held(rq); #ifdef CONFIG_SMP /* * If in the middle of waking up a task, task_woken_scx() will be called * afterwards which will then run the deferred actions, no need to * schedule anything. */ if (rq->scx.flags & SCX_RQ_IN_WAKEUP) return; /* * If in balance, the balance callbacks will be called before rq lock is * released. Schedule one. */ if (rq->scx.flags & SCX_RQ_IN_BALANCE) { queue_balance_callback(rq, &rq->scx.deferred_bal_cb, deferred_bal_cb_workfn); return; } #endif /* * No scheduler hooks available. Queue an irq work. They are executed on * IRQ re-enable which may take a bit longer than the scheduler hooks. * The above WAKEUP and BALANCE paths should cover most of the cases and * the time to IRQ re-enable shouldn't be long. */ irq_work_queue(&rq->scx.deferred_irq_work); } /** * touch_core_sched - Update timestamp used for core-sched task ordering * @rq: rq to read clock from, must be locked * @p: task to update the timestamp for * * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to * implement global or local-DSQ FIFO ordering for core-sched. Should be called * when a task becomes runnable and its turn on the CPU ends (e.g. slice * exhaustion). */ static void touch_core_sched(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SCHED_CORE /* * It's okay to update the timestamp spuriously. Use * sched_core_disabled() which is cheaper than enabled(). */ if (!sched_core_disabled()) p->scx.core_sched_at = rq_clock_task(rq); #endif } /** * touch_core_sched_dispatch - Update core-sched timestamp on dispatch * @rq: rq to read clock from, must be locked * @p: task being dispatched * * If the BPF scheduler implements custom core-sched ordering via * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO * ordering within each local DSQ. This function is called from dispatch paths * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. */ static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) { lockdep_assert_rq_held(rq); assert_clock_updated(rq); #ifdef CONFIG_SCHED_CORE if (SCX_HAS_OP(core_sched_before)) touch_core_sched(rq, p); #endif } static void update_curr_scx(struct rq *rq) { struct task_struct *curr = rq->curr; u64 now = rq_clock_task(rq); u64 delta_exec; if (time_before_eq64(now, curr->se.exec_start)) return; delta_exec = now - curr->se.exec_start; curr->se.exec_start = now; curr->se.sum_exec_runtime += delta_exec; account_group_exec_runtime(curr, delta_exec); cgroup_account_cputime(curr, delta_exec); if (curr->scx.slice != SCX_SLICE_INF) { curr->scx.slice -= min(curr->scx.slice, delta_exec); if (!curr->scx.slice) touch_core_sched(rq, curr); } } static bool scx_dsq_priq_less(struct rb_node *node_a, const struct rb_node *node_b) { const struct task_struct *a = container_of(node_a, struct task_struct, scx.dsq_priq); const struct task_struct *b = container_of(node_b, struct task_struct, scx.dsq_priq); return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); } static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) { /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ WRITE_ONCE(dsq->nr, dsq->nr + delta); } static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, u64 enq_flags) { bool is_local = dsq->id == SCX_DSQ_LOCAL; WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || !RB_EMPTY_NODE(&p->scx.dsq_priq)); if (!is_local) { raw_spin_lock(&dsq->lock); if (unlikely(dsq->id == SCX_DSQ_INVALID)) { scx_ops_error("attempting to dispatch to a destroyed dsq"); /* fall back to the global dsq */ raw_spin_unlock(&dsq->lock); dsq = &scx_dsq_global; raw_spin_lock(&dsq->lock); } } if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && (enq_flags & SCX_ENQ_DSQ_PRIQ))) { /* * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from * their FIFO queues. To avoid confusion and accidentally * starving vtime-dispatched tasks by FIFO-dispatched tasks, we * disallow any internal DSQ from doing vtime ordering of * tasks. */ scx_ops_error("cannot use vtime ordering for built-in DSQs"); enq_flags &= ~SCX_ENQ_DSQ_PRIQ; } if (enq_flags & SCX_ENQ_DSQ_PRIQ) { struct rb_node *rbp; /* * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are * linked to both the rbtree and list on PRIQs, this can only be * tested easily when adding the first task. */ if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && nldsq_next_task(dsq, NULL, false))) scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", dsq->id); p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); /* * Find the previous task and insert after it on the list so * that @dsq->list is vtime ordered. */ rbp = rb_prev(&p->scx.dsq_priq); if (rbp) { struct task_struct *prev = container_of(rbp, struct task_struct, scx.dsq_priq); list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); } else { list_add(&p->scx.dsq_list.node, &dsq->list); } } else { /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", dsq->id); if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) list_add(&p->scx.dsq_list.node, &dsq->list); else list_add_tail(&p->scx.dsq_list.node, &dsq->list); } /* seq records the order tasks are queued, used by BPF DSQ iterator */ dsq->seq++; p->scx.dsq_seq = dsq->seq; dsq_mod_nr(dsq, 1); p->scx.dsq = dsq; /* * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the * direct dispatch path, but we clear them here because the direct * dispatch verdict may be overridden on the enqueue path during e.g. * bypass. */ p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; p->scx.ddsp_enq_flags = 0; /* * We're transitioning out of QUEUEING or DISPATCHING. store_release to * match waiters' load_acquire. */ if (enq_flags & SCX_ENQ_CLEAR_OPSS) atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); if (is_local) { struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); bool preempt = false; if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && rq->curr->sched_class == &ext_sched_class) { rq->curr->scx.slice = 0; preempt = true; } if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class)) resched_curr(rq); } else { raw_spin_unlock(&dsq->lock); } } static void task_unlink_from_dsq(struct task_struct *p, struct scx_dispatch_q *dsq) { if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { rb_erase(&p->scx.dsq_priq, &dsq->priq); RB_CLEAR_NODE(&p->scx.dsq_priq); p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; } list_del_init(&p->scx.dsq_list.node); } static void dispatch_dequeue(struct rq *rq, struct task_struct *p) { struct scx_dispatch_q *dsq = p->scx.dsq; bool is_local = dsq == &rq->scx.local_dsq; if (!dsq) { /* * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. * Unlinking is all that's needed to cancel. */ if (unlikely(!list_empty(&p->scx.dsq_list.node))) list_del_init(&p->scx.dsq_list.node); /* * When dispatching directly from the BPF scheduler to a local * DSQ, the task isn't associated with any DSQ but * @p->scx.holding_cpu may be set under the protection of * %SCX_OPSS_DISPATCHING. */ if (p->scx.holding_cpu >= 0) p->scx.holding_cpu = -1; return; } if (!is_local) raw_spin_lock(&dsq->lock); /* * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't * change underneath us. */ if (p->scx.holding_cpu < 0) { /* @p must still be on @dsq, dequeue */ WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); task_unlink_from_dsq(p, dsq); dsq_mod_nr(dsq, -1); } else { /* * We're racing against dispatch_to_local_dsq() which already * removed @p from @dsq and set @p->scx.holding_cpu. Clear the * holding_cpu which tells dispatch_to_local_dsq() that it lost * the race. */ WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); p->scx.holding_cpu = -1; } p->scx.dsq = NULL; if (!is_local) raw_spin_unlock(&dsq->lock); } static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) { return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); } static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) { lockdep_assert(rcu_read_lock_any_held()); if (dsq_id == SCX_DSQ_GLOBAL) return &scx_dsq_global; else return find_user_dsq(dsq_id); } static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, struct task_struct *p) { struct scx_dispatch_q *dsq; if (dsq_id == SCX_DSQ_LOCAL) return &rq->scx.local_dsq; dsq = find_non_local_dsq(dsq_id); if (unlikely(!dsq)) { scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", dsq_id, p->comm, p->pid); return &scx_dsq_global; } return dsq; } static void mark_direct_dispatch(struct task_struct *ddsp_task, struct task_struct *p, u64 dsq_id, u64 enq_flags) { /* * Mark that dispatch already happened from ops.select_cpu() or * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value * which can never match a valid task pointer. */ __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); /* @p must match the task on the enqueue path */ if (unlikely(p != ddsp_task)) { if (IS_ERR(ddsp_task)) scx_ops_error("%s[%d] already direct-dispatched", p->comm, p->pid); else scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", ddsp_task->comm, ddsp_task->pid, p->comm, p->pid); return; } WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); WARN_ON_ONCE(p->scx.ddsp_enq_flags); p->scx.ddsp_dsq_id = dsq_id; p->scx.ddsp_enq_flags = enq_flags; } static void direct_dispatch(struct task_struct *p, u64 enq_flags) { struct rq *rq = task_rq(p); struct scx_dispatch_q *dsq; u64 dsq_id = p->scx.ddsp_dsq_id; touch_core_sched_dispatch(rq, p); p->scx.ddsp_enq_flags |= enq_flags; /* * We are in the enqueue path with @rq locked and pinned, and thus can't * double lock a remote rq and enqueue to its local DSQ. For * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer * the enqueue so that it's executed when @rq can be unlocked. */ if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; unsigned long opss; if (cpu == cpu_of(rq)) { dsq_id = SCX_DSQ_LOCAL; goto dispatch; } opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; switch (opss & SCX_OPSS_STATE_MASK) { case SCX_OPSS_NONE: break; case SCX_OPSS_QUEUEING: /* * As @p was never passed to the BPF side, _release is * not strictly necessary. Still do it for consistency. */ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); break; default: WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", p->comm, p->pid, opss); atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); break; } WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); list_add_tail(&p->scx.dsq_list.node, &rq->scx.ddsp_deferred_locals); schedule_deferred(rq); return; } dispatch: dsq = find_dsq_for_dispatch(rq, dsq_id, p); dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); } static bool scx_rq_online(struct rq *rq) { return likely(rq->scx.flags & SCX_RQ_ONLINE); } static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, int sticky_cpu) { struct task_struct **ddsp_taskp; unsigned long qseq; WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); /* rq migration */ if (sticky_cpu == cpu_of(rq)) goto local_norefill; /* * If !scx_rq_online(), we already told the BPF scheduler that the CPU * is offline and are just running the hotplug path. Don't bother the * BPF scheduler. */ if (!scx_rq_online(rq)) goto local; if (scx_ops_bypassing()) { if (enq_flags & SCX_ENQ_LAST) goto local; else goto global; } if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) goto direct; /* see %SCX_OPS_ENQ_EXITING */ if (!static_branch_unlikely(&scx_ops_enq_exiting) && unlikely(p->flags & PF_EXITING)) goto local; /* see %SCX_OPS_ENQ_LAST */ if (!static_branch_unlikely(&scx_ops_enq_last) && (enq_flags & SCX_ENQ_LAST)) goto local; if (!SCX_HAS_OP(enqueue)) goto global; /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); WARN_ON_ONCE(*ddsp_taskp); *ddsp_taskp = p; SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); *ddsp_taskp = NULL; if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) goto direct; /* * If not directly dispatched, QUEUEING isn't clear yet and dispatch or * dequeue may be waiting. The store_release matches their load_acquire. */ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); return; direct: direct_dispatch(p, enq_flags); return; local: /* * For task-ordering, slice refill must be treated as implying the end * of the current slice. Otherwise, the longer @p stays on the CPU, the * higher priority it becomes from scx_prio_less()'s POV. */ touch_core_sched(rq, p); p->scx.slice = SCX_SLICE_DFL; local_norefill: dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); return; global: touch_core_sched(rq, p); /* see the comment in local: */ p->scx.slice = SCX_SLICE_DFL; dispatch_enqueue(&scx_dsq_global, p, enq_flags); } static bool task_runnable(const struct task_struct *p) { return !list_empty(&p->scx.runnable_node); } static void set_task_runnable(struct rq *rq, struct task_struct *p) { lockdep_assert_rq_held(rq); if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { p->scx.runnable_at = jiffies; p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; } /* * list_add_tail() must be used. scx_ops_bypass() depends on tasks being * appened to the runnable_list. */ list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); } static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) { list_del_init(&p->scx.runnable_node); if (reset_runnable_at) p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; } static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) { int sticky_cpu = p->scx.sticky_cpu; if (enq_flags & ENQUEUE_WAKEUP) rq->scx.flags |= SCX_RQ_IN_WAKEUP; enq_flags |= rq->scx.extra_enq_flags; if (sticky_cpu >= 0) p->scx.sticky_cpu = -1; /* * Restoring a running task will be immediately followed by * set_next_task_scx() which expects the task to not be on the BPF * scheduler as tasks can only start running through local DSQs. Force * direct-dispatch into the local DSQ by setting the sticky_cpu. */ if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) sticky_cpu = cpu_of(rq); if (p->scx.flags & SCX_TASK_QUEUED) { WARN_ON_ONCE(!task_runnable(p)); goto out; } set_task_runnable(rq, p); p->scx.flags |= SCX_TASK_QUEUED; rq->scx.nr_running++; add_nr_running(rq, 1); if (SCX_HAS_OP(runnable)) SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); if (enq_flags & SCX_ENQ_WAKEUP) touch_core_sched(rq, p); do_enqueue_task(rq, p, enq_flags, sticky_cpu); out: rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; } static void ops_dequeue(struct task_struct *p, u64 deq_flags) { unsigned long opss; /* dequeue is always temporary, don't reset runnable_at */ clr_task_runnable(p, false); /* acquire ensures that we see the preceding updates on QUEUED */ opss = atomic_long_read_acquire(&p->scx.ops_state); switch (opss & SCX_OPSS_STATE_MASK) { case SCX_OPSS_NONE: break; case SCX_OPSS_QUEUEING: /* * QUEUEING is started and finished while holding @p's rq lock. * As we're holding the rq lock now, we shouldn't see QUEUEING. */ BUG(); case SCX_OPSS_QUEUED: if (SCX_HAS_OP(dequeue)) SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, SCX_OPSS_NONE)) break; fallthrough; case SCX_OPSS_DISPATCHING: /* * If @p is being dispatched from the BPF scheduler to a DSQ, * wait for the transfer to complete so that @p doesn't get * added to its DSQ after dequeueing is complete. * * As we're waiting on DISPATCHING with the rq locked, the * dispatching side shouldn't try to lock the rq while * DISPATCHING is set. See dispatch_to_local_dsq(). * * DISPATCHING shouldn't have qseq set and control can reach * here with NONE @opss from the above QUEUED case block. * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. */ wait_ops_state(p, SCX_OPSS_DISPATCHING); BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); break; } } static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) { if (!(p->scx.flags & SCX_TASK_QUEUED)) { WARN_ON_ONCE(task_runnable(p)); return; } ops_dequeue(p, deq_flags); /* * A currently running task which is going off @rq first gets dequeued * and then stops running. As we want running <-> stopping transitions * to be contained within runnable <-> quiescent transitions, trigger * ->stopping() early here instead of in put_prev_task_scx(). * * @p may go through multiple stopping <-> running transitions between * here and put_prev_task_scx() if task attribute changes occur while * balance_scx() leaves @rq unlocked. However, they don't contain any * information meaningful to the BPF scheduler and can be suppressed by * skipping the callbacks if the task is !QUEUED. */ if (SCX_HAS_OP(stopping) && task_current(rq, p)) { update_curr_scx(rq); SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); } if (SCX_HAS_OP(quiescent)) SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); if (deq_flags & SCX_DEQ_SLEEP) p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; else p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; p->scx.flags &= ~SCX_TASK_QUEUED; rq->scx.nr_running--; sub_nr_running(rq, 1); dispatch_dequeue(rq, p); } static void yield_task_scx(struct rq *rq) { struct task_struct *p = rq->curr; if (SCX_HAS_OP(yield)) SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); else p->scx.slice = 0; } static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) { struct task_struct *from = rq->curr; if (SCX_HAS_OP(yield)) return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); else return false; } #ifdef CONFIG_SMP /** * move_task_to_local_dsq - Move a task from a different rq to a local DSQ * @rq: rq to move the task into, currently locked * @p: task to move * @enq_flags: %SCX_ENQ_* * * Move @p which is currently on a different rq to @rq's local DSQ. The caller * must: * * 1. Start with exclusive access to @p either through its DSQ lock or * %SCX_OPSS_DISPATCHING flag. * * 2. Set @p->scx.holding_cpu to raw_smp_processor_id(). * * 3. Remember task_rq(@p). Release the exclusive access so that we don't * deadlock with dequeue. * * 4. Lock @rq and the task_rq from #3. * * 5. Call this function. * * Returns %true if @p was successfully moved. %false after racing dequeue and * losing. */ static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p, u64 enq_flags) { struct rq *task_rq; lockdep_assert_rq_held(rq); /* * If dequeue got to @p while we were trying to lock both rq's, it'd * have cleared @p->scx.holding_cpu to -1. While other cpus may have * updated it to different values afterwards, as this operation can't be * preempted or recurse, @p->scx.holding_cpu can never become * raw_smp_processor_id() again before we're done. Thus, we can tell * whether we lost to dequeue by testing whether @p->scx.holding_cpu is * still raw_smp_processor_id(). * * See dispatch_dequeue() for the counterpart. */ if (unlikely(p->scx.holding_cpu != raw_smp_processor_id())) return false; /* @p->rq couldn't have changed if we're still the holding cpu */ task_rq = task_rq(p); lockdep_assert_rq_held(task_rq); WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr)); deactivate_task(task_rq, p, 0); set_task_cpu(p, cpu_of(rq)); p->scx.sticky_cpu = cpu_of(rq); /* * We want to pass scx-specific enq_flags but activate_task() will * truncate the upper 32 bit. As we own @rq, we can pass them through * @rq->scx.extra_enq_flags instead. */ WARN_ON_ONCE(rq->scx.extra_enq_flags); rq->scx.extra_enq_flags = enq_flags; activate_task(rq, p, 0); rq->scx.extra_enq_flags = 0; return true; } /** * dispatch_to_local_dsq_lock - Ensure source and destination rq's are locked * @rq: current rq which is locked * @src_rq: rq to move task from * @dst_rq: rq to move task to * * We're holding @rq lock and trying to dispatch a task from @src_rq to * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether * @rq stays locked isn't important as long as the state is restored after * dispatch_to_local_dsq_unlock(). */ static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq *src_rq, struct rq *dst_rq) { if (src_rq == dst_rq) { raw_spin_rq_unlock(rq); raw_spin_rq_lock(dst_rq); } else if (rq == src_rq) { double_lock_balance(rq, dst_rq); } else if (rq == dst_rq) { double_lock_balance(rq, src_rq); } else { raw_spin_rq_unlock(rq); double_rq_lock(src_rq, dst_rq); } } /** * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock() * @rq: current rq which is locked * @src_rq: rq to move task from * @dst_rq: rq to move task to * * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return. */ static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq *src_rq, struct rq *dst_rq) { if (src_rq == dst_rq) { raw_spin_rq_unlock(dst_rq); raw_spin_rq_lock(rq); } else if (rq == src_rq) { double_unlock_balance(rq, dst_rq); } else if (rq == dst_rq) { double_unlock_balance(rq, src_rq); } else { double_rq_unlock(src_rq, dst_rq); raw_spin_rq_lock(rq); } } #endif /* CONFIG_SMP */ static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq, struct task_struct *p) { lockdep_assert_held(&dsq->lock); /* released on return */ /* @dsq is locked and @p is on this rq */ WARN_ON_ONCE(p->scx.holding_cpu >= 0); task_unlink_from_dsq(p, dsq); list_add_tail(&p->scx.dsq_list.node, &rq->scx.local_dsq.list); dsq_mod_nr(dsq, -1); dsq_mod_nr(&rq->scx.local_dsq, 1); p->scx.dsq = &rq->scx.local_dsq; raw_spin_unlock(&dsq->lock); } #ifdef CONFIG_SMP /* * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p * can be pulled to @rq. */ static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { int cpu = cpu_of(rq); if (!cpumask_test_cpu(cpu, p->cpus_ptr)) return false; if (unlikely(is_migration_disabled(p))) return false; if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p))) return false; if (!scx_rq_online(rq)) return false; return true; } static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, struct task_struct *p, struct rq *task_rq) { bool moved = false; lockdep_assert_held(&dsq->lock); /* released on return */ /* * @dsq is locked and @p is on a remote rq. @p is currently protected by * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the * rq lock or fail, do a little dancing from our side. See * move_task_to_local_dsq(). */ WARN_ON_ONCE(p->scx.holding_cpu >= 0); task_unlink_from_dsq(p, dsq); dsq_mod_nr(dsq, -1); p->scx.holding_cpu = raw_smp_processor_id(); raw_spin_unlock(&dsq->lock); double_lock_balance(rq, task_rq); moved = move_task_to_local_dsq(rq, p, 0); double_unlock_balance(rq, task_rq); return moved; } #else /* CONFIG_SMP */ static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; } static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, struct task_struct *p, struct rq *task_rq) { return false; } #endif /* CONFIG_SMP */ static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) { struct task_struct *p; retry: /* * The caller can't expect to successfully consume a task if the task's * addition to @dsq isn't guaranteed to be visible somehow. Test * @dsq->list without locking and skip if it seems empty. */ if (list_empty(&dsq->list)) return false; raw_spin_lock(&dsq->lock); nldsq_for_each_task(p, dsq) { struct rq *task_rq = task_rq(p); if (rq == task_rq) { consume_local_task(rq, dsq, p); return true; } if (task_can_run_on_remote_rq(p, rq)) { if (likely(consume_remote_task(rq, dsq, p, task_rq))) return true; goto retry; } } raw_spin_unlock(&dsq->lock); return false; } enum dispatch_to_local_dsq_ret { DTL_DISPATCHED, /* successfully dispatched */ DTL_LOST, /* lost race to dequeue */ DTL_NOT_LOCAL, /* destination is not a local DSQ */ DTL_INVALID, /* invalid local dsq_id */ }; /** * dispatch_to_local_dsq - Dispatch a task to a local dsq * @rq: current rq which is locked * @dsq_id: destination dsq ID * @p: task to dispatch * @enq_flags: %SCX_ENQ_* * * We're holding @rq lock and want to dispatch @p to the local DSQ identified by * @dsq_id. This function performs all the synchronization dancing needed * because local DSQs are protected with rq locks. * * The caller must have exclusive ownership of @p (e.g. through * %SCX_OPSS_DISPATCHING). */ static enum dispatch_to_local_dsq_ret dispatch_to_local_dsq(struct rq *rq, u64 dsq_id, struct task_struct *p, u64 enq_flags) { struct rq *src_rq = task_rq(p); struct rq *dst_rq; /* * We're synchronized against dequeue through DISPATCHING. As @p can't * be dequeued, its task_rq and cpus_allowed are stable too. */ if (dsq_id == SCX_DSQ_LOCAL) { dst_rq = rq; } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) return DTL_INVALID; dst_rq = cpu_rq(cpu); } else { return DTL_NOT_LOCAL; } /* if dispatching to @rq that @p is already on, no lock dancing needed */ if (rq == src_rq && rq == dst_rq) { dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); return DTL_DISPATCHED; } #ifdef CONFIG_SMP if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) { struct rq *locked_dst_rq = dst_rq; bool dsp; /* * @p is on a possibly remote @src_rq which we need to lock to * move the task. If dequeue is in progress, it'd be locking * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq * lock while holding DISPATCHING. * * As DISPATCHING guarantees that @p is wholly ours, we can * pretend that we're moving from a DSQ and use the same * mechanism - mark the task under transfer with holding_cpu, * release DISPATCHING and then follow the same protocol. */ p->scx.holding_cpu = raw_smp_processor_id(); /* store_release ensures that dequeue sees the above */ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); dispatch_to_local_dsq_lock(rq, src_rq, locked_dst_rq); /* * We don't require the BPF scheduler to avoid dispatching to * offline CPUs mostly for convenience but also because CPUs can * go offline between scx_bpf_dispatch() calls and here. If @p * is destined to an offline CPU, queue it on its current CPU * instead, which should always be safe. As this is an allowed * behavior, don't trigger an ops error. */ if (!scx_rq_online(dst_rq)) dst_rq = src_rq; if (src_rq == dst_rq) { /* * As @p is staying on the same rq, there's no need to * go through the full deactivate/activate cycle. * Optimize by abbreviating the operations in * move_task_to_local_dsq(). */ dsp = p->scx.holding_cpu == raw_smp_processor_id(); if (likely(dsp)) { p->scx.holding_cpu = -1; dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); } } else { dsp = move_task_to_local_dsq(dst_rq, p, enq_flags); } /* if the destination CPU is idle, wake it up */ if (dsp && sched_class_above(p->sched_class, dst_rq->curr->sched_class)) resched_curr(dst_rq); dispatch_to_local_dsq_unlock(rq, src_rq, locked_dst_rq); return dsp ? DTL_DISPATCHED : DTL_LOST; } #endif /* CONFIG_SMP */ scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", cpu_of(dst_rq), p->comm, p->pid); return DTL_INVALID; } /** * finish_dispatch - Asynchronously finish dispatching a task * @rq: current rq which is locked * @p: task to finish dispatching * @qseq_at_dispatch: qseq when @p started getting dispatched * @dsq_id: destination DSQ ID * @enq_flags: %SCX_ENQ_* * * Dispatching to local DSQs may need to wait for queueing to complete or * require rq lock dancing. As we don't wanna do either while inside * ops.dispatch() to avoid locking order inversion, we split dispatching into * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the * task and its qseq. Once ops.dispatch() returns, this function is called to * finish up. * * There is no guarantee that @p is still valid for dispatching or even that it * was valid in the first place. Make sure that the task is still owned by the * BPF scheduler and claim the ownership before dispatching. */ static void finish_dispatch(struct rq *rq, struct task_struct *p, unsigned long qseq_at_dispatch, u64 dsq_id, u64 enq_flags) { struct scx_dispatch_q *dsq; unsigned long opss; touch_core_sched_dispatch(rq, p); retry: /* * No need for _acquire here. @p is accessed only after a successful * try_cmpxchg to DISPATCHING. */ opss = atomic_long_read(&p->scx.ops_state); switch (opss & SCX_OPSS_STATE_MASK) { case SCX_OPSS_DISPATCHING: case SCX_OPSS_NONE: /* someone else already got to it */ return; case SCX_OPSS_QUEUED: /* * If qseq doesn't match, @p has gone through at least one * dispatch/dequeue and re-enqueue cycle between * scx_bpf_dispatch() and here and we have no claim on it. */ if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) return; /* * While we know @p is accessible, we don't yet have a claim on * it - the BPF scheduler is allowed to dispatch tasks * spuriously and there can be a racing dequeue attempt. Let's * claim @p by atomically transitioning it from QUEUED to * DISPATCHING. */ if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, SCX_OPSS_DISPATCHING))) break; goto retry; case SCX_OPSS_QUEUEING: /* * do_enqueue_task() is in the process of transferring the task * to the BPF scheduler while holding @p's rq lock. As we aren't * holding any kernel or BPF resource that the enqueue path may * depend upon, it's safe to wait. */ wait_ops_state(p, opss); goto retry; } BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); switch (dispatch_to_local_dsq(rq, dsq_id, p, enq_flags)) { case DTL_DISPATCHED: break; case DTL_LOST: break; case DTL_INVALID: dsq_id = SCX_DSQ_GLOBAL; fallthrough; case DTL_NOT_LOCAL: dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()), dsq_id, p); dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); break; } } static void flush_dispatch_buf(struct rq *rq) { struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); u32 u; for (u = 0; u < dspc->cursor; u++) { struct scx_dsp_buf_ent *ent = &dspc->buf[u]; finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, ent->enq_flags); } dspc->nr_tasks += dspc->cursor; dspc->cursor = 0; } static int balance_one(struct rq *rq, struct task_struct *prev, bool local) { struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); bool prev_on_scx = prev->sched_class == &ext_sched_class; int nr_loops = SCX_DSP_MAX_LOOPS; bool has_tasks = false; lockdep_assert_rq_held(rq); rq->scx.flags |= SCX_RQ_IN_BALANCE; if (static_branch_unlikely(&scx_ops_cpu_preempt) && unlikely(rq->scx.cpu_released)) { /* * If the previous sched_class for the current CPU was not SCX, * notify the BPF scheduler that it again has control of the * core. This callback complements ->cpu_release(), which is * emitted in scx_next_task_picked(). */ if (SCX_HAS_OP(cpu_acquire)) SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); rq->scx.cpu_released = false; } if (prev_on_scx) { WARN_ON_ONCE(local && (prev->scx.flags & SCX_TASK_BAL_KEEP)); update_curr_scx(rq); /* * If @prev is runnable & has slice left, it has priority and * fetching more just increases latency for the fetched tasks. * Tell put_prev_task_scx() to put @prev on local_dsq. If the * BPF scheduler wants to handle this explicitly, it should * implement ->cpu_released(). * * See scx_ops_disable_workfn() for the explanation on the * bypassing test. * * When balancing a remote CPU for core-sched, there won't be a * following put_prev_task_scx() call and we don't own * %SCX_TASK_BAL_KEEP. Instead, pick_task_scx() will test the * same conditions later and pick @rq->curr accordingly. */ if ((prev->scx.flags & SCX_TASK_QUEUED) && prev->scx.slice && !scx_ops_bypassing()) { if (local) prev->scx.flags |= SCX_TASK_BAL_KEEP; goto has_tasks; } } /* if there already are tasks to run, nothing to do */ if (rq->scx.local_dsq.nr) goto has_tasks; if (consume_dispatch_q(rq, &scx_dsq_global)) goto has_tasks; if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq)) goto out; dspc->rq = rq; /* * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, * the local DSQ might still end up empty after a successful * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() * produced some tasks, retry. The BPF scheduler may depend on this * looping behavior to simplify its implementation. */ do { dspc->nr_tasks = 0; SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), prev_on_scx ? prev : NULL); flush_dispatch_buf(rq); if (rq->scx.local_dsq.nr) goto has_tasks; if (consume_dispatch_q(rq, &scx_dsq_global)) goto has_tasks; /* * ops.dispatch() can trap us in this loop by repeatedly * dispatching ineligible tasks. Break out once in a while to * allow the watchdog to run. As IRQ can't be enabled in * balance(), we want to complete this scheduling cycle and then * start a new one. IOW, we want to call resched_curr() on the * next, most likely idle, task, not the current one. Use * scx_bpf_kick_cpu() for deferred kicking. */ if (unlikely(!--nr_loops)) { scx_bpf_kick_cpu(cpu_of(rq), 0); break; } } while (dspc->nr_tasks); goto out; has_tasks: has_tasks = true; out: rq->scx.flags &= ~SCX_RQ_IN_BALANCE; return has_tasks; } #ifdef CONFIG_SMP static int balance_scx(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) { int ret; rq_unpin_lock(rq, rf); ret = balance_one(rq, prev, true); #ifdef CONFIG_SCHED_SMT /* * When core-sched is enabled, this ops.balance() call will be followed * by put_prev_scx() and pick_task_scx() on this CPU and pick_task_scx() * on the SMT siblings. Balance the siblings too. */ if (sched_core_enabled(rq)) { const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); int scpu; for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { struct rq *srq = cpu_rq(scpu); struct task_struct *sprev = srq->curr; WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); update_rq_clock(srq); balance_one(srq, sprev, false); } } #endif rq_repin_lock(rq, rf); return ret; } #endif static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) { if (p->scx.flags & SCX_TASK_QUEUED) { /* * Core-sched might decide to execute @p before it is * dispatched. Call ops_dequeue() to notify the BPF scheduler. */ ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); dispatch_dequeue(rq, p); } p->se.exec_start = rq_clock_task(rq); /* see dequeue_task_scx() on why we skip when !QUEUED */ if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) SCX_CALL_OP_TASK(SCX_KF_REST, running, p); clr_task_runnable(p, true); /* * @p is getting newly scheduled or got kicked after someone updated its * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). */ if ((p->scx.slice == SCX_SLICE_INF) != (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { if (p->scx.slice == SCX_SLICE_INF) rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; else rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; sched_update_tick_dependency(rq); /* * For now, let's refresh the load_avgs just when transitioning * in and out of nohz. In the future, we might want to add a * mechanism which calls the following periodically on * tick-stopped CPUs. */ update_other_load_avgs(rq); } } static void process_ddsp_deferred_locals(struct rq *rq) { struct task_struct *p, *tmp; lockdep_assert_rq_held(rq); /* * Now that @rq can be unlocked, execute the deferred enqueueing of * tasks directly dispatched to the local DSQs of other CPUs. See * direct_dispatch(). */ list_for_each_entry_safe(p, tmp, &rq->scx.ddsp_deferred_locals, scx.dsq_list.node) { s32 ret; list_del_init(&p->scx.dsq_list.node); ret = dispatch_to_local_dsq(rq, p->scx.ddsp_dsq_id, p, p->scx.ddsp_enq_flags); WARN_ON_ONCE(ret == DTL_NOT_LOCAL); } } static void put_prev_task_scx(struct rq *rq, struct task_struct *p) { #ifndef CONFIG_SMP /* * UP workaround. * * Because SCX may transfer tasks across CPUs during dispatch, dispatch * is performed from its balance operation which isn't called in UP. * Let's work around by calling it from the operations which come right * after. * * 1. If the prev task is on SCX, pick_next_task() calls * .put_prev_task() right after. As .put_prev_task() is also called * from other places, we need to distinguish the calls which can be * done by looking at the previous task's state - if still queued or * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task(). * This case is handled here. * * 2. If the prev task is not on SCX, the first following call into SCX * will be .pick_next_task(), which is covered by calling * balance_scx() from pick_next_task_scx(). * * Note that we can't merge the first case into the second as * balance_scx() must be called before the previous SCX task goes * through put_prev_task_scx(). * * @rq is pinned and can't be unlocked. As UP doesn't transfer tasks * around, balance_one() doesn't need to. */ if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP)) balance_one(rq, p, true); #endif update_curr_scx(rq); /* see dequeue_task_scx() on why we skip when !QUEUED */ if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); /* * If we're being called from put_prev_task_balance(), balance_scx() may * have decided that @p should keep running. */ if (p->scx.flags & SCX_TASK_BAL_KEEP) { p->scx.flags &= ~SCX_TASK_BAL_KEEP; set_task_runnable(rq, p); dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); return; } if (p->scx.flags & SCX_TASK_QUEUED) { set_task_runnable(rq, p); /* * If @p has slice left and balance_scx() didn't tag it for * keeping, @p is getting preempted by a higher priority * scheduler class or core-sched forcing a different task. Leave * it at the head of the local DSQ. */ if (p->scx.slice && !scx_ops_bypassing()) { dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); return; } /* * If we're in the pick_next_task path, balance_scx() should * have already populated the local DSQ if there are any other * available tasks. If empty, tell ops.enqueue() that @p is the * only one available for this cpu. ops.enqueue() should put it * on the local DSQ so that the subsequent pick_next_task_scx() * can find the task unless it wants to trigger a separate * follow-up scheduling event. */ if (list_empty(&rq->scx.local_dsq.list)) do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); else do_enqueue_task(rq, p, 0, -1); } } static struct task_struct *first_local_task(struct rq *rq) { return list_first_entry_or_null(&rq->scx.local_dsq.list, struct task_struct, scx.dsq_list.node); } static struct task_struct *pick_next_task_scx(struct rq *rq) { struct task_struct *p; #ifndef CONFIG_SMP /* UP workaround - see the comment at the head of put_prev_task_scx() */ if (unlikely(rq->curr->sched_class != &ext_sched_class)) balance_one(rq, rq->curr, true); #endif p = first_local_task(rq); if (!p) return NULL; set_next_task_scx(rq, p, true); if (unlikely(!p->scx.slice)) { if (!scx_ops_bypassing() && !scx_warned_zero_slice) { printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", p->comm, p->pid); scx_warned_zero_slice = true; } p->scx.slice = SCX_SLICE_DFL; } return p; } #ifdef CONFIG_SCHED_CORE /** * scx_prio_less - Task ordering for core-sched * @a: task A * @b: task B * * Core-sched is implemented as an additional scheduling layer on top of the * usual sched_class'es and needs to find out the expected task ordering. For * SCX, core-sched calls this function to interrogate the task ordering. * * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used * to implement the default task ordering. The older the timestamp, the higher * prority the task - the global FIFO ordering matching the default scheduling * behavior. * * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to * implement FIFO ordering within each local DSQ. See pick_task_scx(). */ bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, bool in_fi) { /* * The const qualifiers are dropped from task_struct pointers when * calling ops.core_sched_before(). Accesses are controlled by the * verifier. */ if (SCX_HAS_OP(core_sched_before) && !scx_ops_bypassing()) return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, (struct task_struct *)a, (struct task_struct *)b); else return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); } /** * pick_task_scx - Pick a candidate task for core-sched * @rq: rq to pick the candidate task from * * Core-sched calls this function on each SMT sibling to determine the next * tasks to run on the SMT siblings. balance_one() has been called on all * siblings and put_prev_task_scx() has been called only for the current CPU. * * As put_prev_task_scx() hasn't been called on remote CPUs, we can't just look * at the first task in the local dsq. @rq->curr has to be considered explicitly * to mimic %SCX_TASK_BAL_KEEP. */ static struct task_struct *pick_task_scx(struct rq *rq) { struct task_struct *curr = rq->curr; struct task_struct *first = first_local_task(rq); if (curr->scx.flags & SCX_TASK_QUEUED) { /* is curr the only runnable task? */ if (!first) return curr; /* * Does curr trump first? We can always go by core_sched_at for * this comparison as it represents global FIFO ordering when * the default core-sched ordering is used and local-DSQ FIFO * ordering otherwise. * * We can have a task with an earlier timestamp on the DSQ. For * example, when a current task is preempted by a sibling * picking a different cookie, the task would be requeued at the * head of the local DSQ with an earlier timestamp than the * core-sched picked next task. Besides, the BPF scheduler may * dispatch any tasks to the local DSQ anytime. */ if (curr->scx.slice && time_before64(curr->scx.core_sched_at, first->scx.core_sched_at)) return curr; } return first; /* this may be %NULL */ } #endif /* CONFIG_SCHED_CORE */ static enum scx_cpu_preempt_reason preempt_reason_from_class(const struct sched_class *class) { #ifdef CONFIG_SMP if (class == &stop_sched_class) return SCX_CPU_PREEMPT_STOP; #endif if (class == &dl_sched_class) return SCX_CPU_PREEMPT_DL; if (class == &rt_sched_class) return SCX_CPU_PREEMPT_RT; return SCX_CPU_PREEMPT_UNKNOWN; } static void switch_class_scx(struct rq *rq, struct task_struct *next) { const struct sched_class *next_class = next->sched_class; if (!scx_enabled()) return; #ifdef CONFIG_SMP /* * Pairs with the smp_load_acquire() issued by a CPU in * kick_cpus_irq_workfn() who is waiting for this CPU to perform a * resched. */ smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); #endif if (!static_branch_unlikely(&scx_ops_cpu_preempt)) return; /* * The callback is conceptually meant to convey that the CPU is no * longer under the control of SCX. Therefore, don't invoke the callback * if the next class is below SCX (in which case the BPF scheduler has * actively decided not to schedule any tasks on the CPU). */ if (sched_class_above(&ext_sched_class, next_class)) return; /* * At this point we know that SCX was preempted by a higher priority * sched_class, so invoke the ->cpu_release() callback if we have not * done so already. We only send the callback once between SCX being * preempted, and it regaining control of the CPU. * * ->cpu_release() complements ->cpu_acquire(), which is emitted the * next time that balance_scx() is invoked. */ if (!rq->scx.cpu_released) { if (SCX_HAS_OP(cpu_release)) { struct scx_cpu_release_args args = { .reason = preempt_reason_from_class(next_class), .task = next, }; SCX_CALL_OP(SCX_KF_CPU_RELEASE, cpu_release, cpu_of(rq), &args); } rq->scx.cpu_released = true; } } #ifdef CONFIG_SMP static bool test_and_clear_cpu_idle(int cpu) { #ifdef CONFIG_SCHED_SMT /* * SMT mask should be cleared whether we can claim @cpu or not. The SMT * cluster is not wholly idle either way. This also prevents * scx_pick_idle_cpu() from getting caught in an infinite loop. */ if (sched_smt_active()) { const struct cpumask *smt = cpu_smt_mask(cpu); /* * If offline, @cpu is not its own sibling and * scx_pick_idle_cpu() can get caught in an infinite loop as * @cpu is never cleared from idle_masks.smt. Ensure that @cpu * is eventually cleared. */ if (cpumask_intersects(smt, idle_masks.smt)) cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); else if (cpumask_test_cpu(cpu, idle_masks.smt)) __cpumask_clear_cpu(cpu, idle_masks.smt); } #endif return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); } static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { int cpu; retry: if (sched_smt_active()) { cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); if (cpu < nr_cpu_ids) goto found; if (flags & SCX_PICK_IDLE_CORE) return -EBUSY; } cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); if (cpu >= nr_cpu_ids) return -EBUSY; found: if (test_and_clear_cpu_idle(cpu)) return cpu; else goto retry; } static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *found) { s32 cpu; *found = false; if (!static_branch_likely(&scx_builtin_idle_enabled)) { scx_ops_error("built-in idle tracking is disabled"); return prev_cpu; } /* * If WAKE_SYNC, the waker's local DSQ is empty, and the system is * under utilized, wake up @p to the local DSQ of the waker. Checking * only for an empty local DSQ is insufficient as it could give the * wakee an unfair advantage when the system is oversaturated. * Checking only for the presence of idle CPUs is also insufficient as * the local DSQ of the waker could have tasks piled up on it even if * there is an idle core elsewhere on the system. */ cpu = smp_processor_id(); if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && cpu_rq(cpu)->scx.local_dsq.nr == 0) { if (cpumask_test_cpu(cpu, p->cpus_ptr)) goto cpu_found; } if (p->nr_cpus_allowed == 1) { if (test_and_clear_cpu_idle(prev_cpu)) { cpu = prev_cpu; goto cpu_found; } else { return prev_cpu; } } /* * If CPU has SMT, any wholly idle CPU is likely a better pick than * partially idle @prev_cpu. */ if (sched_smt_active()) { if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && test_and_clear_cpu_idle(prev_cpu)) { cpu = prev_cpu; goto cpu_found; } cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); if (cpu >= 0) goto cpu_found; } if (test_and_clear_cpu_idle(prev_cpu)) { cpu = prev_cpu; goto cpu_found; } cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); if (cpu >= 0) goto cpu_found; return prev_cpu; cpu_found: *found = true; return cpu; } static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) { /* * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it * can be a good migration opportunity with low cache and memory * footprint. Returning a CPU different than @prev_cpu triggers * immediate rq migration. However, for SCX, as the current rq * association doesn't dictate where the task is going to run, this * doesn't fit well. If necessary, we can later add a dedicated method * which can decide to preempt self to force it through the regular * scheduling path. */ if (unlikely(wake_flags & WF_EXEC)) return prev_cpu; if (SCX_HAS_OP(select_cpu)) { s32 cpu; struct task_struct **ddsp_taskp; ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); WARN_ON_ONCE(*ddsp_taskp); *ddsp_taskp = p; cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, select_cpu, p, prev_cpu, wake_flags); *ddsp_taskp = NULL; if (ops_cpu_valid(cpu, "from ops.select_cpu()")) return cpu; else return prev_cpu; } else { bool found; s32 cpu; cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); if (found) { p->scx.slice = SCX_SLICE_DFL; p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; } return cpu; } } static void task_woken_scx(struct rq *rq, struct task_struct *p) { run_deferred(rq); } static void set_cpus_allowed_scx(struct task_struct *p, struct affinity_context *ac) { set_cpus_allowed_common(p, ac); /* * The effective cpumask is stored in @p->cpus_ptr which may temporarily * differ from the configured one in @p->cpus_mask. Always tell the bpf * scheduler the effective one. * * Fine-grained memory write control is enforced by BPF making the const * designation pointless. Cast it away when calling the operation. */ if (SCX_HAS_OP(set_cpumask)) SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, (struct cpumask *)p->cpus_ptr); } static void reset_idle_masks(void) { /* * Consider all online cpus idle. Should converge to the actual state * quickly. */ cpumask_copy(idle_masks.cpu, cpu_online_mask); cpumask_copy(idle_masks.smt, cpu_online_mask); } void __scx_update_idle(struct rq *rq, bool idle) { int cpu = cpu_of(rq); if (SCX_HAS_OP(update_idle)) { SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); if (!static_branch_unlikely(&scx_builtin_idle_enabled)) return; } if (idle) cpumask_set_cpu(cpu, idle_masks.cpu); else cpumask_clear_cpu(cpu, idle_masks.cpu); #ifdef CONFIG_SCHED_SMT if (sched_smt_active()) { const struct cpumask *smt = cpu_smt_mask(cpu); if (idle) { /* * idle_masks.smt handling is racy but that's fine as * it's only for optimization and self-correcting. */ for_each_cpu(cpu, smt) { if (!cpumask_test_cpu(cpu, idle_masks.cpu)) return; } cpumask_or(idle_masks.smt, idle_masks.smt, smt); } else { cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); } } #endif } static void handle_hotplug(struct rq *rq, bool online) { int cpu = cpu_of(rq); atomic_long_inc(&scx_hotplug_seq); if (online && SCX_HAS_OP(cpu_online)) SCX_CALL_OP(SCX_KF_SLEEPABLE, cpu_online, cpu); else if (!online && SCX_HAS_OP(cpu_offline)) SCX_CALL_OP(SCX_KF_SLEEPABLE, cpu_offline, cpu); else scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, "cpu %d going %s, exiting scheduler", cpu, online ? "online" : "offline"); } void scx_rq_activate(struct rq *rq) { handle_hotplug(rq, true); } void scx_rq_deactivate(struct rq *rq) { handle_hotplug(rq, false); } static void rq_online_scx(struct rq *rq) { rq->scx.flags |= SCX_RQ_ONLINE; } static void rq_offline_scx(struct rq *rq) { rq->scx.flags &= ~SCX_RQ_ONLINE; } #else /* CONFIG_SMP */ static bool test_and_clear_cpu_idle(int cpu) { return false; } static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } static void reset_idle_masks(void) {} #endif /* CONFIG_SMP */ static bool check_rq_for_timeouts(struct rq *rq) { struct task_struct *p; struct rq_flags rf; bool timed_out = false; rq_lock_irqsave(rq, &rf); list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { unsigned long last_runnable = p->scx.runnable_at; if (unlikely(time_after(jiffies, last_runnable + scx_watchdog_timeout))) { u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); scx_ops_error_kind(SCX_EXIT_ERROR_STALL, "%s[%d] failed to run for %u.%03us", p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); timed_out = true; break; } } rq_unlock_irqrestore(rq, &rf); return timed_out; } static void scx_watchdog_workfn(struct work_struct *work) { int cpu; WRITE_ONCE(scx_watchdog_timestamp, jiffies); for_each_online_cpu(cpu) { if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) break; cond_resched(); } queue_delayed_work(system_unbound_wq, to_delayed_work(work), scx_watchdog_timeout / 2); } void scx_tick(struct rq *rq) { unsigned long last_check; if (!scx_enabled()) return; last_check = READ_ONCE(scx_watchdog_timestamp); if (unlikely(time_after(jiffies, last_check + READ_ONCE(scx_watchdog_timeout)))) { u32 dur_ms = jiffies_to_msecs(jiffies - last_check); scx_ops_error_kind(SCX_EXIT_ERROR_STALL, "watchdog failed to check in for %u.%03us", dur_ms / 1000, dur_ms % 1000); } update_other_load_avgs(rq); } static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) { update_curr_scx(rq); /* * While disabling, always resched and refresh core-sched timestamp as * we can't trust the slice management or ops.core_sched_before(). */ if (scx_ops_bypassing()) { curr->scx.slice = 0; touch_core_sched(rq, curr); } else if (SCX_HAS_OP(tick)) { SCX_CALL_OP(SCX_KF_REST, tick, curr); } if (!curr->scx.slice) resched_curr(rq); } static enum scx_task_state scx_get_task_state(const struct task_struct *p) { return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; } static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) { enum scx_task_state prev_state = scx_get_task_state(p); bool warn = false; BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); switch (state) { case SCX_TASK_NONE: break; case SCX_TASK_INIT: warn = prev_state != SCX_TASK_NONE; break; case SCX_TASK_READY: warn = prev_state == SCX_TASK_NONE; break; case SCX_TASK_ENABLED: warn = prev_state != SCX_TASK_READY; break; default: warn = true; return; } WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", prev_state, state, p->comm, p->pid); p->scx.flags &= ~SCX_TASK_STATE_MASK; p->scx.flags |= state << SCX_TASK_STATE_SHIFT; } static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) { int ret; p->scx.disallow = false; if (SCX_HAS_OP(init_task)) { struct scx_init_task_args args = { .fork = fork, }; ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init_task, p, &args); if (unlikely(ret)) { ret = ops_sanitize_err("init_task", ret); return ret; } } scx_set_task_state(p, SCX_TASK_INIT); if (p->scx.disallow) { struct rq *rq; struct rq_flags rf; rq = task_rq_lock(p, &rf); /* * We're either in fork or load path and @p->policy will be * applied right after. Reverting @p->policy here and rejecting * %SCHED_EXT transitions from scx_check_setscheduler() * guarantees that if ops.init_task() sets @p->disallow, @p can * never be in SCX. */ if (p->policy == SCHED_EXT) { p->policy = SCHED_NORMAL; atomic_long_inc(&scx_nr_rejected); } task_rq_unlock(rq, p, &rf); } p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; return 0; } static void scx_ops_enable_task(struct task_struct *p) { u32 weight; lockdep_assert_rq_held(task_rq(p)); /* * Set the weight before calling ops.enable() so that the scheduler * doesn't see a stale value if they inspect the task struct. */ if (task_has_idle_policy(p)) weight = WEIGHT_IDLEPRIO; else weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; p->scx.weight = sched_weight_to_cgroup(weight); if (SCX_HAS_OP(enable)) SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); scx_set_task_state(p, SCX_TASK_ENABLED); if (SCX_HAS_OP(set_weight)) SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); } static void scx_ops_disable_task(struct task_struct *p) { lockdep_assert_rq_held(task_rq(p)); WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); if (SCX_HAS_OP(disable)) SCX_CALL_OP(SCX_KF_REST, disable, p); scx_set_task_state(p, SCX_TASK_READY); } static void scx_ops_exit_task(struct task_struct *p) { struct scx_exit_task_args args = { .cancelled = false, }; lockdep_assert_rq_held(task_rq(p)); switch (scx_get_task_state(p)) { case SCX_TASK_NONE: return; case SCX_TASK_INIT: args.cancelled = true; break; case SCX_TASK_READY: break; case SCX_TASK_ENABLED: scx_ops_disable_task(p); break; default: WARN_ON_ONCE(true); return; } if (SCX_HAS_OP(exit_task)) SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); scx_set_task_state(p, SCX_TASK_NONE); } void init_scx_entity(struct sched_ext_entity *scx) { /* * init_idle() calls this function again after fork sequence is * complete. Don't touch ->tasks_node as it's already linked. */ memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); INIT_LIST_HEAD(&scx->dsq_list.node); RB_CLEAR_NODE(&scx->dsq_priq); scx->sticky_cpu = -1; scx->holding_cpu = -1; INIT_LIST_HEAD(&scx->runnable_node); scx->runnable_at = jiffies; scx->ddsp_dsq_id = SCX_DSQ_INVALID; scx->slice = SCX_SLICE_DFL; } void scx_pre_fork(struct task_struct *p) { /* * BPF scheduler enable/disable paths want to be able to iterate and * update all tasks which can become complex when racing forks. As * enable/disable are very cold paths, let's use a percpu_rwsem to * exclude forks. */ percpu_down_read(&scx_fork_rwsem); } int scx_fork(struct task_struct *p) { percpu_rwsem_assert_held(&scx_fork_rwsem); if (scx_enabled()) return scx_ops_init_task(p, task_group(p), true); else return 0; } void scx_post_fork(struct task_struct *p) { if (scx_enabled()) { scx_set_task_state(p, SCX_TASK_READY); /* * Enable the task immediately if it's running on sched_ext. * Otherwise, it'll be enabled in switching_to_scx() if and * when it's ever configured to run with a SCHED_EXT policy. */ if (p->sched_class == &ext_sched_class) { struct rq_flags rf; struct rq *rq; rq = task_rq_lock(p, &rf); scx_ops_enable_task(p); task_rq_unlock(rq, p, &rf); } } spin_lock_irq(&scx_tasks_lock); list_add_tail(&p->scx.tasks_node, &scx_tasks); spin_unlock_irq(&scx_tasks_lock); percpu_up_read(&scx_fork_rwsem); } void scx_cancel_fork(struct task_struct *p) { if (scx_enabled()) { struct rq *rq; struct rq_flags rf; rq = task_rq_lock(p, &rf); WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); scx_ops_exit_task(p); task_rq_unlock(rq, p, &rf); } percpu_up_read(&scx_fork_rwsem); } void sched_ext_free(struct task_struct *p) { unsigned long flags; spin_lock_irqsave(&scx_tasks_lock, flags); list_del_init(&p->scx.tasks_node); spin_unlock_irqrestore(&scx_tasks_lock, flags); /* * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> * ENABLED transitions can't race us. Disable ops for @p. */ if (scx_get_task_state(p) != SCX_TASK_NONE) { struct rq_flags rf; struct rq *rq; rq = task_rq_lock(p, &rf); scx_ops_exit_task(p); task_rq_unlock(rq, p, &rf); } } static void reweight_task_scx(struct rq *rq, struct task_struct *p, const struct load_weight *lw) { lockdep_assert_rq_held(task_rq(p)); p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); if (SCX_HAS_OP(set_weight)) SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); } static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) { } static void switching_to_scx(struct rq *rq, struct task_struct *p) { scx_ops_enable_task(p); /* * set_cpus_allowed_scx() is not called while @p is associated with a * different scheduler class. Keep the BPF scheduler up-to-date. */ if (SCX_HAS_OP(set_cpumask)) SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, (struct cpumask *)p->cpus_ptr); } static void switched_from_scx(struct rq *rq, struct task_struct *p) { scx_ops_disable_task(p); } static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} static void switched_to_scx(struct rq *rq, struct task_struct *p) {} int scx_check_setscheduler(struct task_struct *p, int policy) { lockdep_assert_rq_held(task_rq(p)); /* if disallow, reject transitioning into SCX */ if (scx_enabled() && READ_ONCE(p->scx.disallow) && p->policy != policy && policy == SCHED_EXT) return -EACCES; return 0; } #ifdef CONFIG_NO_HZ_FULL bool scx_can_stop_tick(struct rq *rq) { struct task_struct *p = rq->curr; if (scx_ops_bypassing()) return false; if (p->sched_class != &ext_sched_class) return true; /* * @rq can dispatch from different DSQs, so we can't tell whether it * needs the tick or not by looking at nr_running. Allow stopping ticks * iff the BPF scheduler indicated so. See set_next_task_scx(). */ return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; } #endif /* * Omitted operations: * * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task * isn't tied to the CPU at that point. Preemption is implemented by resetting * the victim task's slice to 0 and triggering reschedule on the target CPU. * * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. * * - task_fork/dead: We need fork/dead notifications for all tasks regardless of * their current sched_class. Call them directly from sched core instead. */ DEFINE_SCHED_CLASS(ext) = { .enqueue_task = enqueue_task_scx, .dequeue_task = dequeue_task_scx, .yield_task = yield_task_scx, .yield_to_task = yield_to_task_scx, .wakeup_preempt = wakeup_preempt_scx, .pick_next_task = pick_next_task_scx, .put_prev_task = put_prev_task_scx, .set_next_task = set_next_task_scx, .switch_class = switch_class_scx, #ifdef CONFIG_SMP .balance = balance_scx, .select_task_rq = select_task_rq_scx, .task_woken = task_woken_scx, .set_cpus_allowed = set_cpus_allowed_scx, .rq_online = rq_online_scx, .rq_offline = rq_offline_scx, #endif #ifdef CONFIG_SCHED_CORE .pick_task = pick_task_scx, #endif .task_tick = task_tick_scx, .switching_to = switching_to_scx, .switched_from = switched_from_scx, .switched_to = switched_to_scx, .reweight_task = reweight_task_scx, .prio_changed = prio_changed_scx, .update_curr = update_curr_scx, #ifdef CONFIG_UCLAMP_TASK .uclamp_enabled = 1, #endif }; static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) { memset(dsq, 0, sizeof(*dsq)); raw_spin_lock_init(&dsq->lock); INIT_LIST_HEAD(&dsq->list); dsq->id = dsq_id; } static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) { struct scx_dispatch_q *dsq; int ret; if (dsq_id & SCX_DSQ_FLAG_BUILTIN) return ERR_PTR(-EINVAL); dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); if (!dsq) return ERR_PTR(-ENOMEM); init_dsq(dsq, dsq_id); ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params); if (ret) { kfree(dsq); return ERR_PTR(ret); } return dsq; } static void free_dsq_irq_workfn(struct irq_work *irq_work) { struct llist_node *to_free = llist_del_all(&dsqs_to_free); struct scx_dispatch_q *dsq, *tmp_dsq; llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) kfree_rcu(dsq, rcu); } static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); static void destroy_dsq(u64 dsq_id) { struct scx_dispatch_q *dsq; unsigned long flags; rcu_read_lock(); dsq = find_user_dsq(dsq_id); if (!dsq) goto out_unlock_rcu; raw_spin_lock_irqsave(&dsq->lock, flags); if (dsq->nr) { scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", dsq->id, dsq->nr); goto out_unlock_dsq; } if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) goto out_unlock_dsq; /* * Mark dead by invalidating ->id to prevent dispatch_enqueue() from * queueing more tasks. As this function can be called from anywhere, * freeing is bounced through an irq work to avoid nesting RCU * operations inside scheduler locks. */ dsq->id = SCX_DSQ_INVALID; llist_add(&dsq->free_node, &dsqs_to_free); irq_work_queue(&free_dsq_irq_work); out_unlock_dsq: raw_spin_unlock_irqrestore(&dsq->lock, flags); out_unlock_rcu: rcu_read_unlock(); } /******************************************************************************** * Sysfs interface and ops enable/disable. */ #define SCX_ATTR(_name) \ static struct kobj_attribute scx_attr_##_name = { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = scx_attr_##_name##_show, \ } static ssize_t scx_attr_state_show(struct kobject *kobj, struct kobj_attribute *ka, char *buf) { return sysfs_emit(buf, "%s\n", scx_ops_enable_state_str[scx_ops_enable_state()]); } SCX_ATTR(state); static ssize_t scx_attr_switch_all_show(struct kobject *kobj, struct kobj_attribute *ka, char *buf) { return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); } SCX_ATTR(switch_all); static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, struct kobj_attribute *ka, char *buf) { return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); } SCX_ATTR(nr_rejected); static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, struct kobj_attribute *ka, char *buf) { return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); } SCX_ATTR(hotplug_seq); static struct attribute *scx_global_attrs[] = { &scx_attr_state.attr, &scx_attr_switch_all.attr, &scx_attr_nr_rejected.attr, &scx_attr_hotplug_seq.attr, NULL, }; static const struct attribute_group scx_global_attr_group = { .attrs = scx_global_attrs, }; static void scx_kobj_release(struct kobject *kobj) { kfree(kobj); } static ssize_t scx_attr_ops_show(struct kobject *kobj, struct kobj_attribute *ka, char *buf) { return sysfs_emit(buf, "%s\n", scx_ops.name); } SCX_ATTR(ops); static struct attribute *scx_sched_attrs[] = { &scx_attr_ops.attr, NULL, }; ATTRIBUTE_GROUPS(scx_sched); static const struct kobj_type scx_ktype = { .release = scx_kobj_release, .sysfs_ops = &kobj_sysfs_ops, .default_groups = scx_sched_groups, }; static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) { return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); } static const struct kset_uevent_ops scx_uevent_ops = { .uevent = scx_uevent, }; /* * Used by sched_fork() and __setscheduler_prio() to pick the matching * sched_class. dl/rt are already handled. */ bool task_should_scx(struct task_struct *p) { if (!scx_enabled() || unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) return false; if (READ_ONCE(scx_switching_all)) return true; return p->policy == SCHED_EXT; } /** * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress * * Bypassing guarantees that all runnable tasks make forward progress without * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might * be held by tasks that the BPF scheduler is forgetting to run, which * unfortunately also excludes toggling the static branches. * * Let's work around by overriding a couple ops and modifying behaviors based on * the DISABLING state and then cycling the queued tasks through dequeue/enqueue * to force global FIFO scheduling. * * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. * * b. ops.dispatch() is ignored. * * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be * trusted. Whenever a tick triggers, the running task is rotated to the tail * of the queue with core_sched_at touched. * * d. pick_next_task() suppresses zero slice warning. * * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM * operations. * * f. scx_prio_less() reverts to the default core_sched_at order. */ static void scx_ops_bypass(bool bypass) { int depth, cpu; if (bypass) { depth = atomic_inc_return(&scx_ops_bypass_depth); WARN_ON_ONCE(depth <= 0); if (depth != 1) return; } else { depth = atomic_dec_return(&scx_ops_bypass_depth); WARN_ON_ONCE(depth < 0); if (depth != 0) return; } /* * We need to guarantee that no tasks are on the BPF scheduler while * bypassing. Either we see enabled or the enable path sees the * increased bypass_depth before moving tasks to SCX. */ if (!scx_enabled()) return; /* * No task property is changing. We just need to make sure all currently * queued tasks are re-queued according to the new scx_ops_bypassing() * state. As an optimization, walk each rq's runnable_list instead of * the scx_tasks list. * * This function can't trust the scheduler and thus can't use * cpus_read_lock(). Walk all possible CPUs instead of online. */ for_each_possible_cpu(cpu) { struct rq *rq = cpu_rq(cpu); struct rq_flags rf; struct task_struct *p, *n; rq_lock_irqsave(rq, &rf); /* * The use of list_for_each_entry_safe_reverse() is required * because each task is going to be removed from and added back * to the runnable_list during iteration. Because they're added * to the tail of the list, safe reverse iteration can still * visit all nodes. */ list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, scx.runnable_node) { struct sched_enq_and_set_ctx ctx; /* cycling deq/enq is enough, see the function comment */ sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); sched_enq_and_set_task(&ctx); } rq_unlock_irqrestore(rq, &rf); /* kick to restore ticks */ resched_cpu(cpu); } } static void free_exit_info(struct scx_exit_info *ei) { kfree(ei->dump); kfree(ei->msg); kfree(ei->bt); kfree(ei); } static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) { struct scx_exit_info *ei; ei = kzalloc(sizeof(*ei), GFP_KERNEL); if (!ei) return NULL; ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); if (!ei->bt || !ei->msg || !ei->dump) { free_exit_info(ei); return NULL; } return ei; } static const char *scx_exit_reason(enum scx_exit_kind kind) { switch (kind) { case SCX_EXIT_UNREG: return "Scheduler unregistered from user space"; case SCX_EXIT_UNREG_BPF: return "Scheduler unregistered from BPF"; case SCX_EXIT_UNREG_KERN: return "Scheduler unregistered from the main kernel"; case SCX_EXIT_SYSRQ: return "disabled by sysrq-S"; case SCX_EXIT_ERROR: return "runtime error"; case SCX_EXIT_ERROR_BPF: return "scx_bpf_error"; case SCX_EXIT_ERROR_STALL: return "runnable task stall"; default: return ""; } } static void scx_ops_disable_workfn(struct kthread_work *work) { struct scx_exit_info *ei = scx_exit_info; struct scx_task_iter sti; struct task_struct *p; struct rhashtable_iter rht_iter; struct scx_dispatch_q *dsq; int i, kind; kind = atomic_read(&scx_exit_kind); while (true) { /* * NONE indicates that a new scx_ops has been registered since * disable was scheduled - don't kill the new ops. DONE * indicates that the ops has already been disabled. */ if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) return; if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) break; } ei->kind = kind; ei->reason = scx_exit_reason(ei->kind); /* guarantee forward progress by bypassing scx_ops */ scx_ops_bypass(true); switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { case SCX_OPS_DISABLING: WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); break; case SCX_OPS_DISABLED: pr_warn("sched_ext: ops error detected without ops (%s)\n", scx_exit_info->msg); WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != SCX_OPS_DISABLING); goto done; default: break; } /* * Here, every runnable task is guaranteed to make forward progress and * we can safely use blocking synchronization constructs. Actually * disable ops. */ mutex_lock(&scx_ops_enable_mutex); static_branch_disable(&__scx_switched_all); WRITE_ONCE(scx_switching_all, false); /* * Avoid racing against fork. See scx_ops_enable() for explanation on * the locking order. */ percpu_down_write(&scx_fork_rwsem); cpus_read_lock(); spin_lock_irq(&scx_tasks_lock); scx_task_iter_init(&sti); /* * Invoke scx_ops_exit_task() on all non-idle tasks, including * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount, * we may not have invoked sched_ext_free() on them by the time a * scheduler is disabled. We must therefore exit the task here, or we'd * fail to invoke ops.exit_task(), as the scheduler will have been * unloaded by the time the task is subsequently exited on the * sched_ext_free() path. */ while ((p = scx_task_iter_next_locked(&sti, true))) { const struct sched_class *old_class = p->sched_class; struct sched_enq_and_set_ctx ctx; if (READ_ONCE(p->__state) != TASK_DEAD) { sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); __setscheduler_prio(p, p->prio); check_class_changing(task_rq(p), p, old_class); sched_enq_and_set_task(&ctx); check_class_changed(task_rq(p), p, old_class, p->prio); } scx_ops_exit_task(p); } scx_task_iter_exit(&sti); spin_unlock_irq(&scx_tasks_lock); /* no task is on scx, turn off all the switches and flush in-progress calls */ static_branch_disable_cpuslocked(&__scx_ops_enabled); for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) static_branch_disable_cpuslocked(&scx_has_op[i]); static_branch_disable_cpuslocked(&scx_ops_enq_last); static_branch_disable_cpuslocked(&scx_ops_enq_exiting); static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); synchronize_rcu(); cpus_read_unlock(); percpu_up_write(&scx_fork_rwsem); if (ei->kind >= SCX_EXIT_ERROR) { printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name); if (ei->msg[0] == '\0') printk(KERN_ERR "sched_ext: %s\n", ei->reason); else printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg); stack_trace_print(ei->bt, ei->bt_len, 2); } if (scx_ops.exit) SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); cancel_delayed_work_sync(&scx_watchdog_work); /* * Delete the kobject from the hierarchy eagerly in addition to just * dropping a reference. Otherwise, if the object is deleted * asynchronously, sysfs could observe an object of the same name still * in the hierarchy when another scheduler is loaded. */ kobject_del(scx_root_kobj); kobject_put(scx_root_kobj); scx_root_kobj = NULL; memset(&scx_ops, 0, sizeof(scx_ops)); rhashtable_walk_enter(&dsq_hash, &rht_iter); do { rhashtable_walk_start(&rht_iter); while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) destroy_dsq(dsq->id); rhashtable_walk_stop(&rht_iter); } while (dsq == ERR_PTR(-EAGAIN)); rhashtable_walk_exit(&rht_iter); free_percpu(scx_dsp_ctx); scx_dsp_ctx = NULL; scx_dsp_max_batch = 0; free_exit_info(scx_exit_info); scx_exit_info = NULL; mutex_unlock(&scx_ops_enable_mutex); WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != SCX_OPS_DISABLING); done: scx_ops_bypass(false); } static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); static void schedule_scx_ops_disable_work(void) { struct kthread_worker *helper = READ_ONCE(scx_ops_helper); /* * We may be called spuriously before the first bpf_sched_ext_reg(). If * scx_ops_helper isn't set up yet, there's nothing to do. */ if (helper) kthread_queue_work(helper, &scx_ops_disable_work); } static void scx_ops_disable(enum scx_exit_kind kind) { int none = SCX_EXIT_NONE; if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) kind = SCX_EXIT_ERROR; atomic_try_cmpxchg(&scx_exit_kind, &none, kind); schedule_scx_ops_disable_work(); } static void dump_newline(struct seq_buf *s) { trace_sched_ext_dump(""); /* @s may be zero sized and seq_buf triggers WARN if so */ if (s->size) seq_buf_putc(s, '\n'); } static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) { va_list args; #ifdef CONFIG_TRACEPOINTS if (trace_sched_ext_dump_enabled()) { /* protected by scx_dump_state()::dump_lock */ static char line_buf[SCX_EXIT_MSG_LEN]; va_start(args, fmt); vscnprintf(line_buf, sizeof(line_buf), fmt, args); va_end(args); trace_sched_ext_dump(line_buf); } #endif /* @s may be zero sized and seq_buf triggers WARN if so */ if (s->size) { va_start(args, fmt); seq_buf_vprintf(s, fmt, args); va_end(args); seq_buf_putc(s, '\n'); } } static void dump_stack_trace(struct seq_buf *s, const char *prefix, const unsigned long *bt, unsigned int len) { unsigned int i; for (i = 0; i < len; i++) dump_line(s, "%s%pS", prefix, (void *)bt[i]); } static void ops_dump_init(struct seq_buf *s, const char *prefix) { struct scx_dump_data *dd = &scx_dump_data; lockdep_assert_irqs_disabled(); dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ dd->first = true; dd->cursor = 0; dd->s = s; dd->prefix = prefix; } static void ops_dump_flush(void) { struct scx_dump_data *dd = &scx_dump_data; char *line = dd->buf.line; if (!dd->cursor) return; /* * There's something to flush and this is the first line. Insert a blank * line to distinguish ops dump. */ if (dd->first) { dump_newline(dd->s); dd->first = false; } /* * There may be multiple lines in $line. Scan and emit each line * separately. */ while (true) { char *end = line; char c; while (*end != '\n' && *end != '\0') end++; /* * If $line overflowed, it may not have newline at the end. * Always emit with a newline. */ c = *end; *end = '\0'; dump_line(dd->s, "%s%s", dd->prefix, line); if (c == '\0') break; /* move to the next line */ end++; if (*end == '\0') break; line = end; } dd->cursor = 0; } static void ops_dump_exit(void) { ops_dump_flush(); scx_dump_data.cpu = -1; } static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, struct task_struct *p, char marker) { static unsigned long bt[SCX_EXIT_BT_LEN]; char dsq_id_buf[19] = "(n/a)"; unsigned long ops_state = atomic_long_read(&p->scx.ops_state); unsigned int bt_len; if (p->scx.dsq) scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", (unsigned long long)p->scx.dsq->id); dump_newline(s); dump_line(s, " %c%c %s[%d] %+ldms", marker, task_state_to_char(p), p->comm, p->pid, jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, ops_state >> SCX_OPSS_QSEQ_SHIFT); dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, p->scx.dsq_vtime); dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); if (SCX_HAS_OP(dump_task)) { ops_dump_init(s, " "); SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); ops_dump_exit(); } bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); if (bt_len) { dump_newline(s); dump_stack_trace(s, " ", bt, bt_len); } } static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) { static DEFINE_SPINLOCK(dump_lock); static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; struct scx_dump_ctx dctx = { .kind = ei->kind, .exit_code = ei->exit_code, .reason = ei->reason, .at_ns = ktime_get_ns(), .at_jiffies = jiffies, }; struct seq_buf s; unsigned long flags; char *buf; int cpu; spin_lock_irqsave(&dump_lock, flags); seq_buf_init(&s, ei->dump, dump_len); if (ei->kind == SCX_EXIT_NONE) { dump_line(&s, "Debug dump triggered by %s", ei->reason); } else { dump_line(&s, "%s[%d] triggered exit kind %d:", current->comm, current->pid, ei->kind); dump_line(&s, " %s (%s)", ei->reason, ei->msg); dump_newline(&s); dump_line(&s, "Backtrace:"); dump_stack_trace(&s, " ", ei->bt, ei->bt_len); } if (SCX_HAS_OP(dump)) { ops_dump_init(&s, ""); SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); ops_dump_exit(); } dump_newline(&s); dump_line(&s, "CPU states"); dump_line(&s, "----------"); for_each_possible_cpu(cpu) { struct rq *rq = cpu_rq(cpu); struct rq_flags rf; struct task_struct *p; struct seq_buf ns; size_t avail, used; bool idle; rq_lock(rq, &rf); idle = list_empty(&rq->scx.runnable_list) && rq->curr->sched_class == &idle_sched_class; if (idle && !SCX_HAS_OP(dump_cpu)) goto next; /* * We don't yet know whether ops.dump_cpu() will produce output * and we may want to skip the default CPU dump if it doesn't. * Use a nested seq_buf to generate the standard dump so that we * can decide whether to commit later. */ avail = seq_buf_get_buf(&s, &buf); seq_buf_init(&ns, buf, avail); dump_newline(&ns); dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", cpu, rq->scx.nr_running, rq->scx.flags, rq->scx.cpu_released, rq->scx.ops_qseq, rq->scx.pnt_seq); dump_line(&ns, " curr=%s[%d] class=%ps", rq->curr->comm, rq->curr->pid, rq->curr->sched_class); if (!cpumask_empty(rq->scx.cpus_to_kick)) dump_line(&ns, " cpus_to_kick : %*pb", cpumask_pr_args(rq->scx.cpus_to_kick)); if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) dump_line(&ns, " idle_to_kick : %*pb", cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); if (!cpumask_empty(rq->scx.cpus_to_preempt)) dump_line(&ns, " cpus_to_preempt: %*pb", cpumask_pr_args(rq->scx.cpus_to_preempt)); if (!cpumask_empty(rq->scx.cpus_to_wait)) dump_line(&ns, " cpus_to_wait : %*pb", cpumask_pr_args(rq->scx.cpus_to_wait)); used = seq_buf_used(&ns); if (SCX_HAS_OP(dump_cpu)) { ops_dump_init(&ns, " "); SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); ops_dump_exit(); } /* * If idle && nothing generated by ops.dump_cpu(), there's * nothing interesting. Skip. */ if (idle && used == seq_buf_used(&ns)) goto next; /* * $s may already have overflowed when $ns was created. If so, * calling commit on it will trigger BUG. */ if (avail) { seq_buf_commit(&s, seq_buf_used(&ns)); if (seq_buf_has_overflowed(&ns)) seq_buf_set_overflow(&s); } if (rq->curr->sched_class == &ext_sched_class) scx_dump_task(&s, &dctx, rq->curr, '*'); list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) scx_dump_task(&s, &dctx, p, ' '); next: rq_unlock(rq, &rf); } if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) memcpy(ei->dump + dump_len - sizeof(trunc_marker), trunc_marker, sizeof(trunc_marker)); spin_unlock_irqrestore(&dump_lock, flags); } static void scx_ops_error_irq_workfn(struct irq_work *irq_work) { struct scx_exit_info *ei = scx_exit_info; if (ei->kind >= SCX_EXIT_ERROR) scx_dump_state(ei, scx_ops.exit_dump_len); schedule_scx_ops_disable_work(); } static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, s64 exit_code, const char *fmt, ...) { struct scx_exit_info *ei = scx_exit_info; int none = SCX_EXIT_NONE; va_list args; if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) return; ei->exit_code = exit_code; if (kind >= SCX_EXIT_ERROR) ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); va_start(args, fmt); vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); va_end(args); /* * Set ei->kind and ->reason for scx_dump_state(). They'll be set again * in scx_ops_disable_workfn(). */ ei->kind = kind; ei->reason = scx_exit_reason(ei->kind); irq_work_queue(&scx_ops_error_irq_work); } static struct kthread_worker *scx_create_rt_helper(const char *name) { struct kthread_worker *helper; helper = kthread_create_worker(0, name); if (helper) sched_set_fifo(helper->task); return helper; } static void check_hotplug_seq(const struct sched_ext_ops *ops) { unsigned long long global_hotplug_seq; /* * If a hotplug event has occurred between when a scheduler was * initialized, and when we were able to attach, exit and notify user * space about it. */ if (ops->hotplug_seq) { global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); if (ops->hotplug_seq != global_hotplug_seq) { scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, "expected hotplug seq %llu did not match actual %llu", ops->hotplug_seq, global_hotplug_seq); } } } static int validate_ops(const struct sched_ext_ops *ops) { /* * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the * ops.enqueue() callback isn't implemented. */ if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); return -EINVAL; } return 0; } static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) { struct scx_task_iter sti; struct task_struct *p; unsigned long timeout; int i, cpu, ret; if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), cpu_possible_mask)) { pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); return -EINVAL; } mutex_lock(&scx_ops_enable_mutex); if (!scx_ops_helper) { WRITE_ONCE(scx_ops_helper, scx_create_rt_helper("sched_ext_ops_helper")); if (!scx_ops_helper) { ret = -ENOMEM; goto err_unlock; } } if (scx_ops_enable_state() != SCX_OPS_DISABLED) { ret = -EBUSY; goto err_unlock; } scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); if (!scx_root_kobj) { ret = -ENOMEM; goto err_unlock; } scx_root_kobj->kset = scx_kset; ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); if (ret < 0) goto err; scx_exit_info = alloc_exit_info(ops->exit_dump_len); if (!scx_exit_info) { ret = -ENOMEM; goto err_del; } /* * Set scx_ops, transition to PREPPING and clear exit info to arm the * disable path. Failure triggers full disabling from here on. */ scx_ops = *ops; WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != SCX_OPS_DISABLED); atomic_set(&scx_exit_kind, SCX_EXIT_NONE); scx_warned_zero_slice = false; atomic_long_set(&scx_nr_rejected, 0); for_each_possible_cpu(cpu) cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; /* * Keep CPUs stable during enable so that the BPF scheduler can track * online CPUs by watching ->on/offline_cpu() after ->init(). */ cpus_read_lock(); if (scx_ops.init) { ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init); if (ret) { ret = ops_sanitize_err("init", ret); goto err_disable_unlock_cpus; } } for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) if (((void (**)(void))ops)[i]) static_branch_enable_cpuslocked(&scx_has_op[i]); cpus_read_unlock(); ret = validate_ops(ops); if (ret) goto err_disable; WARN_ON_ONCE(scx_dsp_ctx); scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, scx_dsp_max_batch), __alignof__(struct scx_dsp_ctx)); if (!scx_dsp_ctx) { ret = -ENOMEM; goto err_disable; } if (ops->timeout_ms) timeout = msecs_to_jiffies(ops->timeout_ms); else timeout = SCX_WATCHDOG_MAX_TIMEOUT; WRITE_ONCE(scx_watchdog_timeout, timeout); WRITE_ONCE(scx_watchdog_timestamp, jiffies); queue_delayed_work(system_unbound_wq, &scx_watchdog_work, scx_watchdog_timeout / 2); /* * Lock out forks before opening the floodgate so that they don't wander * into the operations prematurely. * * We don't need to keep the CPUs stable but grab cpus_read_lock() to * ease future locking changes for cgroup suport. * * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the * following dependency chain: * * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock */ percpu_down_write(&scx_fork_rwsem); cpus_read_lock(); check_hotplug_seq(ops); for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) if (((void (**)(void))ops)[i]) static_branch_enable_cpuslocked(&scx_has_op[i]); if (ops->flags & SCX_OPS_ENQ_LAST) static_branch_enable_cpuslocked(&scx_ops_enq_last); if (ops->flags & SCX_OPS_ENQ_EXITING) static_branch_enable_cpuslocked(&scx_ops_enq_exiting); if (scx_ops.cpu_acquire || scx_ops.cpu_release) static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { reset_idle_masks(); static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); } else { static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); } static_branch_enable_cpuslocked(&__scx_ops_enabled); /* * Enable ops for every task. Fork is excluded by scx_fork_rwsem * preventing new tasks from being added. No need to exclude tasks * leaving as sched_ext_free() can handle both prepped and enabled * tasks. Prep all tasks first and then enable them with preemption * disabled. */ spin_lock_irq(&scx_tasks_lock); scx_task_iter_init(&sti); while ((p = scx_task_iter_next_locked(&sti, false))) { get_task_struct(p); scx_task_iter_rq_unlock(&sti); spin_unlock_irq(&scx_tasks_lock); ret = scx_ops_init_task(p, task_group(p), false); if (ret) { put_task_struct(p); spin_lock_irq(&scx_tasks_lock); scx_task_iter_exit(&sti); spin_unlock_irq(&scx_tasks_lock); pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", ret, p->comm, p->pid); goto err_disable_unlock_all; } put_task_struct(p); spin_lock_irq(&scx_tasks_lock); } scx_task_iter_exit(&sti); /* * All tasks are prepped but are still ops-disabled. Ensure that * %current can't be scheduled out and switch everyone. * preempt_disable() is necessary because we can't guarantee that * %current won't be starved if scheduled out while switching. */ preempt_disable(); /* * From here on, the disable path must assume that tasks have ops * enabled and need to be recovered. * * Transition to ENABLING fails iff the BPF scheduler has already * triggered scx_bpf_error(). Returning an error code here would lose * the recorded error information. Exit indicating success so that the * error is notified through ops.exit() with all the details. */ if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { preempt_enable(); spin_unlock_irq(&scx_tasks_lock); WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); ret = 0; goto err_disable_unlock_all; } /* * We're fully committed and can't fail. The PREPPED -> ENABLED * transitions here are synchronized against sched_ext_free() through * scx_tasks_lock. */ WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); scx_task_iter_init(&sti); while ((p = scx_task_iter_next_locked(&sti, false))) { const struct sched_class *old_class = p->sched_class; struct sched_enq_and_set_ctx ctx; sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); scx_set_task_state(p, SCX_TASK_READY); __setscheduler_prio(p, p->prio); check_class_changing(task_rq(p), p, old_class); sched_enq_and_set_task(&ctx); check_class_changed(task_rq(p), p, old_class, p->prio); } scx_task_iter_exit(&sti); spin_unlock_irq(&scx_tasks_lock); preempt_enable(); cpus_read_unlock(); percpu_up_write(&scx_fork_rwsem); /* see above ENABLING transition for the explanation on exiting with 0 */ if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); ret = 0; goto err_disable; } if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) static_branch_enable(&__scx_switched_all); kobject_uevent(scx_root_kobj, KOBJ_ADD); mutex_unlock(&scx_ops_enable_mutex); return 0; err_del: kobject_del(scx_root_kobj); err: kobject_put(scx_root_kobj); scx_root_kobj = NULL; if (scx_exit_info) { free_exit_info(scx_exit_info); scx_exit_info = NULL; } err_unlock: mutex_unlock(&scx_ops_enable_mutex); return ret; err_disable_unlock_all: percpu_up_write(&scx_fork_rwsem); err_disable_unlock_cpus: cpus_read_unlock(); err_disable: mutex_unlock(&scx_ops_enable_mutex); /* must be fully disabled before returning */ scx_ops_disable(SCX_EXIT_ERROR); kthread_flush_work(&scx_ops_disable_work); return ret; } /******************************************************************************** * bpf_struct_ops plumbing. */ #include #include #include extern struct btf *btf_vmlinux; static const struct btf_type *task_struct_type; static u32 task_struct_type_id; static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { struct btf *btf = bpf_get_btf_vmlinux(); const struct bpf_struct_ops_desc *st_ops_desc; const struct btf_member *member; const struct btf_type *t; u32 btf_id, member_idx; const char *mname; /* struct_ops op args are all sequential, 64-bit numbers */ if (off != arg_n * sizeof(__u64)) return false; /* btf_id should be the type id of struct sched_ext_ops */ btf_id = prog->aux->attach_btf_id; st_ops_desc = bpf_struct_ops_find(btf, btf_id); if (!st_ops_desc) return false; /* BTF type of struct sched_ext_ops */ t = st_ops_desc->type; member_idx = prog->expected_attach_type; if (member_idx >= btf_type_vlen(t)) return false; /* * Get the member name of this struct_ops program, which corresponds to * a field in struct sched_ext_ops. For example, the member name of the * dispatch struct_ops program (callback) is "dispatch". */ member = &btf_type_member(t)[member_idx]; mname = btf_name_by_offset(btf_vmlinux, member->name_off); if (!strcmp(mname, op)) { /* * The value is a pointer to a type (struct task_struct) given * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), * however, can be a NULL (PTR_MAYBE_NULL). The BPF program * should check the pointer to make sure it is not NULL before * using it, or the verifier will reject the program. * * Longer term, this is something that should be addressed by * BTF, and be fully contained within the verifier. */ info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; info->btf = btf_vmlinux; info->btf_id = task_struct_type_id; return true; } return false; } static bool bpf_scx_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type != BPF_READ) return false; if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || set_arg_maybe_null("yield", 1, off, size, type, prog, info)) return true; if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) return false; if (off % size != 0) return false; return btf_ctx_access(off, size, type, prog, info); } static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size) { const struct btf_type *t; t = btf_type_by_id(reg->btf, reg->btf_id); if (t == task_struct_type) { if (off >= offsetof(struct task_struct, scx.slice) && off + size <= offsetofend(struct task_struct, scx.slice)) return SCALAR_VALUE; if (off >= offsetof(struct task_struct, scx.dsq_vtime) && off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) return SCALAR_VALUE; if (off >= offsetof(struct task_struct, scx.disallow) && off + size <= offsetofend(struct task_struct, scx.disallow)) return SCALAR_VALUE; } return -EACCES; } static const struct bpf_func_proto * bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_task_storage_get: return &bpf_task_storage_get_proto; case BPF_FUNC_task_storage_delete: return &bpf_task_storage_delete_proto; default: return bpf_base_func_proto(func_id, prog); } } static const struct bpf_verifier_ops bpf_scx_verifier_ops = { .get_func_proto = bpf_scx_get_func_proto, .is_valid_access = bpf_scx_is_valid_access, .btf_struct_access = bpf_scx_btf_struct_access, }; static int bpf_scx_init_member(const struct btf_type *t, const struct btf_member *member, void *kdata, const void *udata) { const struct sched_ext_ops *uops = udata; struct sched_ext_ops *ops = kdata; u32 moff = __btf_member_bit_offset(t, member) / 8; int ret; switch (moff) { case offsetof(struct sched_ext_ops, dispatch_max_batch): if (*(u32 *)(udata + moff) > INT_MAX) return -E2BIG; ops->dispatch_max_batch = *(u32 *)(udata + moff); return 1; case offsetof(struct sched_ext_ops, flags): if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) return -EINVAL; ops->flags = *(u64 *)(udata + moff); return 1; case offsetof(struct sched_ext_ops, name): ret = bpf_obj_name_cpy(ops->name, uops->name, sizeof(ops->name)); if (ret < 0) return ret; if (ret == 0) return -EINVAL; return 1; case offsetof(struct sched_ext_ops, timeout_ms): if (msecs_to_jiffies(*(u32 *)(udata + moff)) > SCX_WATCHDOG_MAX_TIMEOUT) return -E2BIG; ops->timeout_ms = *(u32 *)(udata + moff); return 1; case offsetof(struct sched_ext_ops, exit_dump_len): ops->exit_dump_len = *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; return 1; case offsetof(struct sched_ext_ops, hotplug_seq): ops->hotplug_seq = *(u64 *)(udata + moff); return 1; } return 0; } static int bpf_scx_check_member(const struct btf_type *t, const struct btf_member *member, const struct bpf_prog *prog) { u32 moff = __btf_member_bit_offset(t, member) / 8; switch (moff) { case offsetof(struct sched_ext_ops, init_task): case offsetof(struct sched_ext_ops, cpu_online): case offsetof(struct sched_ext_ops, cpu_offline): case offsetof(struct sched_ext_ops, init): case offsetof(struct sched_ext_ops, exit): break; default: if (prog->sleepable) return -EINVAL; } return 0; } static int bpf_scx_reg(void *kdata, struct bpf_link *link) { return scx_ops_enable(kdata, link); } static void bpf_scx_unreg(void *kdata, struct bpf_link *link) { scx_ops_disable(SCX_EXIT_UNREG); kthread_flush_work(&scx_ops_disable_work); } static int bpf_scx_init(struct btf *btf) { u32 type_id; type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); if (type_id < 0) return -EINVAL; task_struct_type = btf_type_by_id(btf, type_id); task_struct_type_id = type_id; return 0; } static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) { /* * sched_ext does not support updating the actively-loaded BPF * scheduler, as registering a BPF scheduler can always fail if the * scheduler returns an error code for e.g. ops.init(), ops.init_task(), * etc. Similarly, we can always race with unregistration happening * elsewhere, such as with sysrq. */ return -EOPNOTSUPP; } static int bpf_scx_validate(void *kdata) { return 0; } static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} static void runnable_stub(struct task_struct *p, u64 enq_flags) {} static void running_stub(struct task_struct *p) {} static void stopping_stub(struct task_struct *p, bool runnable) {} static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } static void set_weight_stub(struct task_struct *p, u32 weight) {} static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} static void update_idle_stub(s32 cpu, bool idle) {} static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} static void enable_stub(struct task_struct *p) {} static void disable_stub(struct task_struct *p) {} static void cpu_online_stub(s32 cpu) {} static void cpu_offline_stub(s32 cpu) {} static s32 init_stub(void) { return -EINVAL; } static void exit_stub(struct scx_exit_info *info) {} static struct sched_ext_ops __bpf_ops_sched_ext_ops = { .select_cpu = select_cpu_stub, .enqueue = enqueue_stub, .dequeue = dequeue_stub, .dispatch = dispatch_stub, .runnable = runnable_stub, .running = running_stub, .stopping = stopping_stub, .quiescent = quiescent_stub, .yield = yield_stub, .core_sched_before = core_sched_before_stub, .set_weight = set_weight_stub, .set_cpumask = set_cpumask_stub, .update_idle = update_idle_stub, .cpu_acquire = cpu_acquire_stub, .cpu_release = cpu_release_stub, .init_task = init_task_stub, .exit_task = exit_task_stub, .enable = enable_stub, .disable = disable_stub, .cpu_online = cpu_online_stub, .cpu_offline = cpu_offline_stub, .init = init_stub, .exit = exit_stub, }; static struct bpf_struct_ops bpf_sched_ext_ops = { .verifier_ops = &bpf_scx_verifier_ops, .reg = bpf_scx_reg, .unreg = bpf_scx_unreg, .check_member = bpf_scx_check_member, .init_member = bpf_scx_init_member, .init = bpf_scx_init, .update = bpf_scx_update, .validate = bpf_scx_validate, .name = "sched_ext_ops", .owner = THIS_MODULE, .cfi_stubs = &__bpf_ops_sched_ext_ops }; /******************************************************************************** * System integration and init. */ static void sysrq_handle_sched_ext_reset(u8 key) { if (scx_ops_helper) scx_ops_disable(SCX_EXIT_SYSRQ); else pr_info("sched_ext: BPF scheduler not yet used\n"); } static const struct sysrq_key_op sysrq_sched_ext_reset_op = { .handler = sysrq_handle_sched_ext_reset, .help_msg = "reset-sched-ext(S)", .action_msg = "Disable sched_ext and revert all tasks to CFS", .enable_mask = SYSRQ_ENABLE_RTNICE, }; static void sysrq_handle_sched_ext_dump(u8 key) { struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; if (scx_enabled()) scx_dump_state(&ei, 0); } static const struct sysrq_key_op sysrq_sched_ext_dump_op = { .handler = sysrq_handle_sched_ext_dump, .help_msg = "dump-sched-ext(D)", .action_msg = "Trigger sched_ext debug dump", .enable_mask = SYSRQ_ENABLE_RTNICE, }; static bool can_skip_idle_kick(struct rq *rq) { lockdep_assert_rq_held(rq); /* * We can skip idle kicking if @rq is going to go through at least one * full SCX scheduling cycle before going idle. Just checking whether * curr is not idle is insufficient because we could be racing * balance_one() trying to pull the next task from a remote rq, which * may fail, and @rq may become idle afterwards. * * The race window is small and we don't and can't guarantee that @rq is * only kicked while idle anyway. Skip only when sure. */ return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); } static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) { struct rq *rq = cpu_rq(cpu); struct scx_rq *this_scx = &this_rq->scx; bool should_wait = false; unsigned long flags; raw_spin_rq_lock_irqsave(rq, flags); /* * During CPU hotplug, a CPU may depend on kicking itself to make * forward progress. Allow kicking self regardless of online state. */ if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { if (rq->curr->sched_class == &ext_sched_class) rq->curr->scx.slice = 0; cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); } if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { pseqs[cpu] = rq->scx.pnt_seq; should_wait = true; } resched_curr(rq); } else { cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); } raw_spin_rq_unlock_irqrestore(rq, flags); return should_wait; } static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) { struct rq *rq = cpu_rq(cpu); unsigned long flags; raw_spin_rq_lock_irqsave(rq, flags); if (!can_skip_idle_kick(rq) && (cpu_online(cpu) || cpu == cpu_of(this_rq))) resched_curr(rq); raw_spin_rq_unlock_irqrestore(rq, flags); } static void kick_cpus_irq_workfn(struct irq_work *irq_work) { struct rq *this_rq = this_rq(); struct scx_rq *this_scx = &this_rq->scx; unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); bool should_wait = false; s32 cpu; for_each_cpu(cpu, this_scx->cpus_to_kick) { should_wait |= kick_one_cpu(cpu, this_rq, pseqs); cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); } for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { kick_one_cpu_if_idle(cpu, this_rq); cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); } if (!should_wait) return; for_each_cpu(cpu, this_scx->cpus_to_wait) { unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; if (cpu != cpu_of(this_rq)) { /* * Pairs with smp_store_release() issued by this CPU in * scx_next_task_picked() on the resched path. * * We busy-wait here to guarantee that no other task can * be scheduled on our core before the target CPU has * entered the resched path. */ while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) cpu_relax(); } cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); } } /** * print_scx_info - print out sched_ext scheduler state * @log_lvl: the log level to use when printing * @p: target task * * If a sched_ext scheduler is enabled, print the name and state of the * scheduler. If @p is on sched_ext, print further information about the task. * * This function can be safely called on any task as long as the task_struct * itself is accessible. While safe, this function isn't synchronized and may * print out mixups or garbages of limited length. */ void print_scx_info(const char *log_lvl, struct task_struct *p) { enum scx_ops_enable_state state = scx_ops_enable_state(); const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; char runnable_at_buf[22] = "?"; struct sched_class *class; unsigned long runnable_at; if (state == SCX_OPS_DISABLED) return; /* * Carefully check if the task was running on sched_ext, and then * carefully copy the time it's been runnable, and its state. */ if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || class != &ext_sched_class) { printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all); return; } if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, sizeof(runnable_at))) scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", jiffies_delta_msecs(runnable_at, jiffies)); /* print everything onto one line to conserve console space */ printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, runnable_at_buf); } static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) { /* * SCX schedulers often have userspace components which are sometimes * involved in critial scheduling paths. PM operations involve freezing * userspace which can lead to scheduling misbehaviors including stalls. * Let's bypass while PM operations are in progress. */ switch (event) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: case PM_RESTORE_PREPARE: scx_ops_bypass(true); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: case PM_POST_RESTORE: scx_ops_bypass(false); break; } return NOTIFY_OK; } static struct notifier_block scx_pm_notifier = { .notifier_call = scx_pm_handler, }; void __init init_sched_ext_class(void) { s32 cpu, v; /* * The following is to prevent the compiler from optimizing out the enum * definitions so that BPF scheduler implementations can use them * through the generated vmlinux.h. */ WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT); BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); #ifdef CONFIG_SMP BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); #endif scx_kick_cpus_pnt_seqs = __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, __alignof__(scx_kick_cpus_pnt_seqs[0])); BUG_ON(!scx_kick_cpus_pnt_seqs); for_each_possible_cpu(cpu) { struct rq *rq = cpu_rq(cpu); init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); INIT_LIST_HEAD(&rq->scx.runnable_list); INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); if (cpu_online(cpu)) cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; } register_sysrq_key('S', &sysrq_sched_ext_reset_op); register_sysrq_key('D', &sysrq_sched_ext_dump_op); INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); } /******************************************************************************** * Helpers that can be called from the BPF scheduler. */ #include __bpf_kfunc_start_defs(); /** * scx_bpf_create_dsq - Create a custom DSQ * @dsq_id: DSQ to create * @node: NUMA node to allocate from * * Create a custom DSQ identified by @dsq_id. Can be called from ops.init() and * ops.init_task(). */ __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) { if (!scx_kf_allowed(SCX_KF_SLEEPABLE)) return -EINVAL; if (unlikely(node >= (int)nr_node_ids || (node < 0 && node != NUMA_NO_NODE))) return -EINVAL; return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_sleepable) BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) BTF_KFUNCS_END(scx_kfunc_ids_sleepable) static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_sleepable, }; __bpf_kfunc_start_defs(); /** * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() * @p: task_struct to select a CPU for * @prev_cpu: CPU @p was on previously * @wake_flags: %SCX_WAKE_* flags * @is_idle: out parameter indicating whether the returned CPU is idle * * Can only be called from ops.select_cpu() if the built-in CPU selection is * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. * @p, @prev_cpu and @wake_flags match ops.select_cpu(). * * Returns the picked CPU with *@is_idle indicating whether the picked CPU is * currently idle and thus a good candidate for direct dispatching. */ __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) { if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { *is_idle = false; return prev_cpu; } #ifdef CONFIG_SMP return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); #else *is_idle = false; return prev_cpu; #endif } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_select_cpu, }; static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) { if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) return false; lockdep_assert_irqs_disabled(); if (unlikely(!p)) { scx_ops_error("called with NULL task"); return false; } if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { scx_ops_error("invalid enq_flags 0x%llx", enq_flags); return false; } return true; } static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) { struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); struct task_struct *ddsp_task; ddsp_task = __this_cpu_read(direct_dispatch_task); if (ddsp_task) { mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); return; } if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { scx_ops_error("dispatch buffer overflow"); return; } dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ .task = p, .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, .dsq_id = dsq_id, .enq_flags = enq_flags, }; } __bpf_kfunc_start_defs(); /** * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ * @p: task_struct to dispatch * @dsq_id: DSQ to dispatch to * @slice: duration @p can run for in nsecs * @enq_flags: SCX_ENQ_* * * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe * to call this function spuriously. Can be called from ops.enqueue(), * ops.select_cpu(), and ops.dispatch(). * * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be * used to target the local DSQ of a CPU other than the enqueueing one. Use * ops.select_cpu() to be on the target CPU in the first place. * * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p * will be directly dispatched to the corresponding dispatch queue after * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). * @enq_flags are OR'd with the enqueue flags on the enqueue path before the * task is dispatched. * * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id * and this function can be called upto ops.dispatch_max_batch times to dispatch * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. * * This function doesn't have any locking restrictions and may be called under * BPF locks (in the future when BPF introduces more flexible locking). * * @p is allowed to run for @slice. The scheduling path is triggered on slice * exhaustion. If zero, the current residual slice is maintained. If * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with * scx_bpf_kick_cpu() to trigger scheduling. */ __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) { if (!scx_dispatch_preamble(p, enq_flags)) return; if (slice) p->scx.slice = slice; else p->scx.slice = p->scx.slice ?: 1; scx_dispatch_commit(p, dsq_id, enq_flags); } /** * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ * @p: task_struct to dispatch * @dsq_id: DSQ to dispatch to * @slice: duration @p can run for in nsecs * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ * @enq_flags: SCX_ENQ_* * * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. * Tasks queued into the priority queue are ordered by @vtime and always * consumed after the tasks in the FIFO queue. All other aspects are identical * to scx_bpf_dispatch(). * * @vtime ordering is according to time_before64() which considers wrapping. A * numerically larger vtime may indicate an earlier position in the ordering and * vice-versa. */ __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) { if (!scx_dispatch_preamble(p, enq_flags)) return; if (slice) p->scx.slice = slice; else p->scx.slice = p->scx.slice ?: 1; p->scx.dsq_vtime = vtime; scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_enqueue_dispatch, }; __bpf_kfunc_start_defs(); /** * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots * * Can only be called from ops.dispatch(). */ __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) { if (!scx_kf_allowed(SCX_KF_DISPATCH)) return 0; return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); } /** * scx_bpf_dispatch_cancel - Cancel the latest dispatch * * Cancel the latest dispatch. Can be called multiple times to cancel further * dispatches. Can only be called from ops.dispatch(). */ __bpf_kfunc void scx_bpf_dispatch_cancel(void) { struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); if (!scx_kf_allowed(SCX_KF_DISPATCH)) return; if (dspc->cursor > 0) dspc->cursor--; else scx_ops_error("dispatch buffer underflow"); } /** * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ * @dsq_id: DSQ to consume * * Consume a task from the non-local DSQ identified by @dsq_id and transfer it * to the current CPU's local DSQ for execution. Can only be called from * ops.dispatch(). * * This function flushes the in-flight dispatches from scx_bpf_dispatch() before * trying to consume the specified DSQ. It may also grab rq locks and thus can't * be called under any BPF locks. * * Returns %true if a task has been consumed, %false if there isn't any task to * consume. */ __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) { struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); struct scx_dispatch_q *dsq; if (!scx_kf_allowed(SCX_KF_DISPATCH)) return false; flush_dispatch_buf(dspc->rq); dsq = find_non_local_dsq(dsq_id); if (unlikely(!dsq)) { scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); return false; } if (consume_dispatch_q(dspc->rq, dsq)) { /* * A successfully consumed task can be dequeued before it starts * running while the CPU is trying to migrate other dispatched * tasks. Bump nr_tasks to tell balance_scx() to retry on empty * local DSQ. */ dspc->nr_tasks++; return true; } else { return false; } } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_dispatch) BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) BTF_ID_FLAGS(func, scx_bpf_consume) BTF_KFUNCS_END(scx_kfunc_ids_dispatch) static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_dispatch, }; __bpf_kfunc_start_defs(); /** * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ * * Iterate over all of the tasks currently enqueued on the local DSQ of the * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of * processed tasks. Can only be called from ops.cpu_release(). */ __bpf_kfunc u32 scx_bpf_reenqueue_local(void) { LIST_HEAD(tasks); u32 nr_enqueued = 0; struct rq *rq; struct task_struct *p, *n; if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) return 0; rq = cpu_rq(smp_processor_id()); lockdep_assert_rq_held(rq); /* * The BPF scheduler may choose to dispatch tasks back to * @rq->scx.local_dsq. Move all candidate tasks off to a private list * first to avoid processing the same tasks repeatedly. */ list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, scx.dsq_list.node) { /* * If @p is being migrated, @p's current CPU may not agree with * its allowed CPUs and the migration_cpu_stop is about to * deactivate and re-activate @p anyway. Skip re-enqueueing. * * While racing sched property changes may also dequeue and * re-enqueue a migrating task while its current CPU and allowed * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to * the current local DSQ for running tasks and thus are not * visible to the BPF scheduler. */ if (p->migration_pending) continue; dispatch_dequeue(rq, p); list_add_tail(&p->scx.dsq_list.node, &tasks); } list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { list_del_init(&p->scx.dsq_list.node); do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); nr_enqueued++; } return nr_enqueued; } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_cpu_release, }; __bpf_kfunc_start_defs(); /** * scx_bpf_kick_cpu - Trigger reschedule on a CPU * @cpu: cpu to kick * @flags: %SCX_KICK_* flags * * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or * trigger rescheduling on a busy CPU. This can be called from any online * scx_ops operation and the actual kicking is performed asynchronously through * an irq work. */ __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) { struct rq *this_rq; unsigned long irq_flags; if (!ops_cpu_valid(cpu, NULL)) return; /* * While bypassing for PM ops, IRQ handling may not be online which can * lead to irq_work_queue() malfunction such as infinite busy wait for * IRQ status update. Suppress kicking. */ if (scx_ops_bypassing()) return; local_irq_save(irq_flags); this_rq = this_rq(); /* * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting * rq locks. We can probably be smarter and avoid bouncing if called * from ops which don't hold a rq lock. */ if (flags & SCX_KICK_IDLE) { struct rq *target_rq = cpu_rq(cpu); if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); if (raw_spin_rq_trylock(target_rq)) { if (can_skip_idle_kick(target_rq)) { raw_spin_rq_unlock(target_rq); goto out; } raw_spin_rq_unlock(target_rq); } cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); } else { cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); if (flags & SCX_KICK_PREEMPT) cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); if (flags & SCX_KICK_WAIT) cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); } irq_work_queue(&this_rq->scx.kick_cpus_irq_work); out: local_irq_restore(irq_flags); } /** * scx_bpf_dsq_nr_queued - Return the number of queued tasks * @dsq_id: id of the DSQ * * Return the number of tasks in the DSQ matching @dsq_id. If not found, * -%ENOENT is returned. */ __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) { struct scx_dispatch_q *dsq; s32 ret; preempt_disable(); if (dsq_id == SCX_DSQ_LOCAL) { ret = READ_ONCE(this_rq()->scx.local_dsq.nr); goto out; } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; if (ops_cpu_valid(cpu, NULL)) { ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); goto out; } } else { dsq = find_non_local_dsq(dsq_id); if (dsq) { ret = READ_ONCE(dsq->nr); goto out; } } ret = -ENOENT; out: preempt_enable(); return ret; } /** * scx_bpf_destroy_dsq - Destroy a custom DSQ * @dsq_id: DSQ to destroy * * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is * empty and no further tasks are dispatched to it. Ignored if called on a DSQ * which doesn't exist. Can be called from any online scx_ops operations. */ __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) { destroy_dsq(dsq_id); } /** * bpf_iter_scx_dsq_new - Create a DSQ iterator * @it: iterator to initialize * @dsq_id: DSQ to iterate * @flags: %SCX_DSQ_ITER_* * * Initialize BPF iterator @it which can be used with bpf_for_each() to walk * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes * tasks which are already queued when this function is invoked. */ __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) { struct bpf_iter_scx_dsq_kern *kit = (void *)it; BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > sizeof(struct bpf_iter_scx_dsq)); BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != __alignof__(struct bpf_iter_scx_dsq)); if (flags & ~__SCX_DSQ_ITER_ALL_FLAGS) return -EINVAL; kit->dsq = find_non_local_dsq(dsq_id); if (!kit->dsq) return -ENOENT; INIT_LIST_HEAD(&kit->cursor.node); kit->cursor.is_bpf_iter_cursor = true; kit->dsq_seq = READ_ONCE(kit->dsq->seq); kit->flags = flags; return 0; } /** * bpf_iter_scx_dsq_next - Progress a DSQ iterator * @it: iterator to progress * * Return the next task. See bpf_iter_scx_dsq_new(). */ __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) { struct bpf_iter_scx_dsq_kern *kit = (void *)it; bool rev = kit->flags & SCX_DSQ_ITER_REV; struct task_struct *p; unsigned long flags; if (!kit->dsq) return NULL; raw_spin_lock_irqsave(&kit->dsq->lock, flags); if (list_empty(&kit->cursor.node)) p = NULL; else p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); /* * Only tasks which were queued before the iteration started are * visible. This bounds BPF iterations and guarantees that vtime never * jumps in the other direction while iterating. */ do { p = nldsq_next_task(kit->dsq, p, rev); } while (p && unlikely(u32_before(kit->dsq_seq, p->scx.dsq_seq))); if (p) { if (rev) list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); else list_move(&kit->cursor.node, &p->scx.dsq_list.node); } else { list_del_init(&kit->cursor.node); } raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); return p; } /** * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator * @it: iterator to destroy * * Undo scx_iter_scx_dsq_new(). */ __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) { struct bpf_iter_scx_dsq_kern *kit = (void *)it; if (!kit->dsq) return; if (!list_empty(&kit->cursor.node)) { unsigned long flags; raw_spin_lock_irqsave(&kit->dsq->lock, flags); list_del_init(&kit->cursor.node); raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); } kit->dsq = NULL; } __bpf_kfunc_end_defs(); static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, char *fmt, unsigned long long *data, u32 data__sz) { struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; s32 ret; if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || (data__sz && !data)) { scx_ops_error("invalid data=%p and data__sz=%u", (void *)data, data__sz); return -EINVAL; } ret = copy_from_kernel_nofault(data_buf, data, data__sz); if (ret < 0) { scx_ops_error("failed to read data fields (%d)", ret); return ret; } ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, &bprintf_data); if (ret < 0) { scx_ops_error("format preparation failed (%d)", ret); return ret; } ret = bstr_printf(line_buf, line_size, fmt, bprintf_data.bin_args); bpf_bprintf_cleanup(&bprintf_data); if (ret < 0) { scx_ops_error("(\"%s\", %p, %u) failed to format", fmt, data, data__sz); return ret; } return ret; } static s32 bstr_format(struct scx_bstr_buf *buf, char *fmt, unsigned long long *data, u32 data__sz) { return __bstr_format(buf->data, buf->line, sizeof(buf->line), fmt, data, data__sz); } __bpf_kfunc_start_defs(); /** * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. * @exit_code: Exit value to pass to user space via struct scx_exit_info. * @fmt: error message format string * @data: format string parameters packaged using ___bpf_fill() macro * @data__sz: @data len, must end in '__sz' for the verifier * * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops * disabling. */ __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) { unsigned long flags; raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); } /** * scx_bpf_error_bstr - Indicate fatal error * @fmt: error message format string * @data: format string parameters packaged using ___bpf_fill() macro * @data__sz: @data len, must end in '__sz' for the verifier * * Indicate that the BPF scheduler encountered a fatal error and initiate ops * disabling. */ __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data__sz) { unsigned long flags; raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); } /** * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler * @fmt: format string * @data: format string parameters packaged using ___bpf_fill() macro * @data__sz: @data len, must end in '__sz' for the verifier * * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and * dump_task() to generate extra debug dump specific to the BPF scheduler. * * The extra dump may be multiple lines. A single line may be split over * multiple calls. The last line is automatically terminated. */ __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data__sz) { struct scx_dump_data *dd = &scx_dump_data; struct scx_bstr_buf *buf = &dd->buf; s32 ret; if (raw_smp_processor_id() != dd->cpu) { scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); return; } /* append the formatted string to the line buf */ ret = __bstr_format(buf->data, buf->line + dd->cursor, sizeof(buf->line) - dd->cursor, fmt, data, data__sz); if (ret < 0) { dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", dd->prefix, fmt, data, data__sz, ret); return; } dd->cursor += ret; dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); if (!dd->cursor) return; /* * If the line buf overflowed or ends in a newline, flush it into the * dump. This is to allow the caller to generate a single line over * multiple calls. As ops_dump_flush() can also handle multiple lines in * the line buf, the only case which can lead to an unexpected * truncation is when the caller keeps generating newlines in the middle * instead of the end consecutively. Don't do that. */ if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') ops_dump_flush(); } /** * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU * @cpu: CPU of interest * * Return the maximum relative capacity of @cpu in relation to the most * performant CPU in the system. The return value is in the range [1, * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). */ __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) { if (ops_cpu_valid(cpu, NULL)) return arch_scale_cpu_capacity(cpu); else return SCX_CPUPERF_ONE; } /** * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU * @cpu: CPU of interest * * Return the current relative performance of @cpu in relation to its maximum. * The return value is in the range [1, %SCX_CPUPERF_ONE]. * * The current performance level of a CPU in relation to the maximum performance * available in the system can be calculated as follows: * * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE * * The result is in the range [1, %SCX_CPUPERF_ONE]. */ __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) { if (ops_cpu_valid(cpu, NULL)) return arch_scale_freq_capacity(cpu); else return SCX_CPUPERF_ONE; } /** * scx_bpf_cpuperf_set - Set the relative performance target of a CPU * @cpu: CPU of interest * @perf: target performance level [0, %SCX_CPUPERF_ONE] * @flags: %SCX_CPUPERF_* flags * * Set the target performance level of @cpu to @perf. @perf is in linear * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the * schedutil cpufreq governor chooses the target frequency. * * The actual performance level chosen, CPU grouping, and the overhead and * latency of the operations are dependent on the hardware and cpufreq driver in * use. Consult hardware and cpufreq documentation for more information. The * current performance level can be monitored using scx_bpf_cpuperf_cur(). */ __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) { if (unlikely(perf > SCX_CPUPERF_ONE)) { scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); return; } if (ops_cpu_valid(cpu, NULL)) { struct rq *rq = cpu_rq(cpu); rq->scx.cpuperf_target = perf; rcu_read_lock_sched_notrace(); cpufreq_update_util(cpu_rq(cpu), 0); rcu_read_unlock_sched_notrace(); } } /** * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs * * All valid CPU IDs in the system are smaller than the returned value. */ __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) { return nr_cpu_ids; } /** * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask */ __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) { return cpu_possible_mask; } /** * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask */ __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) { return cpu_online_mask; } /** * scx_bpf_put_cpumask - Release a possible/online cpumask * @cpumask: cpumask to release */ __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) { /* * Empty function body because we aren't actually acquiring or releasing * a reference to a global cpumask, which is read-only in the caller and * is never released. The acquire / release semantics here are just used * to make the cpumask is a trusted pointer in the caller. */ } /** * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking * per-CPU cpumask. * * Returns NULL if idle tracking is not enabled, or running on a UP kernel. */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) { if (!static_branch_likely(&scx_builtin_idle_enabled)) { scx_ops_error("built-in idle tracking is disabled"); return cpu_none_mask; } #ifdef CONFIG_SMP return idle_masks.cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, * per-physical-core cpumask. Can be used to determine if an entire physical * core is free. * * Returns NULL if idle tracking is not enabled, or running on a UP kernel. */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) { if (!static_branch_likely(&scx_builtin_idle_enabled)) { scx_ops_error("built-in idle tracking is disabled"); return cpu_none_mask; } #ifdef CONFIG_SMP if (sched_smt_active()) return idle_masks.smt; else return idle_masks.cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to * either the percpu, or SMT idle-tracking cpumask. */ __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) { /* * Empty function body because we aren't actually acquiring or releasing * a reference to a global idle cpumask, which is read-only in the * caller and is never released. The acquire / release semantics here * are just used to make the cpumask a trusted pointer in the caller. */ } /** * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state * @cpu: cpu to test and clear idle for * * Returns %true if @cpu was idle and its idle state was successfully cleared. * %false otherwise. * * Unavailable if ops.update_idle() is implemented and * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. */ __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) { if (!static_branch_likely(&scx_builtin_idle_enabled)) { scx_ops_error("built-in idle tracking is disabled"); return false; } if (ops_cpu_valid(cpu, NULL)) return test_and_clear_cpu_idle(cpu); else return false; } /** * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu * @cpus_allowed: Allowed cpumask * @flags: %SCX_PICK_IDLE_CPU_* flags * * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu * number on success. -%EBUSY if no matching cpu was found. * * Idle CPU tracking may race against CPU scheduling state transitions. For * example, this function may return -%EBUSY as CPUs are transitioning into the * idle state. If the caller then assumes that there will be dispatch events on * the CPUs as they were all busy, the scheduler may end up stalling with CPUs * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch * event in the near future. * * Unavailable if ops.update_idle() is implemented and * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. */ __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { if (!static_branch_likely(&scx_builtin_idle_enabled)) { scx_ops_error("built-in idle tracking is disabled"); return -EBUSY; } return scx_pick_idle_cpu(cpus_allowed, flags); } /** * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU * @cpus_allowed: Allowed cpumask * @flags: %SCX_PICK_IDLE_CPU_* flags * * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is * empty. * * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not * set, this function can't tell which CPUs are idle and will always pick any * CPU. */ __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, u64 flags) { s32 cpu; if (static_branch_likely(&scx_builtin_idle_enabled)) { cpu = scx_pick_idle_cpu(cpus_allowed, flags); if (cpu >= 0) return cpu; } cpu = cpumask_any_distribute(cpus_allowed); if (cpu < nr_cpu_ids) return cpu; else return -EBUSY; } /** * scx_bpf_task_running - Is task currently running? * @p: task of interest */ __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) { return task_rq(p)->curr == p; } /** * scx_bpf_task_cpu - CPU a task is currently associated with * @p: task of interest */ __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) { return task_cpu(p); } /** * scx_bpf_cpu_rq - Fetch the rq of a CPU * @cpu: CPU of the rq */ __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) { if (!ops_cpu_valid(cpu, NULL)) return NULL; return cpu_rq(cpu); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_any) BTF_ID_FLAGS(func, scx_bpf_kick_cpu) BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_cpu_rq) BTF_KFUNCS_END(scx_kfunc_ids_any) static const struct btf_kfunc_id_set scx_kfunc_set_any = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_any, }; static int __init scx_init(void) { int ret; /* * kfunc registration can't be done from init_sched_ext_class() as * register_btf_kfunc_id_set() needs most of the system to be up. * * Some kfuncs are context-sensitive and can only be called from * specific SCX ops. They are grouped into BTF sets accordingly. * Unfortunately, BPF currently doesn't have a way of enforcing such * restrictions. Eventually, the verifier should be able to enforce * them. For now, register them the same and make each kfunc explicitly * check using scx_kf_allowed(). */ if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_sleepable)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_enqueue_dispatch)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_dispatch)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_cpu_release)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_any)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_any)) || (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_any))) { pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); return ret; } ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); if (ret) { pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); return ret; } ret = register_pm_notifier(&scx_pm_notifier); if (ret) { pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); return ret; } scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); if (!scx_kset) { pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); return -ENOMEM; } ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); if (ret < 0) { pr_err("sched_ext: Failed to add global attributes\n"); return ret; } return 0; } __initcall(scx_init);