.. SPDX-License-Identifier: GPL-2.0 ============= Page Pool API ============= The page_pool allocator is optimized for the XDP mode that uses one frame per-page, but it can fallback on the regular page allocator APIs. Basic use involves replacing alloc_pages() calls with the page_pool_alloc_pages() call. Drivers should use page_pool_dev_alloc_pages() replacing dev_alloc_pages(). API keeps track of in-flight pages, in order to let API user know when it is safe to free a page_pool object. Thus, API users must call page_pool_put_page() to free the page, or attach the page to a page_pool-aware objects like skbs marked with skb_mark_for_recycle(). API user must call page_pool_put_page() once on a page, as it will either recycle the page, or in case of refcnt > 1, it will release the DMA mapping and in-flight state accounting. Architecture overview ===================== .. code-block:: none +------------------+ | Driver | +------------------+ ^ | | | v +--------------------------------------------+ | request memory | +--------------------------------------------+ ^ ^ | | | Pool empty | Pool has entries | | v v +-----------------------+ +------------------------+ | alloc (and map) pages | | get page from cache | +-----------------------+ +------------------------+ ^ ^ | | | cache available | No entries, refill | | from ptr-ring | | v v +-----------------+ +------------------+ | Fast cache | | ptr-ring cache | +-----------------+ +------------------+ API interface ============= The number of pools created **must** match the number of hardware queues unless hardware restrictions make that impossible. This would otherwise beat the purpose of page pool, which is allocate pages fast from cache without locking. This lockless guarantee naturally comes from running under a NAPI softirq. The protection doesn't strictly have to be NAPI, any guarantee that allocating a page will cause no race conditions is enough. .. kernel-doc:: net/core/page_pool.c :identifiers: page_pool_create .. kernel-doc:: include/net/page_pool.h :identifiers: struct page_pool_params .. kernel-doc:: include/net/page_pool.h :identifiers: page_pool_put_page page_pool_put_full_page page_pool_recycle_direct page_pool_dev_alloc_pages page_pool_get_dma_addr page_pool_get_dma_dir .. kernel-doc:: net/core/page_pool.c :identifiers: page_pool_put_page_bulk page_pool_get_stats DMA sync -------- Driver is always responsible for syncing the pages for the CPU. Drivers may choose to take care of syncing for the device as well or set the ``PP_FLAG_DMA_SYNC_DEV`` flag to request that pages allocated from the page pool are already synced for the device. If ``PP_FLAG_DMA_SYNC_DEV`` is set, the driver must inform the core what portion of the buffer has to be synced. This allows the core to avoid syncing the entire page when the drivers knows that the device only accessed a portion of the page. Most drivers will reserve headroom in front of the frame. This part of the buffer is not touched by the device, so to avoid syncing it drivers can set the ``offset`` field in struct page_pool_params appropriately. For pages recycled on the XDP xmit and skb paths the page pool will use the ``max_len`` member of struct page_pool_params to decide how much of the page needs to be synced (starting at ``offset``). When directly freeing pages in the driver (page_pool_put_page()) the ``dma_sync_size`` argument specifies how much of the buffer needs to be synced. If in doubt set ``offset`` to 0, ``max_len`` to ``PAGE_SIZE`` and pass -1 as ``dma_sync_size``. That combination of arguments is always correct. Note that the syncing parameters are for the entire page. This is important to remember when using fragments (``PP_FLAG_PAGE_FRAG``), where allocated buffers may be smaller than a full page. Unless the driver author really understands page pool internals it's recommended to always use ``offset = 0``, ``max_len = PAGE_SIZE`` with fragmented page pools. Stats API and structures ------------------------ If the kernel is configured with ``CONFIG_PAGE_POOL_STATS=y``, the API page_pool_get_stats() and structures described below are available. It takes a pointer to a ``struct page_pool`` and a pointer to a struct page_pool_stats allocated by the caller. The API will fill in the provided struct page_pool_stats with statistics about the page_pool. .. kernel-doc:: include/net/page_pool.h :identifiers: struct page_pool_recycle_stats struct page_pool_alloc_stats struct page_pool_stats Coding examples =============== Registration ------------ .. code-block:: c /* Page pool registration */ struct page_pool_params pp_params = { 0 }; struct xdp_rxq_info xdp_rxq; int err; pp_params.order = 0; /* internal DMA mapping in page_pool */ pp_params.flags = PP_FLAG_DMA_MAP; pp_params.pool_size = DESC_NUM; pp_params.nid = NUMA_NO_NODE; pp_params.dev = priv->dev; pp_params.napi = napi; /* only if locking is tied to NAPI */ pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; page_pool = page_pool_create(&pp_params); err = xdp_rxq_info_reg(&xdp_rxq, ndev, 0); if (err) goto err_out; err = xdp_rxq_info_reg_mem_model(&xdp_rxq, MEM_TYPE_PAGE_POOL, page_pool); if (err) goto err_out; NAPI poller ----------- .. code-block:: c /* NAPI Rx poller */ enum dma_data_direction dma_dir; dma_dir = page_pool_get_dma_dir(dring->page_pool); while (done < budget) { if (some error) page_pool_recycle_direct(page_pool, page); if (packet_is_xdp) { if XDP_DROP: page_pool_recycle_direct(page_pool, page); } else (packet_is_skb) { skb_mark_for_recycle(skb); new_page = page_pool_dev_alloc_pages(page_pool); } } Stats ----- .. code-block:: c #ifdef CONFIG_PAGE_POOL_STATS /* retrieve stats */ struct page_pool_stats stats = { 0 }; if (page_pool_get_stats(page_pool, &stats)) { /* perhaps the driver reports statistics with ethool */ ethtool_print_allocation_stats(&stats.alloc_stats); ethtool_print_recycle_stats(&stats.recycle_stats); } #endif Driver unload ------------- .. code-block:: c /* Driver unload */ page_pool_put_full_page(page_pool, page, false); xdp_rxq_info_unreg(&xdp_rxq);