// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips * * Copyright (C) The Asahi Linux Contributors */ #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #define NCHANNELS_MAX 64 #define IRQ_NOUTPUTS 4 /* * For allocation purposes we split the cache * memory into blocks of fixed size (given in bytes). */ #define SRAM_BLOCK 2048 #define RING_WRITE_SLOT GENMASK(1, 0) #define RING_READ_SLOT GENMASK(5, 4) #define RING_FULL BIT(9) #define RING_EMPTY BIT(8) #define RING_ERR BIT(10) #define STATUS_DESC_DONE BIT(0) #define STATUS_ERR BIT(6) #define FLAG_DESC_NOTIFY BIT(16) #define REG_TX_START 0x0000 #define REG_TX_STOP 0x0004 #define REG_RX_START 0x0008 #define REG_RX_STOP 0x000c #define REG_IMPRINT 0x0090 #define REG_TX_SRAM_SIZE 0x0094 #define REG_RX_SRAM_SIZE 0x0098 #define REG_CHAN_CTL(ch) (0x8000 + (ch) * 0x200) #define REG_CHAN_CTL_RST_RINGS BIT(0) #define REG_DESC_RING(ch) (0x8070 + (ch) * 0x200) #define REG_REPORT_RING(ch) (0x8074 + (ch) * 0x200) #define REG_RESIDUE(ch) (0x8064 + (ch) * 0x200) #define REG_BUS_WIDTH(ch) (0x8040 + (ch) * 0x200) #define BUS_WIDTH_8BIT 0x00 #define BUS_WIDTH_16BIT 0x01 #define BUS_WIDTH_32BIT 0x02 #define BUS_WIDTH_FRAME_2_WORDS 0x10 #define BUS_WIDTH_FRAME_4_WORDS 0x20 #define REG_CHAN_SRAM_CARVEOUT(ch) (0x8050 + (ch) * 0x200) #define CHAN_SRAM_CARVEOUT_SIZE GENMASK(31, 16) #define CHAN_SRAM_CARVEOUT_BASE GENMASK(15, 0) #define REG_CHAN_FIFOCTL(ch) (0x8054 + (ch) * 0x200) #define CHAN_FIFOCTL_LIMIT GENMASK(31, 16) #define CHAN_FIFOCTL_THRESHOLD GENMASK(15, 0) #define REG_DESC_WRITE(ch) (0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000) #define REG_REPORT_READ(ch) (0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000) #define REG_TX_INTSTATE(idx) (0x0030 + (idx) * 4) #define REG_RX_INTSTATE(idx) (0x0040 + (idx) * 4) #define REG_GLOBAL_INTSTATE(idx) (0x0050 + (idx) * 4) #define REG_CHAN_INTSTATUS(ch, idx) (0x8010 + (ch) * 0x200 + (idx) * 4) #define REG_CHAN_INTMASK(ch, idx) (0x8020 + (ch) * 0x200 + (idx) * 4) struct admac_data; struct admac_tx; struct admac_chan { unsigned int no; struct admac_data *host; struct dma_chan chan; struct tasklet_struct tasklet; u32 carveout; spinlock_t lock; struct admac_tx *current_tx; int nperiod_acks; /* * We maintain a 'submitted' and 'issued' list mainly for interface * correctness. Typical use of the driver (per channel) will be * prepping, submitting and issuing a single cyclic transaction which * will stay current until terminate_all is called. */ struct list_head submitted; struct list_head issued; struct list_head to_free; }; struct admac_sram { u32 size; /* * SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than * 64K and a 32-bit bitfield over 2K blocks covers it. */ u32 allocated; }; struct admac_data { struct dma_device dma; struct device *dev; __iomem void *base; struct reset_control *rstc; struct mutex cache_alloc_lock; struct admac_sram txcache, rxcache; int irq; int irq_index; int nchannels; struct admac_chan channels[]; }; struct admac_tx { struct dma_async_tx_descriptor tx; bool cyclic; dma_addr_t buf_addr; dma_addr_t buf_end; size_t buf_len; size_t period_len; size_t submitted_pos; size_t reclaimed_pos; struct list_head node; }; static int admac_alloc_sram_carveout(struct admac_data *ad, enum dma_transfer_direction dir, u32 *out) { struct admac_sram *sram; int i, ret = 0, nblocks; if (dir == DMA_MEM_TO_DEV) sram = &ad->txcache; else sram = &ad->rxcache; mutex_lock(&ad->cache_alloc_lock); nblocks = sram->size / SRAM_BLOCK; for (i = 0; i < nblocks; i++) if (!(sram->allocated & BIT(i))) break; if (i < nblocks) { *out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) | FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK); sram->allocated |= BIT(i); } else { ret = -EBUSY; } mutex_unlock(&ad->cache_alloc_lock); return ret; } static void admac_free_sram_carveout(struct admac_data *ad, enum dma_transfer_direction dir, u32 carveout) { struct admac_sram *sram; u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout); int i; if (dir == DMA_MEM_TO_DEV) sram = &ad->txcache; else sram = &ad->rxcache; if (WARN_ON(base >= sram->size)) return; mutex_lock(&ad->cache_alloc_lock); i = base / SRAM_BLOCK; sram->allocated &= ~BIT(i); mutex_unlock(&ad->cache_alloc_lock); } static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val) { void __iomem *addr = ad->base + reg; u32 curr = readl_relaxed(addr); writel_relaxed((curr & ~mask) | (val & mask), addr); } static struct admac_chan *to_admac_chan(struct dma_chan *chan) { return container_of(chan, struct admac_chan, chan); } static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct admac_tx, tx); } static enum dma_transfer_direction admac_chan_direction(int channo) { /* Channel directions are hardwired */ return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; } static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx) { struct admac_tx *adtx = to_admac_tx(tx); struct admac_chan *adchan = to_admac_chan(tx->chan); unsigned long flags; dma_cookie_t cookie; spin_lock_irqsave(&adchan->lock, flags); cookie = dma_cookie_assign(tx); list_add_tail(&adtx->node, &adchan->submitted); spin_unlock_irqrestore(&adchan->lock, flags); return cookie; } static int admac_desc_free(struct dma_async_tx_descriptor *tx) { kfree(to_admac_tx(tx)); return 0; } static struct dma_async_tx_descriptor *admac_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct admac_chan *adchan = container_of(chan, struct admac_chan, chan); struct admac_tx *adtx; if (direction != admac_chan_direction(adchan->no)) return NULL; adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT); if (!adtx) return NULL; adtx->cyclic = true; adtx->buf_addr = buf_addr; adtx->buf_len = buf_len; adtx->buf_end = buf_addr + buf_len; adtx->period_len = period_len; adtx->submitted_pos = 0; adtx->reclaimed_pos = 0; dma_async_tx_descriptor_init(&adtx->tx, chan); adtx->tx.tx_submit = admac_tx_submit; adtx->tx.desc_free = admac_desc_free; return &adtx->tx; } /* * Write one hardware descriptor for a dmaengine cyclic transaction. */ static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo, struct admac_tx *tx) { dma_addr_t addr; addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len); /* If happens means we have buggy code */ WARN_ON_ONCE(addr + tx->period_len > tx->buf_end); dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n", channo, &addr, tx->period_len, FLAG_DESC_NOTIFY); writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo)); writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo)); writel_relaxed(tx->period_len, ad->base + REG_DESC_WRITE(channo)); writel_relaxed(FLAG_DESC_NOTIFY, ad->base + REG_DESC_WRITE(channo)); tx->submitted_pos += tx->period_len; tx->submitted_pos %= 2 * tx->buf_len; } /* * Write all the hardware descriptors for a dmaengine cyclic * transaction there is space for. */ static void admac_cyclic_write_desc(struct admac_data *ad, int channo, struct admac_tx *tx) { int i; for (i = 0; i < 4; i++) { if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL) break; admac_cyclic_write_one_desc(ad, channo, tx); } } static int admac_ring_noccupied_slots(int ringval) { int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval); int rdslot = FIELD_GET(RING_READ_SLOT, ringval); if (wrslot != rdslot) { return (wrslot + 4 - rdslot) % 4; } else { WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0); if (ringval & RING_FULL) return 4; else return 0; } } /* * Read from hardware the residue of a cyclic dmaengine transaction. */ static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo, struct admac_tx *adtx) { u32 ring1, ring2; u32 residue1, residue2; int nreports; size_t pos; ring1 = readl_relaxed(ad->base + REG_REPORT_RING(channo)); residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo)); ring2 = readl_relaxed(ad->base + REG_REPORT_RING(channo)); residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo)); if (residue2 > residue1) { /* * Controller must have loaded next descriptor between * the two residue reads */ nreports = admac_ring_noccupied_slots(ring1) + 1; } else { /* No descriptor load between the two reads, ring2 is safe to use */ nreports = admac_ring_noccupied_slots(ring2); } pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2; return adtx->buf_len - pos % adtx->buf_len; } static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct admac_chan *adchan = to_admac_chan(chan); struct admac_data *ad = adchan->host; struct admac_tx *adtx; enum dma_status ret; size_t residue; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&adchan->lock, flags); adtx = adchan->current_tx; if (adtx && adtx->tx.cookie == cookie) { ret = DMA_IN_PROGRESS; residue = admac_cyclic_read_residue(ad, adchan->no, adtx); } else { ret = DMA_IN_PROGRESS; residue = 0; list_for_each_entry(adtx, &adchan->issued, node) { if (adtx->tx.cookie == cookie) { residue = adtx->buf_len; break; } } } spin_unlock_irqrestore(&adchan->lock, flags); dma_set_residue(txstate, residue); return ret; } static void admac_start_chan(struct admac_chan *adchan) { struct admac_data *ad = adchan->host; u32 startbit = 1 << (adchan->no / 2); writel_relaxed(STATUS_DESC_DONE | STATUS_ERR, ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index)); writel_relaxed(STATUS_DESC_DONE | STATUS_ERR, ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index)); switch (admac_chan_direction(adchan->no)) { case DMA_MEM_TO_DEV: writel_relaxed(startbit, ad->base + REG_TX_START); break; case DMA_DEV_TO_MEM: writel_relaxed(startbit, ad->base + REG_RX_START); break; default: break; } dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no); } static void admac_stop_chan(struct admac_chan *adchan) { struct admac_data *ad = adchan->host; u32 stopbit = 1 << (adchan->no / 2); switch (admac_chan_direction(adchan->no)) { case DMA_MEM_TO_DEV: writel_relaxed(stopbit, ad->base + REG_TX_STOP); break; case DMA_DEV_TO_MEM: writel_relaxed(stopbit, ad->base + REG_RX_STOP); break; default: break; } dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no); } static void admac_reset_rings(struct admac_chan *adchan) { struct admac_data *ad = adchan->host; writel_relaxed(REG_CHAN_CTL_RST_RINGS, ad->base + REG_CHAN_CTL(adchan->no)); writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no)); } static void admac_start_current_tx(struct admac_chan *adchan) { struct admac_data *ad = adchan->host; int ch = adchan->no; admac_reset_rings(adchan); writel_relaxed(0, ad->base + REG_CHAN_CTL(ch)); admac_cyclic_write_one_desc(ad, ch, adchan->current_tx); admac_start_chan(adchan); admac_cyclic_write_desc(ad, ch, adchan->current_tx); } static void admac_issue_pending(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); struct admac_tx *tx; unsigned long flags; spin_lock_irqsave(&adchan->lock, flags); list_splice_tail_init(&adchan->submitted, &adchan->issued); if (!list_empty(&adchan->issued) && !adchan->current_tx) { tx = list_first_entry(&adchan->issued, struct admac_tx, node); list_del(&tx->node); adchan->current_tx = tx; adchan->nperiod_acks = 0; admac_start_current_tx(adchan); } spin_unlock_irqrestore(&adchan->lock, flags); } static int admac_pause(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); admac_stop_chan(adchan); return 0; } static int admac_resume(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); admac_start_chan(adchan); return 0; } static int admac_terminate_all(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); unsigned long flags; spin_lock_irqsave(&adchan->lock, flags); admac_stop_chan(adchan); admac_reset_rings(adchan); adchan->current_tx = NULL; /* * Descriptors can only be freed after the tasklet * has been killed (in admac_synchronize). */ list_splice_tail_init(&adchan->submitted, &adchan->to_free); list_splice_tail_init(&adchan->issued, &adchan->to_free); spin_unlock_irqrestore(&adchan->lock, flags); return 0; } static void admac_synchronize(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); struct admac_tx *adtx, *_adtx; unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&adchan->lock, flags); list_splice_tail_init(&adchan->to_free, &head); spin_unlock_irqrestore(&adchan->lock, flags); tasklet_kill(&adchan->tasklet); list_for_each_entry_safe(adtx, _adtx, &head, node) { list_del(&adtx->node); admac_desc_free(&adtx->tx); } } static int admac_alloc_chan_resources(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); struct admac_data *ad = adchan->host; int ret; dma_cookie_init(&adchan->chan); ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no), &adchan->carveout); if (ret < 0) return ret; writel_relaxed(adchan->carveout, ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no)); return 0; } static void admac_free_chan_resources(struct dma_chan *chan) { struct admac_chan *adchan = to_admac_chan(chan); admac_terminate_all(chan); admac_synchronize(chan); admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no), adchan->carveout); } static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data; unsigned int index; if (dma_spec->args_count != 1) return NULL; index = dma_spec->args[0]; if (index >= ad->nchannels) { dev_err(ad->dev, "channel index %u out of bounds\n", index); return NULL; } return dma_get_slave_channel(&ad->channels[index].chan); } static int admac_drain_reports(struct admac_data *ad, int channo) { int count; for (count = 0; count < 4; count++) { u32 countval_hi, countval_lo, unk1, flags; if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY) break; countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo)); countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo)); unk1 = readl_relaxed(ad->base + REG_REPORT_READ(channo)); flags = readl_relaxed(ad->base + REG_REPORT_READ(channo)); dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n", channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags); } return count; } static void admac_handle_status_err(struct admac_data *ad, int channo) { bool handled = false; if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) { writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo)); dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo); handled = true; } if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) { writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo)); dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo); handled = true; } if (unlikely(!handled)) { dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo); admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index), STATUS_ERR, 0); } } static void admac_handle_status_desc_done(struct admac_data *ad, int channo) { struct admac_chan *adchan = &ad->channels[channo]; unsigned long flags; int nreports; writel_relaxed(STATUS_DESC_DONE, ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index)); spin_lock_irqsave(&adchan->lock, flags); nreports = admac_drain_reports(ad, channo); if (adchan->current_tx) { struct admac_tx *tx = adchan->current_tx; adchan->nperiod_acks += nreports; tx->reclaimed_pos += nreports * tx->period_len; tx->reclaimed_pos %= 2 * tx->buf_len; admac_cyclic_write_desc(ad, channo, tx); tasklet_schedule(&adchan->tasklet); } spin_unlock_irqrestore(&adchan->lock, flags); } static void admac_handle_chan_int(struct admac_data *ad, int no) { u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index)); if (cause & STATUS_ERR) admac_handle_status_err(ad, no); if (cause & STATUS_DESC_DONE) admac_handle_status_desc_done(ad, no); } static irqreturn_t admac_interrupt(int irq, void *devid) { struct admac_data *ad = devid; u32 rx_intstate, tx_intstate, global_intstate; int i; rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index)); tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index)); global_intstate = readl_relaxed(ad->base + REG_GLOBAL_INTSTATE(ad->irq_index)); if (!tx_intstate && !rx_intstate && !global_intstate) return IRQ_NONE; for (i = 0; i < ad->nchannels; i += 2) { if (tx_intstate & 1) admac_handle_chan_int(ad, i); tx_intstate >>= 1; } for (i = 1; i < ad->nchannels; i += 2) { if (rx_intstate & 1) admac_handle_chan_int(ad, i); rx_intstate >>= 1; } if (global_intstate) { dev_warn(ad->dev, "clearing unknown global interrupt flag: %x\n", global_intstate); writel_relaxed(~(u32) 0, ad->base + REG_GLOBAL_INTSTATE(ad->irq_index)); } return IRQ_HANDLED; } static void admac_chan_tasklet(struct tasklet_struct *t) { struct admac_chan *adchan = from_tasklet(adchan, t, tasklet); struct admac_tx *adtx; struct dmaengine_desc_callback cb; struct dmaengine_result tx_result; int nacks; spin_lock_irq(&adchan->lock); adtx = adchan->current_tx; nacks = adchan->nperiod_acks; adchan->nperiod_acks = 0; spin_unlock_irq(&adchan->lock); if (!adtx || !nacks) return; tx_result.result = DMA_TRANS_NOERROR; tx_result.residue = 0; dmaengine_desc_get_callback(&adtx->tx, &cb); while (nacks--) dmaengine_desc_callback_invoke(&cb, &tx_result); } static int admac_device_config(struct dma_chan *chan, struct dma_slave_config *config) { struct admac_chan *adchan = to_admac_chan(chan); struct admac_data *ad = adchan->host; bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV; int wordsize = 0; u32 bus_width = 0; switch (is_tx ? config->dst_addr_width : config->src_addr_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: wordsize = 1; bus_width |= BUS_WIDTH_8BIT; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: wordsize = 2; bus_width |= BUS_WIDTH_16BIT; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: wordsize = 4; bus_width |= BUS_WIDTH_32BIT; break; default: return -EINVAL; } /* * We take port_window_size to be the number of words in a frame. * * The controller has some means of out-of-band signalling, to the peripheral, * of words position in a frame. That's where the importance of this control * comes from. */ switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) { case 0 ... 1: break; case 2: bus_width |= BUS_WIDTH_FRAME_2_WORDS; break; case 4: bus_width |= BUS_WIDTH_FRAME_4_WORDS; break; default: return -EINVAL; } writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no)); /* * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be * held in controller's per-channel FIFO. Transfers seem to be triggered * around the time FIFO occupancy touches FIFOCTL_THRESHOLD. * * The numbers we set are more or less arbitrary. */ writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize) | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize), ad->base + REG_CHAN_FIFOCTL(adchan->no)); return 0; } static int admac_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct admac_data *ad; struct dma_device *dma; int nchannels; int err, irq, i; err = of_property_read_u32(np, "dma-channels", &nchannels); if (err || nchannels > NCHANNELS_MAX) { dev_err(&pdev->dev, "missing or invalid dma-channels property\n"); return -EINVAL; } ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL); if (!ad) return -ENOMEM; platform_set_drvdata(pdev, ad); ad->dev = &pdev->dev; ad->nchannels = nchannels; mutex_init(&ad->cache_alloc_lock); /* * The controller has 4 IRQ outputs. Try them all until * we find one we can use. */ for (i = 0; i < IRQ_NOUTPUTS; i++) { irq = platform_get_irq_optional(pdev, i); if (irq >= 0) { ad->irq_index = i; break; } } if (irq < 0) return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n"); ad->irq = irq; ad->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ad->base)) return dev_err_probe(&pdev->dev, PTR_ERR(ad->base), "unable to obtain MMIO resource\n"); ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(ad->rstc)) return PTR_ERR(ad->rstc); dma = &ad->dma; dma_cap_set(DMA_PRIVATE, dma->cap_mask); dma_cap_set(DMA_CYCLIC, dma->cap_mask); dma->dev = &pdev->dev; dma->device_alloc_chan_resources = admac_alloc_chan_resources; dma->device_free_chan_resources = admac_free_chan_resources; dma->device_tx_status = admac_tx_status; dma->device_issue_pending = admac_issue_pending; dma->device_terminate_all = admac_terminate_all; dma->device_synchronize = admac_synchronize; dma->device_prep_dma_cyclic = admac_prep_dma_cyclic; dma->device_config = admac_device_config; dma->device_pause = admac_pause; dma->device_resume = admac_resume; dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); INIT_LIST_HEAD(&dma->channels); for (i = 0; i < nchannels; i++) { struct admac_chan *adchan = &ad->channels[i]; adchan->host = ad; adchan->no = i; adchan->chan.device = &ad->dma; spin_lock_init(&adchan->lock); INIT_LIST_HEAD(&adchan->submitted); INIT_LIST_HEAD(&adchan->issued); INIT_LIST_HEAD(&adchan->to_free); list_add_tail(&adchan->chan.device_node, &dma->channels); tasklet_setup(&adchan->tasklet, admac_chan_tasklet); } err = reset_control_reset(ad->rstc); if (err) return dev_err_probe(&pdev->dev, err, "unable to trigger reset\n"); err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad); if (err) { dev_err_probe(&pdev->dev, err, "unable to register interrupt\n"); goto free_reset; } err = dma_async_device_register(&ad->dma); if (err) { dev_err_probe(&pdev->dev, err, "failed to register DMA device\n"); goto free_irq; } err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad); if (err) { dma_async_device_unregister(&ad->dma); dev_err_probe(&pdev->dev, err, "failed to register with OF\n"); goto free_irq; } ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE); ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE); dev_info(&pdev->dev, "Audio DMA Controller\n"); dev_info(&pdev->dev, "imprint %x TX cache %u RX cache %u\n", readl_relaxed(ad->base + REG_IMPRINT), ad->txcache.size, ad->rxcache.size); return 0; free_irq: free_irq(ad->irq, ad); free_reset: reset_control_rearm(ad->rstc); return err; } static int admac_remove(struct platform_device *pdev) { struct admac_data *ad = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&ad->dma); free_irq(ad->irq, ad); reset_control_rearm(ad->rstc); return 0; } static const struct of_device_id admac_of_match[] = { { .compatible = "apple,admac", }, { } }; MODULE_DEVICE_TABLE(of, admac_of_match); static struct platform_driver apple_admac_driver = { .driver = { .name = "apple-admac", .of_match_table = admac_of_match, }, .probe = admac_probe, .remove = admac_remove, }; module_platform_driver(apple_admac_driver); MODULE_AUTHOR("Martin PoviĊĦer "); MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs"); MODULE_LICENSE("GPL");