// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Copyright (C) 2010 Samsung Electronics Co. Ltd. * Jaswinder Singh */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #define PL330_MAX_CHAN 8 #define PL330_MAX_IRQS 32 #define PL330_MAX_PERI 32 #define PL330_MAX_BURST 16 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) #define PL330_QUIRK_PERIPH_BURST BIT(1) enum pl330_cachectrl { CCTRL0, /* Noncacheable and nonbufferable */ CCTRL1, /* Bufferable only */ CCTRL2, /* Cacheable, but do not allocate */ CCTRL3, /* Cacheable and bufferable, but do not allocate */ INVALID1, /* AWCACHE = 0x1000 */ INVALID2, CCTRL6, /* Cacheable write-through, allocate on writes only */ CCTRL7, /* Cacheable write-back, allocate on writes only */ }; enum pl330_byteswap { SWAP_NO, SWAP_2, SWAP_4, SWAP_8, SWAP_16, }; /* Register and Bit field Definitions */ #define DS 0x0 #define DS_ST_STOP 0x0 #define DS_ST_EXEC 0x1 #define DS_ST_CMISS 0x2 #define DS_ST_UPDTPC 0x3 #define DS_ST_WFE 0x4 #define DS_ST_ATBRR 0x5 #define DS_ST_QBUSY 0x6 #define DS_ST_WFP 0x7 #define DS_ST_KILL 0x8 #define DS_ST_CMPLT 0x9 #define DS_ST_FLTCMP 0xe #define DS_ST_FAULT 0xf #define DPC 0x4 #define INTEN 0x20 #define ES 0x24 #define INTSTATUS 0x28 #define INTCLR 0x2c #define FSM 0x30 #define FSC 0x34 #define FTM 0x38 #define _FTC 0x40 #define FTC(n) (_FTC + (n)*0x4) #define _CS 0x100 #define CS(n) (_CS + (n)*0x8) #define CS_CNS (1 << 21) #define _CPC 0x104 #define CPC(n) (_CPC + (n)*0x8) #define _SA 0x400 #define SA(n) (_SA + (n)*0x20) #define _DA 0x404 #define DA(n) (_DA + (n)*0x20) #define _CC 0x408 #define CC(n) (_CC + (n)*0x20) #define CC_SRCINC (1 << 0) #define CC_DSTINC (1 << 14) #define CC_SRCPRI (1 << 8) #define CC_DSTPRI (1 << 22) #define CC_SRCNS (1 << 9) #define CC_DSTNS (1 << 23) #define CC_SRCIA (1 << 10) #define CC_DSTIA (1 << 24) #define CC_SRCBRSTLEN_SHFT 4 #define CC_DSTBRSTLEN_SHFT 18 #define CC_SRCBRSTSIZE_SHFT 1 #define CC_DSTBRSTSIZE_SHFT 15 #define CC_SRCCCTRL_SHFT 11 #define CC_SRCCCTRL_MASK 0x7 #define CC_DSTCCTRL_SHFT 25 #define CC_DRCCCTRL_MASK 0x7 #define CC_SWAP_SHFT 28 #define _LC0 0x40c #define LC0(n) (_LC0 + (n)*0x20) #define _LC1 0x410 #define LC1(n) (_LC1 + (n)*0x20) #define DBGSTATUS 0xd00 #define DBG_BUSY (1 << 0) #define DBGCMD 0xd04 #define DBGINST0 0xd08 #define DBGINST1 0xd0c #define CR0 0xe00 #define CR1 0xe04 #define CR2 0xe08 #define CR3 0xe0c #define CR4 0xe10 #define CRD 0xe14 #define PERIPH_ID 0xfe0 #define PERIPH_REV_SHIFT 20 #define PERIPH_REV_MASK 0xf #define PERIPH_REV_R0P0 0 #define PERIPH_REV_R1P0 1 #define PERIPH_REV_R1P1 2 #define CR0_PERIPH_REQ_SET (1 << 0) #define CR0_BOOT_EN_SET (1 << 1) #define CR0_BOOT_MAN_NS (1 << 2) #define CR0_NUM_CHANS_SHIFT 4 #define CR0_NUM_CHANS_MASK 0x7 #define CR0_NUM_PERIPH_SHIFT 12 #define CR0_NUM_PERIPH_MASK 0x1f #define CR0_NUM_EVENTS_SHIFT 17 #define CR0_NUM_EVENTS_MASK 0x1f #define CR1_ICACHE_LEN_SHIFT 0 #define CR1_ICACHE_LEN_MASK 0x7 #define CR1_NUM_ICACHELINES_SHIFT 4 #define CR1_NUM_ICACHELINES_MASK 0xf #define CRD_DATA_WIDTH_SHIFT 0 #define CRD_DATA_WIDTH_MASK 0x7 #define CRD_WR_CAP_SHIFT 4 #define CRD_WR_CAP_MASK 0x7 #define CRD_WR_Q_DEP_SHIFT 8 #define CRD_WR_Q_DEP_MASK 0xf #define CRD_RD_CAP_SHIFT 12 #define CRD_RD_CAP_MASK 0x7 #define CRD_RD_Q_DEP_SHIFT 16 #define CRD_RD_Q_DEP_MASK 0xf #define CRD_DATA_BUFF_SHIFT 20 #define CRD_DATA_BUFF_MASK 0x3ff #define PART 0x330 #define DESIGNER 0x41 #define REVISION 0x0 #define INTEG_CFG 0x0 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) #define PL330_STATE_STOPPED (1 << 0) #define PL330_STATE_EXECUTING (1 << 1) #define PL330_STATE_WFE (1 << 2) #define PL330_STATE_FAULTING (1 << 3) #define PL330_STATE_COMPLETING (1 << 4) #define PL330_STATE_WFP (1 << 5) #define PL330_STATE_KILLING (1 << 6) #define PL330_STATE_FAULT_COMPLETING (1 << 7) #define PL330_STATE_CACHEMISS (1 << 8) #define PL330_STATE_UPDTPC (1 << 9) #define PL330_STATE_ATBARRIER (1 << 10) #define PL330_STATE_QUEUEBUSY (1 << 11) #define PL330_STATE_INVALID (1 << 15) #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ | PL330_STATE_WFE | PL330_STATE_FAULTING) #define CMD_DMAADDH 0x54 #define CMD_DMAEND 0x00 #define CMD_DMAFLUSHP 0x35 #define CMD_DMAGO 0xa0 #define CMD_DMALD 0x04 #define CMD_DMALDP 0x25 #define CMD_DMALP 0x20 #define CMD_DMALPEND 0x28 #define CMD_DMAKILL 0x01 #define CMD_DMAMOV 0xbc #define CMD_DMANOP 0x18 #define CMD_DMARMB 0x12 #define CMD_DMASEV 0x34 #define CMD_DMAST 0x08 #define CMD_DMASTP 0x29 #define CMD_DMASTZ 0x0c #define CMD_DMAWFE 0x36 #define CMD_DMAWFP 0x30 #define CMD_DMAWMB 0x13 #define SZ_DMAADDH 3 #define SZ_DMAEND 1 #define SZ_DMAFLUSHP 2 #define SZ_DMALD 1 #define SZ_DMALDP 2 #define SZ_DMALP 2 #define SZ_DMALPEND 2 #define SZ_DMAKILL 1 #define SZ_DMAMOV 6 #define SZ_DMANOP 1 #define SZ_DMARMB 1 #define SZ_DMASEV 2 #define SZ_DMAST 1 #define SZ_DMASTP 2 #define SZ_DMASTZ 1 #define SZ_DMAWFE 2 #define SZ_DMAWFP 2 #define SZ_DMAWMB 1 #define SZ_DMAGO 6 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) /* * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req * at 1byte/burst for P<->M and M<->M respectively. * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req * should be enough for P<->M and M<->M respectively. */ #define MCODE_BUFF_PER_REQ 256 /* Use this _only_ to wait on transient states */ #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); #ifdef PL330_DEBUG_MCGEN static unsigned cmd_line; #define PL330_DBGCMD_DUMP(off, x...) do { \ printk("%x:", cmd_line); \ printk(KERN_CONT x); \ cmd_line += off; \ } while (0) #define PL330_DBGMC_START(addr) (cmd_line = addr) #else #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) #define PL330_DBGMC_START(addr) do {} while (0) #endif /* The number of default descriptors */ #define NR_DEFAULT_DESC 16 /* Delay for runtime PM autosuspend, ms */ #define PL330_AUTOSUSPEND_DELAY 20 /* Populated by the PL330 core driver for DMA API driver's info */ struct pl330_config { u32 periph_id; #define DMAC_MODE_NS (1 << 0) unsigned int mode; unsigned int data_bus_width:10; /* In number of bits */ unsigned int data_buf_dep:11; unsigned int num_chan:4; unsigned int num_peri:6; u32 peri_ns; unsigned int num_events:6; u32 irq_ns; }; /* * Request Configuration. * The PL330 core does not modify this and uses the last * working configuration if the request doesn't provide any. * * The Client may want to provide this info only for the * first request and a request with new settings. */ struct pl330_reqcfg { /* Address Incrementing */ unsigned dst_inc:1; unsigned src_inc:1; /* * For now, the SRC & DST protection levels * and burst size/length are assumed same. */ bool nonsecure; bool privileged; bool insnaccess; unsigned brst_len:5; unsigned brst_size:3; /* in power of 2 */ enum pl330_cachectrl dcctl; enum pl330_cachectrl scctl; enum pl330_byteswap swap; struct pl330_config *pcfg; }; /* * One cycle of DMAC operation. * There may be more than one xfer in a request. */ struct pl330_xfer { u32 src_addr; u32 dst_addr; /* Size to xfer */ u32 bytes; }; /* The xfer callbacks are made with one of these arguments. */ enum pl330_op_err { /* The all xfers in the request were success. */ PL330_ERR_NONE, /* If req aborted due to global error. */ PL330_ERR_ABORT, /* If req failed due to problem with Channel. */ PL330_ERR_FAIL, }; enum dmamov_dst { SAR = 0, CCR, DAR, }; enum pl330_dst { SRC = 0, DST, }; enum pl330_cond { SINGLE, BURST, ALWAYS, }; struct dma_pl330_desc; struct _pl330_req { u32 mc_bus; void *mc_cpu; struct dma_pl330_desc *desc; }; /* ToBeDone for tasklet */ struct _pl330_tbd { bool reset_dmac; bool reset_mngr; u8 reset_chan; }; /* A DMAC Thread */ struct pl330_thread { u8 id; int ev; /* If the channel is not yet acquired by any client */ bool free; /* Parent DMAC */ struct pl330_dmac *dmac; /* Only two at a time */ struct _pl330_req req[2]; /* Index of the last enqueued request */ unsigned lstenq; /* Index of the last submitted request or -1 if the DMA is stopped */ int req_running; }; enum pl330_dmac_state { UNINIT, INIT, DYING, }; enum desc_status { /* In the DMAC pool */ FREE, /* * Allocated to some channel during prep_xxx * Also may be sitting on the work_list. */ PREP, /* * Sitting on the work_list and already submitted * to the PL330 core. Not more than two descriptors * of a channel can be BUSY at any time. */ BUSY, /* * Sitting on the channel work_list but xfer done * by PL330 core */ DONE, }; struct dma_pl330_chan { /* Schedule desc completion */ struct tasklet_struct task; /* DMA-Engine Channel */ struct dma_chan chan; /* List of submitted descriptors */ struct list_head submitted_list; /* List of issued descriptors */ struct list_head work_list; /* List of completed descriptors */ struct list_head completed_list; /* Pointer to the DMAC that manages this channel, * NULL if the channel is available to be acquired. * As the parent, this DMAC also provides descriptors * to the channel. */ struct pl330_dmac *dmac; /* To protect channel manipulation */ spinlock_t lock; /* * Hardware channel thread of PL330 DMAC. NULL if the channel is * available. */ struct pl330_thread *thread; /* For D-to-M and M-to-D channels */ int burst_sz; /* the peripheral fifo width */ int burst_len; /* the number of burst */ phys_addr_t fifo_addr; /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ dma_addr_t fifo_dma; enum dma_data_direction dir; struct dma_slave_config slave_config; /* for cyclic capability */ bool cyclic; /* for runtime pm tracking */ bool active; }; struct pl330_dmac { /* DMA-Engine Device */ struct dma_device ddma; /* Holds info about sg limitations */ struct device_dma_parameters dma_parms; /* Pool of descriptors available for the DMAC's channels */ struct list_head desc_pool; /* To protect desc_pool manipulation */ spinlock_t pool_lock; /* Size of MicroCode buffers for each channel. */ unsigned mcbufsz; /* ioremap'ed address of PL330 registers. */ void __iomem *base; /* Populated by the PL330 core driver during pl330_add */ struct pl330_config pcfg; spinlock_t lock; /* Maximum possible events/irqs */ int events[32]; /* BUS address of MicroCode buffer */ dma_addr_t mcode_bus; /* CPU address of MicroCode buffer */ void *mcode_cpu; /* List of all Channel threads */ struct pl330_thread *channels; /* Pointer to the MANAGER thread */ struct pl330_thread *manager; /* To handle bad news in interrupt */ struct tasklet_struct tasks; struct _pl330_tbd dmac_tbd; /* State of DMAC operation */ enum pl330_dmac_state state; /* Holds list of reqs with due callbacks */ struct list_head req_done; /* Peripheral channels connected to this DMAC */ unsigned int num_peripherals; struct dma_pl330_chan *peripherals; /* keep at end */ int quirks; struct reset_control *rstc; struct reset_control *rstc_ocp; }; static struct pl330_of_quirks { char *quirk; int id; } of_quirks[] = { { .quirk = "arm,pl330-broken-no-flushp", .id = PL330_QUIRK_BROKEN_NO_FLUSHP, }, { .quirk = "arm,pl330-periph-burst", .id = PL330_QUIRK_PERIPH_BURST, } }; struct dma_pl330_desc { /* To attach to a queue as child */ struct list_head node; /* Descriptor for the DMA Engine API */ struct dma_async_tx_descriptor txd; /* Xfer for PL330 core */ struct pl330_xfer px; struct pl330_reqcfg rqcfg; enum desc_status status; int bytes_requested; bool last; /* The channel which currently holds this desc */ struct dma_pl330_chan *pchan; enum dma_transfer_direction rqtype; /* Index of peripheral for the xfer. */ unsigned peri:5; /* Hook to attach to DMAC's list of reqs with due callback */ struct list_head rqd; }; struct _xfer_spec { u32 ccr; struct dma_pl330_desc *desc; }; static int pl330_config_write(struct dma_chan *chan, struct dma_slave_config *slave_config, enum dma_transfer_direction direction); static inline bool _queue_full(struct pl330_thread *thrd) { return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; } static inline bool is_manager(struct pl330_thread *thrd) { return thrd->dmac->manager == thrd; } /* If manager of the thread is in Non-Secure mode */ static inline bool _manager_ns(struct pl330_thread *thrd) { return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; } static inline u32 get_revision(u32 periph_id) { return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; } static inline u32 _emit_END(unsigned dry_run, u8 buf[]) { if (dry_run) return SZ_DMAEND; buf[0] = CMD_DMAEND; PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); return SZ_DMAEND; } static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) { if (dry_run) return SZ_DMAFLUSHP; buf[0] = CMD_DMAFLUSHP; peri &= 0x1f; peri <<= 3; buf[1] = peri; PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); return SZ_DMAFLUSHP; } static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) { if (dry_run) return SZ_DMALD; buf[0] = CMD_DMALD; if (cond == SINGLE) buf[0] |= (0 << 1) | (1 << 0); else if (cond == BURST) buf[0] |= (1 << 1) | (1 << 0); PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); return SZ_DMALD; } static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], enum pl330_cond cond, u8 peri) { if (dry_run) return SZ_DMALDP; buf[0] = CMD_DMALDP; if (cond == BURST) buf[0] |= (1 << 1); peri &= 0x1f; peri <<= 3; buf[1] = peri; PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", cond == SINGLE ? 'S' : 'B', peri >> 3); return SZ_DMALDP; } static inline u32 _emit_LP(unsigned dry_run, u8 buf[], unsigned loop, u8 cnt) { if (dry_run) return SZ_DMALP; buf[0] = CMD_DMALP; if (loop) buf[0] |= (1 << 1); cnt--; /* DMAC increments by 1 internally */ buf[1] = cnt; PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); return SZ_DMALP; } struct _arg_LPEND { enum pl330_cond cond; bool forever; unsigned loop; u8 bjump; }; static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], const struct _arg_LPEND *arg) { enum pl330_cond cond = arg->cond; bool forever = arg->forever; unsigned loop = arg->loop; u8 bjump = arg->bjump; if (dry_run) return SZ_DMALPEND; buf[0] = CMD_DMALPEND; if (loop) buf[0] |= (1 << 2); if (!forever) buf[0] |= (1 << 4); if (cond == SINGLE) buf[0] |= (0 << 1) | (1 << 0); else if (cond == BURST) buf[0] |= (1 << 1) | (1 << 0); buf[1] = bjump; PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", forever ? "FE" : "END", cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), loop ? '1' : '0', bjump); return SZ_DMALPEND; } static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) { if (dry_run) return SZ_DMAKILL; buf[0] = CMD_DMAKILL; return SZ_DMAKILL; } static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], enum dmamov_dst dst, u32 val) { if (dry_run) return SZ_DMAMOV; buf[0] = CMD_DMAMOV; buf[1] = dst; buf[2] = val; buf[3] = val >> 8; buf[4] = val >> 16; buf[5] = val >> 24; PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); return SZ_DMAMOV; } static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) { if (dry_run) return SZ_DMARMB; buf[0] = CMD_DMARMB; PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); return SZ_DMARMB; } static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) { if (dry_run) return SZ_DMASEV; buf[0] = CMD_DMASEV; ev &= 0x1f; ev <<= 3; buf[1] = ev; PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); return SZ_DMASEV; } static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) { if (dry_run) return SZ_DMAST; buf[0] = CMD_DMAST; if (cond == SINGLE) buf[0] |= (0 << 1) | (1 << 0); else if (cond == BURST) buf[0] |= (1 << 1) | (1 << 0); PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); return SZ_DMAST; } static inline u32 _emit_STP(unsigned dry_run, u8 buf[], enum pl330_cond cond, u8 peri) { if (dry_run) return SZ_DMASTP; buf[0] = CMD_DMASTP; if (cond == BURST) buf[0] |= (1 << 1); peri &= 0x1f; peri <<= 3; buf[1] = peri; PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", cond == SINGLE ? 'S' : 'B', peri >> 3); return SZ_DMASTP; } static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], enum pl330_cond cond, u8 peri) { if (dry_run) return SZ_DMAWFP; buf[0] = CMD_DMAWFP; if (cond == SINGLE) buf[0] |= (0 << 1) | (0 << 0); else if (cond == BURST) buf[0] |= (1 << 1) | (0 << 0); else buf[0] |= (0 << 1) | (1 << 0); peri &= 0x1f; peri <<= 3; buf[1] = peri; PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); return SZ_DMAWFP; } static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) { if (dry_run) return SZ_DMAWMB; buf[0] = CMD_DMAWMB; PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); return SZ_DMAWMB; } struct _arg_GO { u8 chan; u32 addr; unsigned ns; }; static inline u32 _emit_GO(unsigned dry_run, u8 buf[], const struct _arg_GO *arg) { u8 chan = arg->chan; u32 addr = arg->addr; unsigned ns = arg->ns; if (dry_run) return SZ_DMAGO; buf[0] = CMD_DMAGO; buf[0] |= (ns << 1); buf[1] = chan & 0x7; buf[2] = addr; buf[3] = addr >> 8; buf[4] = addr >> 16; buf[5] = addr >> 24; return SZ_DMAGO; } #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) /* Returns Time-Out */ static bool _until_dmac_idle(struct pl330_thread *thrd) { void __iomem *regs = thrd->dmac->base; unsigned long loops = msecs_to_loops(5); do { /* Until Manager is Idle */ if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) break; cpu_relax(); } while (--loops); if (!loops) return true; return false; } static inline void _execute_DBGINSN(struct pl330_thread *thrd, u8 insn[], bool as_manager) { void __iomem *regs = thrd->dmac->base; u32 val; /* If timed out due to halted state-machine */ if (_until_dmac_idle(thrd)) { dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); return; } val = (insn[0] << 16) | (insn[1] << 24); if (!as_manager) { val |= (1 << 0); val |= (thrd->id << 8); /* Channel Number */ } writel(val, regs + DBGINST0); val = le32_to_cpu(*((__le32 *)&insn[2])); writel(val, regs + DBGINST1); /* Get going */ writel(0, regs + DBGCMD); } static inline u32 _state(struct pl330_thread *thrd) { void __iomem *regs = thrd->dmac->base; u32 val; if (is_manager(thrd)) val = readl(regs + DS) & 0xf; else val = readl(regs + CS(thrd->id)) & 0xf; switch (val) { case DS_ST_STOP: return PL330_STATE_STOPPED; case DS_ST_EXEC: return PL330_STATE_EXECUTING; case DS_ST_CMISS: return PL330_STATE_CACHEMISS; case DS_ST_UPDTPC: return PL330_STATE_UPDTPC; case DS_ST_WFE: return PL330_STATE_WFE; case DS_ST_FAULT: return PL330_STATE_FAULTING; case DS_ST_ATBRR: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_ATBARRIER; case DS_ST_QBUSY: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_QUEUEBUSY; case DS_ST_WFP: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_WFP; case DS_ST_KILL: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_KILLING; case DS_ST_CMPLT: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_COMPLETING; case DS_ST_FLTCMP: if (is_manager(thrd)) return PL330_STATE_INVALID; else return PL330_STATE_FAULT_COMPLETING; default: return PL330_STATE_INVALID; } } static void _stop(struct pl330_thread *thrd) { void __iomem *regs = thrd->dmac->base; u8 insn[6] = {0, 0, 0, 0, 0, 0}; u32 inten = readl(regs + INTEN); if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); /* Return if nothing needs to be done */ if (_state(thrd) == PL330_STATE_COMPLETING || _state(thrd) == PL330_STATE_KILLING || _state(thrd) == PL330_STATE_STOPPED) return; _emit_KILL(0, insn); _execute_DBGINSN(thrd, insn, is_manager(thrd)); /* clear the event */ if (inten & (1 << thrd->ev)) writel(1 << thrd->ev, regs + INTCLR); /* Stop generating interrupts for SEV */ writel(inten & ~(1 << thrd->ev), regs + INTEN); } /* Start doing req 'idx' of thread 'thrd' */ static bool _trigger(struct pl330_thread *thrd) { void __iomem *regs = thrd->dmac->base; struct _pl330_req *req; struct dma_pl330_desc *desc; struct _arg_GO go; unsigned ns; u8 insn[6] = {0, 0, 0, 0, 0, 0}; int idx; /* Return if already ACTIVE */ if (_state(thrd) != PL330_STATE_STOPPED) return true; idx = 1 - thrd->lstenq; if (thrd->req[idx].desc != NULL) { req = &thrd->req[idx]; } else { idx = thrd->lstenq; if (thrd->req[idx].desc != NULL) req = &thrd->req[idx]; else req = NULL; } /* Return if no request */ if (!req) return true; /* Return if req is running */ if (idx == thrd->req_running) return true; desc = req->desc; ns = desc->rqcfg.nonsecure ? 1 : 0; /* See 'Abort Sources' point-4 at Page 2-25 */ if (_manager_ns(thrd) && !ns) dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", __func__, __LINE__); go.chan = thrd->id; go.addr = req->mc_bus; go.ns = ns; _emit_GO(0, insn, &go); /* Set to generate interrupts for SEV */ writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); /* Only manager can execute GO */ _execute_DBGINSN(thrd, insn, true); thrd->req_running = idx; return true; } static bool _start(struct pl330_thread *thrd) { switch (_state(thrd)) { case PL330_STATE_FAULT_COMPLETING: UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); if (_state(thrd) == PL330_STATE_KILLING) UNTIL(thrd, PL330_STATE_STOPPED) /* fall through */ case PL330_STATE_FAULTING: _stop(thrd); /* fall through */ case PL330_STATE_KILLING: case PL330_STATE_COMPLETING: UNTIL(thrd, PL330_STATE_STOPPED) /* fall through */ case PL330_STATE_STOPPED: return _trigger(thrd); case PL330_STATE_WFP: case PL330_STATE_QUEUEBUSY: case PL330_STATE_ATBARRIER: case PL330_STATE_UPDTPC: case PL330_STATE_CACHEMISS: case PL330_STATE_EXECUTING: return true; case PL330_STATE_WFE: /* For RESUME, nothing yet */ default: return false; } } static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], const struct _xfer_spec *pxs, int cyc) { int off = 0; struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; /* check lock-up free version */ if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { while (cyc--) { off += _emit_LD(dry_run, &buf[off], ALWAYS); off += _emit_ST(dry_run, &buf[off], ALWAYS); } } else { while (cyc--) { off += _emit_LD(dry_run, &buf[off], ALWAYS); off += _emit_RMB(dry_run, &buf[off]); off += _emit_ST(dry_run, &buf[off], ALWAYS); off += _emit_WMB(dry_run, &buf[off]); } } return off; } static u32 _emit_load(unsigned int dry_run, u8 buf[], enum pl330_cond cond, enum dma_transfer_direction direction, u8 peri) { int off = 0; switch (direction) { case DMA_MEM_TO_MEM: /* fall through */ case DMA_MEM_TO_DEV: off += _emit_LD(dry_run, &buf[off], cond); break; case DMA_DEV_TO_MEM: if (cond == ALWAYS) { off += _emit_LDP(dry_run, &buf[off], SINGLE, peri); off += _emit_LDP(dry_run, &buf[off], BURST, peri); } else { off += _emit_LDP(dry_run, &buf[off], cond, peri); } break; default: /* this code should be unreachable */ WARN_ON(1); break; } return off; } static inline u32 _emit_store(unsigned int dry_run, u8 buf[], enum pl330_cond cond, enum dma_transfer_direction direction, u8 peri) { int off = 0; switch (direction) { case DMA_MEM_TO_MEM: /* fall through */ case DMA_DEV_TO_MEM: off += _emit_ST(dry_run, &buf[off], cond); break; case DMA_MEM_TO_DEV: if (cond == ALWAYS) { off += _emit_STP(dry_run, &buf[off], SINGLE, peri); off += _emit_STP(dry_run, &buf[off], BURST, peri); } else { off += _emit_STP(dry_run, &buf[off], cond, peri); } break; default: /* this code should be unreachable */ WARN_ON(1); break; } return off; } static inline int _ldst_peripheral(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], const struct _xfer_spec *pxs, int cyc, enum pl330_cond cond) { int off = 0; /* * do FLUSHP at beginning to clear any stale dma requests before the * first WFP. */ if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); while (cyc--) { off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, pxs->desc->peri); off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, pxs->desc->peri); } return off; } static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], const struct _xfer_spec *pxs, int cyc) { int off = 0; enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; if (pl330->quirks & PL330_QUIRK_PERIPH_BURST) cond = BURST; switch (pxs->desc->rqtype) { case DMA_MEM_TO_DEV: /* fall through */ case DMA_DEV_TO_MEM: off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, cond); break; case DMA_MEM_TO_MEM: off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); break; default: /* this code should be unreachable */ WARN_ON(1); break; } return off; } /* * only the unaligned burst transfers have the dregs. * so, still transfer dregs with a reduced size burst * for mem-to-mem, mem-to-dev or dev-to-mem. */ static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], const struct _xfer_spec *pxs, int transfer_length) { int off = 0; int dregs_ccr; if (transfer_length == 0) return off; /* * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) / * BRST_SIZE(ccr) * the dregs len must be smaller than burst len, * so, for higher efficiency, we can modify CCR * to use a reduced size burst len for the dregs. */ dregs_ccr = pxs->ccr; dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | (0xf << CC_DSTBRSTLEN_SHFT)); dregs_ccr |= (((transfer_length - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); dregs_ccr |= (((transfer_length - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); switch (pxs->desc->rqtype) { case DMA_MEM_TO_DEV: /* fall through */ case DMA_DEV_TO_MEM: off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1, BURST); break; case DMA_MEM_TO_MEM: off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); break; default: /* this code should be unreachable */ WARN_ON(1); break; } return off; } /* Returns bytes consumed and updates bursts */ static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], unsigned long *bursts, const struct _xfer_spec *pxs) { int cyc, cycmax, szlp, szlpend, szbrst, off; unsigned lcnt0, lcnt1, ljmp0, ljmp1; struct _arg_LPEND lpend; if (*bursts == 1) return _bursts(pl330, dry_run, buf, pxs, 1); /* Max iterations possible in DMALP is 256 */ if (*bursts >= 256*256) { lcnt1 = 256; lcnt0 = 256; cyc = *bursts / lcnt1 / lcnt0; } else if (*bursts > 256) { lcnt1 = 256; lcnt0 = *bursts / lcnt1; cyc = 1; } else { lcnt1 = *bursts; lcnt0 = 0; cyc = 1; } szlp = _emit_LP(1, buf, 0, 0); szbrst = _bursts(pl330, 1, buf, pxs, 1); lpend.cond = ALWAYS; lpend.forever = false; lpend.loop = 0; lpend.bjump = 0; szlpend = _emit_LPEND(1, buf, &lpend); if (lcnt0) { szlp *= 2; szlpend *= 2; } /* * Max bursts that we can unroll due to limit on the * size of backward jump that can be encoded in DMALPEND * which is 8-bits and hence 255 */ cycmax = (255 - (szlp + szlpend)) / szbrst; cyc = (cycmax < cyc) ? cycmax : cyc; off = 0; if (lcnt0) { off += _emit_LP(dry_run, &buf[off], 0, lcnt0); ljmp0 = off; } off += _emit_LP(dry_run, &buf[off], 1, lcnt1); ljmp1 = off; off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); lpend.cond = ALWAYS; lpend.forever = false; lpend.loop = 1; lpend.bjump = off - ljmp1; off += _emit_LPEND(dry_run, &buf[off], &lpend); if (lcnt0) { lpend.cond = ALWAYS; lpend.forever = false; lpend.loop = 0; lpend.bjump = off - ljmp0; off += _emit_LPEND(dry_run, &buf[off], &lpend); } *bursts = lcnt1 * cyc; if (lcnt0) *bursts *= lcnt0; return off; } static inline int _setup_loops(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], const struct _xfer_spec *pxs) { struct pl330_xfer *x = &pxs->desc->px; u32 ccr = pxs->ccr; unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / BRST_SIZE(ccr); int off = 0; while (bursts) { c = bursts; off += _loop(pl330, dry_run, &buf[off], &c, pxs); bursts -= c; } off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); return off; } static inline int _setup_xfer(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], const struct _xfer_spec *pxs) { struct pl330_xfer *x = &pxs->desc->px; int off = 0; /* DMAMOV SAR, x->src_addr */ off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); /* DMAMOV DAR, x->dst_addr */ off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); /* Setup Loop(s) */ off += _setup_loops(pl330, dry_run, &buf[off], pxs); return off; } /* * A req is a sequence of one or more xfer units. * Returns the number of bytes taken to setup the MC for the req. */ static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, struct pl330_thread *thrd, unsigned index, struct _xfer_spec *pxs) { struct _pl330_req *req = &thrd->req[index]; u8 *buf = req->mc_cpu; int off = 0; PL330_DBGMC_START(req->mc_bus); /* DMAMOV CCR, ccr */ off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); off += _setup_xfer(pl330, dry_run, &buf[off], pxs); /* DMASEV peripheral/event */ off += _emit_SEV(dry_run, &buf[off], thrd->ev); /* DMAEND */ off += _emit_END(dry_run, &buf[off]); return off; } static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) { u32 ccr = 0; if (rqc->src_inc) ccr |= CC_SRCINC; if (rqc->dst_inc) ccr |= CC_DSTINC; /* We set same protection levels for Src and DST for now */ if (rqc->privileged) ccr |= CC_SRCPRI | CC_DSTPRI; if (rqc->nonsecure) ccr |= CC_SRCNS | CC_DSTNS; if (rqc->insnaccess) ccr |= CC_SRCIA | CC_DSTIA; ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); ccr |= (rqc->swap << CC_SWAP_SHFT); return ccr; } /* * Submit a list of xfers after which the client wants notification. * Client is not notified after each xfer unit, just once after all * xfer units are done or some error occurs. */ static int pl330_submit_req(struct pl330_thread *thrd, struct dma_pl330_desc *desc) { struct pl330_dmac *pl330 = thrd->dmac; struct _xfer_spec xs; unsigned long flags; unsigned idx; u32 ccr; int ret = 0; switch (desc->rqtype) { case DMA_MEM_TO_DEV: break; case DMA_DEV_TO_MEM: break; case DMA_MEM_TO_MEM: break; default: return -ENOTSUPP; } if (pl330->state == DYING || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { dev_info(thrd->dmac->ddma.dev, "%s:%d\n", __func__, __LINE__); return -EAGAIN; } /* If request for non-existing peripheral */ if (desc->rqtype != DMA_MEM_TO_MEM && desc->peri >= pl330->pcfg.num_peri) { dev_info(thrd->dmac->ddma.dev, "%s:%d Invalid peripheral(%u)!\n", __func__, __LINE__, desc->peri); return -EINVAL; } spin_lock_irqsave(&pl330->lock, flags); if (_queue_full(thrd)) { ret = -EAGAIN; goto xfer_exit; } /* Prefer Secure Channel */ if (!_manager_ns(thrd)) desc->rqcfg.nonsecure = 0; else desc->rqcfg.nonsecure = 1; ccr = _prepare_ccr(&desc->rqcfg); idx = thrd->req[0].desc == NULL ? 0 : 1; xs.ccr = ccr; xs.desc = desc; /* First dry run to check if req is acceptable */ ret = _setup_req(pl330, 1, thrd, idx, &xs); if (ret < 0) goto xfer_exit; if (ret > pl330->mcbufsz / 2) { dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", __func__, __LINE__, ret, pl330->mcbufsz / 2); ret = -ENOMEM; goto xfer_exit; } /* Hook the request */ thrd->lstenq = idx; thrd->req[idx].desc = desc; _setup_req(pl330, 0, thrd, idx, &xs); ret = 0; xfer_exit: spin_unlock_irqrestore(&pl330->lock, flags); return ret; } static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) { struct dma_pl330_chan *pch; unsigned long flags; if (!desc) return; pch = desc->pchan; /* If desc aborted */ if (!pch) return; spin_lock_irqsave(&pch->lock, flags); desc->status = DONE; spin_unlock_irqrestore(&pch->lock, flags); tasklet_schedule(&pch->task); } static void pl330_dotask(unsigned long data) { struct pl330_dmac *pl330 = (struct pl330_dmac *) data; unsigned long flags; int i; spin_lock_irqsave(&pl330->lock, flags); /* The DMAC itself gone nuts */ if (pl330->dmac_tbd.reset_dmac) { pl330->state = DYING; /* Reset the manager too */ pl330->dmac_tbd.reset_mngr = true; /* Clear the reset flag */ pl330->dmac_tbd.reset_dmac = false; } if (pl330->dmac_tbd.reset_mngr) { _stop(pl330->manager); /* Reset all channels */ pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; /* Clear the reset flag */ pl330->dmac_tbd.reset_mngr = false; } for (i = 0; i < pl330->pcfg.num_chan; i++) { if (pl330->dmac_tbd.reset_chan & (1 << i)) { struct pl330_thread *thrd = &pl330->channels[i]; void __iomem *regs = pl330->base; enum pl330_op_err err; _stop(thrd); if (readl(regs + FSC) & (1 << thrd->id)) err = PL330_ERR_FAIL; else err = PL330_ERR_ABORT; spin_unlock_irqrestore(&pl330->lock, flags); dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); spin_lock_irqsave(&pl330->lock, flags); thrd->req[0].desc = NULL; thrd->req[1].desc = NULL; thrd->req_running = -1; /* Clear the reset flag */ pl330->dmac_tbd.reset_chan &= ~(1 << i); } } spin_unlock_irqrestore(&pl330->lock, flags); return; } /* Returns 1 if state was updated, 0 otherwise */ static int pl330_update(struct pl330_dmac *pl330) { struct dma_pl330_desc *descdone; unsigned long flags; void __iomem *regs; u32 val; int id, ev, ret = 0; regs = pl330->base; spin_lock_irqsave(&pl330->lock, flags); val = readl(regs + FSM) & 0x1; if (val) pl330->dmac_tbd.reset_mngr = true; else pl330->dmac_tbd.reset_mngr = false; val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); pl330->dmac_tbd.reset_chan |= val; if (val) { int i = 0; while (i < pl330->pcfg.num_chan) { if (val & (1 << i)) { dev_info(pl330->ddma.dev, "Reset Channel-%d\t CS-%x FTC-%x\n", i, readl(regs + CS(i)), readl(regs + FTC(i))); _stop(&pl330->channels[i]); } i++; } } /* Check which event happened i.e, thread notified */ val = readl(regs + ES); if (pl330->pcfg.num_events < 32 && val & ~((1 << pl330->pcfg.num_events) - 1)) { pl330->dmac_tbd.reset_dmac = true; dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, __LINE__); ret = 1; goto updt_exit; } for (ev = 0; ev < pl330->pcfg.num_events; ev++) { if (val & (1 << ev)) { /* Event occurred */ struct pl330_thread *thrd; u32 inten = readl(regs + INTEN); int active; /* Clear the event */ if (inten & (1 << ev)) writel(1 << ev, regs + INTCLR); ret = 1; id = pl330->events[ev]; thrd = &pl330->channels[id]; active = thrd->req_running; if (active == -1) /* Aborted */ continue; /* Detach the req */ descdone = thrd->req[active].desc; thrd->req[active].desc = NULL; thrd->req_running = -1; /* Get going again ASAP */ _start(thrd); /* For now, just make a list of callbacks to be done */ list_add_tail(&descdone->rqd, &pl330->req_done); } } /* Now that we are in no hurry, do the callbacks */ while (!list_empty(&pl330->req_done)) { descdone = list_first_entry(&pl330->req_done, struct dma_pl330_desc, rqd); list_del(&descdone->rqd); spin_unlock_irqrestore(&pl330->lock, flags); dma_pl330_rqcb(descdone, PL330_ERR_NONE); spin_lock_irqsave(&pl330->lock, flags); } updt_exit: spin_unlock_irqrestore(&pl330->lock, flags); if (pl330->dmac_tbd.reset_dmac || pl330->dmac_tbd.reset_mngr || pl330->dmac_tbd.reset_chan) { ret = 1; tasklet_schedule(&pl330->tasks); } return ret; } /* Reserve an event */ static inline int _alloc_event(struct pl330_thread *thrd) { struct pl330_dmac *pl330 = thrd->dmac; int ev; for (ev = 0; ev < pl330->pcfg.num_events; ev++) if (pl330->events[ev] == -1) { pl330->events[ev] = thrd->id; return ev; } return -1; } static bool _chan_ns(const struct pl330_dmac *pl330, int i) { return pl330->pcfg.irq_ns & (1 << i); } /* Upon success, returns IdentityToken for the * allocated channel, NULL otherwise. */ static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) { struct pl330_thread *thrd = NULL; int chans, i; if (pl330->state == DYING) return NULL; chans = pl330->pcfg.num_chan; for (i = 0; i < chans; i++) { thrd = &pl330->channels[i]; if ((thrd->free) && (!_manager_ns(thrd) || _chan_ns(pl330, i))) { thrd->ev = _alloc_event(thrd); if (thrd->ev >= 0) { thrd->free = false; thrd->lstenq = 1; thrd->req[0].desc = NULL; thrd->req[1].desc = NULL; thrd->req_running = -1; break; } } thrd = NULL; } return thrd; } /* Release an event */ static inline void _free_event(struct pl330_thread *thrd, int ev) { struct pl330_dmac *pl330 = thrd->dmac; /* If the event is valid and was held by the thread */ if (ev >= 0 && ev < pl330->pcfg.num_events && pl330->events[ev] == thrd->id) pl330->events[ev] = -1; } static void pl330_release_channel(struct pl330_thread *thrd) { if (!thrd || thrd->free) return; _stop(thrd); dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); _free_event(thrd, thrd->ev); thrd->free = true; } /* Initialize the structure for PL330 configuration, that can be used * by the client driver the make best use of the DMAC */ static void read_dmac_config(struct pl330_dmac *pl330) { void __iomem *regs = pl330->base; u32 val; val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; val &= CRD_DATA_WIDTH_MASK; pl330->pcfg.data_bus_width = 8 * (1 << val); val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; val &= CRD_DATA_BUFF_MASK; pl330->pcfg.data_buf_dep = val + 1; val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; val &= CR0_NUM_CHANS_MASK; val += 1; pl330->pcfg.num_chan = val; val = readl(regs + CR0); if (val & CR0_PERIPH_REQ_SET) { val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; val += 1; pl330->pcfg.num_peri = val; pl330->pcfg.peri_ns = readl(regs + CR4); } else { pl330->pcfg.num_peri = 0; } val = readl(regs + CR0); if (val & CR0_BOOT_MAN_NS) pl330->pcfg.mode |= DMAC_MODE_NS; else pl330->pcfg.mode &= ~DMAC_MODE_NS; val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; val &= CR0_NUM_EVENTS_MASK; val += 1; pl330->pcfg.num_events = val; pl330->pcfg.irq_ns = readl(regs + CR3); } static inline void _reset_thread(struct pl330_thread *thrd) { struct pl330_dmac *pl330 = thrd->dmac; thrd->req[0].mc_cpu = pl330->mcode_cpu + (thrd->id * pl330->mcbufsz); thrd->req[0].mc_bus = pl330->mcode_bus + (thrd->id * pl330->mcbufsz); thrd->req[0].desc = NULL; thrd->req[1].mc_cpu = thrd->req[0].mc_cpu + pl330->mcbufsz / 2; thrd->req[1].mc_bus = thrd->req[0].mc_bus + pl330->mcbufsz / 2; thrd->req[1].desc = NULL; thrd->req_running = -1; } static int dmac_alloc_threads(struct pl330_dmac *pl330) { int chans = pl330->pcfg.num_chan; struct pl330_thread *thrd; int i; /* Allocate 1 Manager and 'chans' Channel threads */ pl330->channels = kcalloc(1 + chans, sizeof(*thrd), GFP_KERNEL); if (!pl330->channels) return -ENOMEM; /* Init Channel threads */ for (i = 0; i < chans; i++) { thrd = &pl330->channels[i]; thrd->id = i; thrd->dmac = pl330; _reset_thread(thrd); thrd->free = true; } /* MANAGER is indexed at the end */ thrd = &pl330->channels[chans]; thrd->id = chans; thrd->dmac = pl330; thrd->free = false; pl330->manager = thrd; return 0; } static int dmac_alloc_resources(struct pl330_dmac *pl330) { int chans = pl330->pcfg.num_chan; int ret; /* * Alloc MicroCode buffer for 'chans' Channel threads. * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) */ pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, chans * pl330->mcbufsz, &pl330->mcode_bus, GFP_KERNEL, DMA_ATTR_PRIVILEGED); if (!pl330->mcode_cpu) { dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", __func__, __LINE__); return -ENOMEM; } ret = dmac_alloc_threads(pl330); if (ret) { dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", __func__, __LINE__); dma_free_attrs(pl330->ddma.dev, chans * pl330->mcbufsz, pl330->mcode_cpu, pl330->mcode_bus, DMA_ATTR_PRIVILEGED); return ret; } return 0; } static int pl330_add(struct pl330_dmac *pl330) { int i, ret; /* Check if we can handle this DMAC */ if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", pl330->pcfg.periph_id); return -EINVAL; } /* Read the configuration of the DMAC */ read_dmac_config(pl330); if (pl330->pcfg.num_events == 0) { dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", __func__, __LINE__); return -EINVAL; } spin_lock_init(&pl330->lock); INIT_LIST_HEAD(&pl330->req_done); /* Use default MC buffer size if not provided */ if (!pl330->mcbufsz) pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; /* Mark all events as free */ for (i = 0; i < pl330->pcfg.num_events; i++) pl330->events[i] = -1; /* Allocate resources needed by the DMAC */ ret = dmac_alloc_resources(pl330); if (ret) { dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); return ret; } tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); pl330->state = INIT; return 0; } static int dmac_free_threads(struct pl330_dmac *pl330) { struct pl330_thread *thrd; int i; /* Release Channel threads */ for (i = 0; i < pl330->pcfg.num_chan; i++) { thrd = &pl330->channels[i]; pl330_release_channel(thrd); } /* Free memory */ kfree(pl330->channels); return 0; } static void pl330_del(struct pl330_dmac *pl330) { pl330->state = UNINIT; tasklet_kill(&pl330->tasks); /* Free DMAC resources */ dmac_free_threads(pl330); dma_free_attrs(pl330->ddma.dev, pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, pl330->mcode_bus, DMA_ATTR_PRIVILEGED); } /* forward declaration */ static struct amba_driver pl330_driver; static inline struct dma_pl330_chan * to_pchan(struct dma_chan *ch) { if (!ch) return NULL; return container_of(ch, struct dma_pl330_chan, chan); } static inline struct dma_pl330_desc * to_desc(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct dma_pl330_desc, txd); } static inline void fill_queue(struct dma_pl330_chan *pch) { struct dma_pl330_desc *desc; int ret; list_for_each_entry(desc, &pch->work_list, node) { /* If already submitted */ if (desc->status == BUSY) continue; ret = pl330_submit_req(pch->thread, desc); if (!ret) { desc->status = BUSY; } else if (ret == -EAGAIN) { /* QFull or DMAC Dying */ break; } else { /* Unacceptable request */ desc->status = DONE; dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", __func__, __LINE__, desc->txd.cookie); tasklet_schedule(&pch->task); } } } static void pl330_tasklet(unsigned long data) { struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; struct dma_pl330_desc *desc, *_dt; unsigned long flags; bool power_down = false; spin_lock_irqsave(&pch->lock, flags); /* Pick up ripe tomatoes */ list_for_each_entry_safe(desc, _dt, &pch->work_list, node) if (desc->status == DONE) { if (!pch->cyclic) dma_cookie_complete(&desc->txd); list_move_tail(&desc->node, &pch->completed_list); } /* Try to submit a req imm. next to the last completed cookie */ fill_queue(pch); if (list_empty(&pch->work_list)) { spin_lock(&pch->thread->dmac->lock); _stop(pch->thread); spin_unlock(&pch->thread->dmac->lock); power_down = true; pch->active = false; } else { /* Make sure the PL330 Channel thread is active */ spin_lock(&pch->thread->dmac->lock); _start(pch->thread); spin_unlock(&pch->thread->dmac->lock); } while (!list_empty(&pch->completed_list)) { struct dmaengine_desc_callback cb; desc = list_first_entry(&pch->completed_list, struct dma_pl330_desc, node); dmaengine_desc_get_callback(&desc->txd, &cb); if (pch->cyclic) { desc->status = PREP; list_move_tail(&desc->node, &pch->work_list); if (power_down) { pch->active = true; spin_lock(&pch->thread->dmac->lock); _start(pch->thread); spin_unlock(&pch->thread->dmac->lock); power_down = false; } } else { desc->status = FREE; list_move_tail(&desc->node, &pch->dmac->desc_pool); } dma_descriptor_unmap(&desc->txd); if (dmaengine_desc_callback_valid(&cb)) { spin_unlock_irqrestore(&pch->lock, flags); dmaengine_desc_callback_invoke(&cb, NULL); spin_lock_irqsave(&pch->lock, flags); } } spin_unlock_irqrestore(&pch->lock, flags); /* If work list empty, power down */ if (power_down) { pm_runtime_mark_last_busy(pch->dmac->ddma.dev); pm_runtime_put_autosuspend(pch->dmac->ddma.dev); } } static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { int count = dma_spec->args_count; struct pl330_dmac *pl330 = ofdma->of_dma_data; unsigned int chan_id; if (!pl330) return NULL; if (count != 1) return NULL; chan_id = dma_spec->args[0]; if (chan_id >= pl330->num_peripherals) return NULL; return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); } static int pl330_alloc_chan_resources(struct dma_chan *chan) { struct dma_pl330_chan *pch = to_pchan(chan); struct pl330_dmac *pl330 = pch->dmac; unsigned long flags; spin_lock_irqsave(&pl330->lock, flags); dma_cookie_init(chan); pch->cyclic = false; pch->thread = pl330_request_channel(pl330); if (!pch->thread) { spin_unlock_irqrestore(&pl330->lock, flags); return -ENOMEM; } tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); spin_unlock_irqrestore(&pl330->lock, flags); return 1; } /* * We need the data direction between the DMAC (the dma-mapping "device") and * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! */ static enum dma_data_direction pl330_dma_slave_map_dir(enum dma_transfer_direction dir) { switch (dir) { case DMA_MEM_TO_DEV: return DMA_FROM_DEVICE; case DMA_DEV_TO_MEM: return DMA_TO_DEVICE; case DMA_DEV_TO_DEV: return DMA_BIDIRECTIONAL; default: return DMA_NONE; } } static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) { if (pch->dir != DMA_NONE) dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 1 << pch->burst_sz, pch->dir, 0); pch->dir = DMA_NONE; } static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, enum dma_transfer_direction dir) { struct device *dev = pch->chan.device->dev; enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); /* Already mapped for this config? */ if (pch->dir == dma_dir) return true; pl330_unprep_slave_fifo(pch); pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 1 << pch->burst_sz, dma_dir, 0); if (dma_mapping_error(dev, pch->fifo_dma)) return false; pch->dir = dma_dir; return true; } static int fixup_burst_len(int max_burst_len, int quirks) { if (max_burst_len > PL330_MAX_BURST) return PL330_MAX_BURST; else if (max_burst_len < 1) return 1; else return max_burst_len; } static int pl330_config_write(struct dma_chan *chan, struct dma_slave_config *slave_config, enum dma_transfer_direction direction) { struct dma_pl330_chan *pch = to_pchan(chan); pl330_unprep_slave_fifo(pch); if (direction == DMA_MEM_TO_DEV) { if (slave_config->dst_addr) pch->fifo_addr = slave_config->dst_addr; if (slave_config->dst_addr_width) pch->burst_sz = __ffs(slave_config->dst_addr_width); pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, pch->dmac->quirks); } else if (direction == DMA_DEV_TO_MEM) { if (slave_config->src_addr) pch->fifo_addr = slave_config->src_addr; if (slave_config->src_addr_width) pch->burst_sz = __ffs(slave_config->src_addr_width); pch->burst_len = fixup_burst_len(slave_config->src_maxburst, pch->dmac->quirks); } return 0; } static int pl330_config(struct dma_chan *chan, struct dma_slave_config *slave_config) { struct dma_pl330_chan *pch = to_pchan(chan); memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); return 0; } static int pl330_terminate_all(struct dma_chan *chan) { struct dma_pl330_chan *pch = to_pchan(chan); struct dma_pl330_desc *desc; unsigned long flags; struct pl330_dmac *pl330 = pch->dmac; bool power_down = false; pm_runtime_get_sync(pl330->ddma.dev); spin_lock_irqsave(&pch->lock, flags); spin_lock(&pl330->lock); _stop(pch->thread); pch->thread->req[0].desc = NULL; pch->thread->req[1].desc = NULL; pch->thread->req_running = -1; spin_unlock(&pl330->lock); power_down = pch->active; pch->active = false; /* Mark all desc done */ list_for_each_entry(desc, &pch->submitted_list, node) { desc->status = FREE; dma_cookie_complete(&desc->txd); } list_for_each_entry(desc, &pch->work_list , node) { desc->status = FREE; dma_cookie_complete(&desc->txd); } list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); list_splice_tail_init(&pch->work_list, &pl330->desc_pool); list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); spin_unlock_irqrestore(&pch->lock, flags); pm_runtime_mark_last_busy(pl330->ddma.dev); if (power_down) pm_runtime_put_autosuspend(pl330->ddma.dev); pm_runtime_put_autosuspend(pl330->ddma.dev); return 0; } /* * We don't support DMA_RESUME command because of hardware * limitations, so after pausing the channel we cannot restore * it to active state. We have to terminate channel and setup * DMA transfer again. This pause feature was implemented to * allow safely read residue before channel termination. */ static int pl330_pause(struct dma_chan *chan) { struct dma_pl330_chan *pch = to_pchan(chan); struct pl330_dmac *pl330 = pch->dmac; unsigned long flags; pm_runtime_get_sync(pl330->ddma.dev); spin_lock_irqsave(&pch->lock, flags); spin_lock(&pl330->lock); _stop(pch->thread); spin_unlock(&pl330->lock); spin_unlock_irqrestore(&pch->lock, flags); pm_runtime_mark_last_busy(pl330->ddma.dev); pm_runtime_put_autosuspend(pl330->ddma.dev); return 0; } static void pl330_free_chan_resources(struct dma_chan *chan) { struct dma_pl330_chan *pch = to_pchan(chan); struct pl330_dmac *pl330 = pch->dmac; unsigned long flags; tasklet_kill(&pch->task); pm_runtime_get_sync(pch->dmac->ddma.dev); spin_lock_irqsave(&pl330->lock, flags); pl330_release_channel(pch->thread); pch->thread = NULL; if (pch->cyclic) list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); spin_unlock_irqrestore(&pl330->lock, flags); pm_runtime_mark_last_busy(pch->dmac->ddma.dev); pm_runtime_put_autosuspend(pch->dmac->ddma.dev); pl330_unprep_slave_fifo(pch); } static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, struct dma_pl330_desc *desc) { struct pl330_thread *thrd = pch->thread; struct pl330_dmac *pl330 = pch->dmac; void __iomem *regs = thrd->dmac->base; u32 val, addr; pm_runtime_get_sync(pl330->ddma.dev); val = addr = 0; if (desc->rqcfg.src_inc) { val = readl(regs + SA(thrd->id)); addr = desc->px.src_addr; } else { val = readl(regs + DA(thrd->id)); addr = desc->px.dst_addr; } pm_runtime_mark_last_busy(pch->dmac->ddma.dev); pm_runtime_put_autosuspend(pl330->ddma.dev); /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ if (!val) return 0; return val - addr; } static enum dma_status pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { enum dma_status ret; unsigned long flags; struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; struct dma_pl330_chan *pch = to_pchan(chan); unsigned int transferred, residual = 0; ret = dma_cookie_status(chan, cookie, txstate); if (!txstate) return ret; if (ret == DMA_COMPLETE) goto out; spin_lock_irqsave(&pch->lock, flags); spin_lock(&pch->thread->dmac->lock); if (pch->thread->req_running != -1) running = pch->thread->req[pch->thread->req_running].desc; last_enq = pch->thread->req[pch->thread->lstenq].desc; /* Check in pending list */ list_for_each_entry(desc, &pch->work_list, node) { if (desc->status == DONE) transferred = desc->bytes_requested; else if (running && desc == running) transferred = pl330_get_current_xferred_count(pch, desc); else if (desc->status == BUSY) /* * Busy but not running means either just enqueued, * or finished and not yet marked done */ if (desc == last_enq) transferred = 0; else transferred = desc->bytes_requested; else transferred = 0; residual += desc->bytes_requested - transferred; if (desc->txd.cookie == cookie) { switch (desc->status) { case DONE: ret = DMA_COMPLETE; break; case PREP: case BUSY: ret = DMA_IN_PROGRESS; break; default: WARN_ON(1); } break; } if (desc->last) residual = 0; } spin_unlock(&pch->thread->dmac->lock); spin_unlock_irqrestore(&pch->lock, flags); out: dma_set_residue(txstate, residual); return ret; } static void pl330_issue_pending(struct dma_chan *chan) { struct dma_pl330_chan *pch = to_pchan(chan); unsigned long flags; spin_lock_irqsave(&pch->lock, flags); if (list_empty(&pch->work_list)) { /* * Warn on nothing pending. Empty submitted_list may * break our pm_runtime usage counter as it is * updated on work_list emptiness status. */ WARN_ON(list_empty(&pch->submitted_list)); pch->active = true; pm_runtime_get_sync(pch->dmac->ddma.dev); } list_splice_tail_init(&pch->submitted_list, &pch->work_list); spin_unlock_irqrestore(&pch->lock, flags); pl330_tasklet((unsigned long)pch); } /* * We returned the last one of the circular list of descriptor(s) * from prep_xxx, so the argument to submit corresponds to the last * descriptor of the list. */ static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) { struct dma_pl330_desc *desc, *last = to_desc(tx); struct dma_pl330_chan *pch = to_pchan(tx->chan); dma_cookie_t cookie; unsigned long flags; spin_lock_irqsave(&pch->lock, flags); /* Assign cookies to all nodes */ while (!list_empty(&last->node)) { desc = list_entry(last->node.next, struct dma_pl330_desc, node); if (pch->cyclic) { desc->txd.callback = last->txd.callback; desc->txd.callback_param = last->txd.callback_param; } desc->last = false; dma_cookie_assign(&desc->txd); list_move_tail(&desc->node, &pch->submitted_list); } last->last = true; cookie = dma_cookie_assign(&last->txd); list_add_tail(&last->node, &pch->submitted_list); spin_unlock_irqrestore(&pch->lock, flags); return cookie; } static inline void _init_desc(struct dma_pl330_desc *desc) { desc->rqcfg.swap = SWAP_NO; desc->rqcfg.scctl = CCTRL0; desc->rqcfg.dcctl = CCTRL0; desc->txd.tx_submit = pl330_tx_submit; INIT_LIST_HEAD(&desc->node); } /* Returns the number of descriptors added to the DMAC pool */ static int add_desc(struct list_head *pool, spinlock_t *lock, gfp_t flg, int count) { struct dma_pl330_desc *desc; unsigned long flags; int i; desc = kcalloc(count, sizeof(*desc), flg); if (!desc) return 0; spin_lock_irqsave(lock, flags); for (i = 0; i < count; i++) { _init_desc(&desc[i]); list_add_tail(&desc[i].node, pool); } spin_unlock_irqrestore(lock, flags); return count; } static struct dma_pl330_desc *pluck_desc(struct list_head *pool, spinlock_t *lock) { struct dma_pl330_desc *desc = NULL; unsigned long flags; spin_lock_irqsave(lock, flags); if (!list_empty(pool)) { desc = list_entry(pool->next, struct dma_pl330_desc, node); list_del_init(&desc->node); desc->status = PREP; desc->txd.callback = NULL; } spin_unlock_irqrestore(lock, flags); return desc; } static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) { struct pl330_dmac *pl330 = pch->dmac; u8 *peri_id = pch->chan.private; struct dma_pl330_desc *desc; /* Pluck one desc from the pool of DMAC */ desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); /* If the DMAC pool is empty, alloc new */ if (!desc) { DEFINE_SPINLOCK(lock); LIST_HEAD(pool); if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) return NULL; desc = pluck_desc(&pool, &lock); WARN_ON(!desc || !list_empty(&pool)); } /* Initialize the descriptor */ desc->pchan = pch; desc->txd.cookie = 0; async_tx_ack(&desc->txd); desc->peri = peri_id ? pch->chan.chan_id : 0; desc->rqcfg.pcfg = &pch->dmac->pcfg; dma_async_tx_descriptor_init(&desc->txd, &pch->chan); return desc; } static inline void fill_px(struct pl330_xfer *px, dma_addr_t dst, dma_addr_t src, size_t len) { px->bytes = len; px->dst_addr = dst; px->src_addr = src; } static struct dma_pl330_desc * __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, dma_addr_t src, size_t len) { struct dma_pl330_desc *desc = pl330_get_desc(pch); if (!desc) { dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", __func__, __LINE__); return NULL; } /* * Ideally we should lookout for reqs bigger than * those that can be programmed with 256 bytes of * MC buffer, but considering a req size is seldom * going to be word-unaligned and more than 200MB, * we take it easy. * Also, should the limit is reached we'd rather * have the platform increase MC buffer size than * complicating this API driver. */ fill_px(&desc->px, dst, src, len); return desc; } /* Call after fixing burst size */ static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) { struct dma_pl330_chan *pch = desc->pchan; struct pl330_dmac *pl330 = pch->dmac; int burst_len; burst_len = pl330->pcfg.data_bus_width / 8; burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; burst_len >>= desc->rqcfg.brst_size; /* src/dst_burst_len can't be more than 16 */ if (burst_len > PL330_MAX_BURST) burst_len = PL330_MAX_BURST; return burst_len; } static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct dma_pl330_desc *desc = NULL, *first = NULL; struct dma_pl330_chan *pch = to_pchan(chan); struct pl330_dmac *pl330 = pch->dmac; unsigned int i; dma_addr_t dst; dma_addr_t src; if (len % period_len != 0) return NULL; if (!is_slave_direction(direction)) { dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", __func__, __LINE__); return NULL; } pl330_config_write(chan, &pch->slave_config, direction); if (!pl330_prep_slave_fifo(pch, direction)) return NULL; for (i = 0; i < len / period_len; i++) { desc = pl330_get_desc(pch); if (!desc) { dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", __func__, __LINE__); if (!first) return NULL; spin_lock_irqsave(&pl330->pool_lock, flags); while (!list_empty(&first->node)) { desc = list_entry(first->node.next, struct dma_pl330_desc, node); list_move_tail(&desc->node, &pl330->desc_pool); } list_move_tail(&first->node, &pl330->desc_pool); spin_unlock_irqrestore(&pl330->pool_lock, flags); return NULL; } switch (direction) { case DMA_MEM_TO_DEV: desc->rqcfg.src_inc = 1; desc->rqcfg.dst_inc = 0; src = dma_addr; dst = pch->fifo_dma; break; case DMA_DEV_TO_MEM: desc->rqcfg.src_inc = 0; desc->rqcfg.dst_inc = 1; src = pch->fifo_dma; dst = dma_addr; break; default: break; } desc->rqtype = direction; desc->rqcfg.brst_size = pch->burst_sz; desc->rqcfg.brst_len = pch->burst_len; desc->bytes_requested = period_len; fill_px(&desc->px, dst, src, period_len); if (!first) first = desc; else list_add_tail(&desc->node, &first->node); dma_addr += period_len; } if (!desc) return NULL; pch->cyclic = true; desc->txd.flags = flags; return &desc->txd; } static struct dma_async_tx_descriptor * pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct dma_pl330_desc *desc; struct dma_pl330_chan *pch = to_pchan(chan); struct pl330_dmac *pl330; int burst; if (unlikely(!pch || !len)) return NULL; pl330 = pch->dmac; desc = __pl330_prep_dma_memcpy(pch, dst, src, len); if (!desc) return NULL; desc->rqcfg.src_inc = 1; desc->rqcfg.dst_inc = 1; desc->rqtype = DMA_MEM_TO_MEM; /* Select max possible burst size */ burst = pl330->pcfg.data_bus_width / 8; /* * Make sure we use a burst size that aligns with all the memcpy * parameters because our DMA programming algorithm doesn't cope with * transfers which straddle an entry in the DMA device's MFIFO. */ while ((src | dst | len) & (burst - 1)) burst /= 2; desc->rqcfg.brst_size = 0; while (burst != (1 << desc->rqcfg.brst_size)) desc->rqcfg.brst_size++; /* * If burst size is smaller than bus width then make sure we only * transfer one at a time to avoid a burst stradling an MFIFO entry. */ if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) desc->rqcfg.brst_len = 1; desc->rqcfg.brst_len = get_burst_len(desc, len); desc->bytes_requested = len; desc->txd.flags = flags; return &desc->txd; } static void __pl330_giveback_desc(struct pl330_dmac *pl330, struct dma_pl330_desc *first) { unsigned long flags; struct dma_pl330_desc *desc; if (!first) return; spin_lock_irqsave(&pl330->pool_lock, flags); while (!list_empty(&first->node)) { desc = list_entry(first->node.next, struct dma_pl330_desc, node); list_move_tail(&desc->node, &pl330->desc_pool); } list_move_tail(&first->node, &pl330->desc_pool); spin_unlock_irqrestore(&pl330->pool_lock, flags); } static struct dma_async_tx_descriptor * pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flg, void *context) { struct dma_pl330_desc *first, *desc = NULL; struct dma_pl330_chan *pch = to_pchan(chan); struct scatterlist *sg; int i; if (unlikely(!pch || !sgl || !sg_len)) return NULL; pl330_config_write(chan, &pch->slave_config, direction); if (!pl330_prep_slave_fifo(pch, direction)) return NULL; first = NULL; for_each_sg(sgl, sg, sg_len, i) { desc = pl330_get_desc(pch); if (!desc) { struct pl330_dmac *pl330 = pch->dmac; dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", __func__, __LINE__); __pl330_giveback_desc(pl330, first); return NULL; } if (!first) first = desc; else list_add_tail(&desc->node, &first->node); if (direction == DMA_MEM_TO_DEV) { desc->rqcfg.src_inc = 1; desc->rqcfg.dst_inc = 0; fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), sg_dma_len(sg)); } else { desc->rqcfg.src_inc = 0; desc->rqcfg.dst_inc = 1; fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, sg_dma_len(sg)); } desc->rqcfg.brst_size = pch->burst_sz; desc->rqcfg.brst_len = pch->burst_len; desc->rqtype = direction; desc->bytes_requested = sg_dma_len(sg); } /* Return the last desc in the chain */ desc->txd.flags = flg; return &desc->txd; } static irqreturn_t pl330_irq_handler(int irq, void *data) { if (pl330_update(data)) return IRQ_HANDLED; else return IRQ_NONE; } #define PL330_DMA_BUSWIDTHS \ BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) #ifdef CONFIG_DEBUG_FS static int pl330_debugfs_show(struct seq_file *s, void *data) { struct pl330_dmac *pl330 = s->private; int chans, pchs, ch, pr; chans = pl330->pcfg.num_chan; pchs = pl330->num_peripherals; seq_puts(s, "PL330 physical channels:\n"); seq_puts(s, "THREAD:\t\tCHANNEL:\n"); seq_puts(s, "--------\t-----\n"); for (ch = 0; ch < chans; ch++) { struct pl330_thread *thrd = &pl330->channels[ch]; int found = -1; for (pr = 0; pr < pchs; pr++) { struct dma_pl330_chan *pch = &pl330->peripherals[pr]; if (!pch->thread || thrd->id != pch->thread->id) continue; found = pr; } seq_printf(s, "%d\t\t", thrd->id); if (found == -1) seq_puts(s, "--\n"); else seq_printf(s, "%d\n", found); } return 0; } DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); static inline void init_pl330_debugfs(struct pl330_dmac *pl330) { debugfs_create_file(dev_name(pl330->ddma.dev), S_IFREG | 0444, NULL, pl330, &pl330_debugfs_fops); } #else static inline void init_pl330_debugfs(struct pl330_dmac *pl330) { } #endif /* * Runtime PM callbacks are provided by amba/bus.c driver. * * It is assumed here that IRQ safe runtime PM is chosen in probe and amba * bus driver will only disable/enable the clock in runtime PM callbacks. */ static int __maybe_unused pl330_suspend(struct device *dev) { struct amba_device *pcdev = to_amba_device(dev); pm_runtime_force_suspend(dev); amba_pclk_unprepare(pcdev); return 0; } static int __maybe_unused pl330_resume(struct device *dev) { struct amba_device *pcdev = to_amba_device(dev); int ret; ret = amba_pclk_prepare(pcdev); if (ret) return ret; pm_runtime_force_resume(dev); return ret; } static const struct dev_pm_ops pl330_pm = { SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume) }; static int pl330_probe(struct amba_device *adev, const struct amba_id *id) { struct pl330_config *pcfg; struct pl330_dmac *pl330; struct dma_pl330_chan *pch, *_p; struct dma_device *pd; struct resource *res; int i, ret, irq; int num_chan; struct device_node *np = adev->dev.of_node; ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); if (ret) return ret; /* Allocate a new DMAC and its Channels */ pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); if (!pl330) return -ENOMEM; pd = &pl330->ddma; pd->dev = &adev->dev; pl330->mcbufsz = 0; /* get quirk */ for (i = 0; i < ARRAY_SIZE(of_quirks); i++) if (of_property_read_bool(np, of_quirks[i].quirk)) pl330->quirks |= of_quirks[i].id; res = &adev->res; pl330->base = devm_ioremap_resource(&adev->dev, res); if (IS_ERR(pl330->base)) return PTR_ERR(pl330->base); amba_set_drvdata(adev, pl330); pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); if (IS_ERR(pl330->rstc)) { return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n"); } else { ret = reset_control_deassert(pl330->rstc); if (ret) { dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); return ret; } } pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); if (IS_ERR(pl330->rstc_ocp)) { return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp), "Failed to get OCP reset!\n"); } else { ret = reset_control_deassert(pl330->rstc_ocp); if (ret) { dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); return ret; } } for (i = 0; i < AMBA_NR_IRQS; i++) { irq = adev->irq[i]; if (irq) { ret = devm_request_irq(&adev->dev, irq, pl330_irq_handler, 0, dev_name(&adev->dev), pl330); if (ret) return ret; } else { break; } } pcfg = &pl330->pcfg; pcfg->periph_id = adev->periphid; ret = pl330_add(pl330); if (ret) return ret; INIT_LIST_HEAD(&pl330->desc_pool); spin_lock_init(&pl330->pool_lock); /* Create a descriptor pool of default size */ if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, GFP_KERNEL, NR_DEFAULT_DESC)) dev_warn(&adev->dev, "unable to allocate desc\n"); INIT_LIST_HEAD(&pd->channels); /* Initialize channel parameters */ num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); pl330->num_peripherals = num_chan; pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); if (!pl330->peripherals) { ret = -ENOMEM; goto probe_err2; } for (i = 0; i < num_chan; i++) { pch = &pl330->peripherals[i]; pch->chan.private = adev->dev.of_node; INIT_LIST_HEAD(&pch->submitted_list); INIT_LIST_HEAD(&pch->work_list); INIT_LIST_HEAD(&pch->completed_list); spin_lock_init(&pch->lock); pch->thread = NULL; pch->chan.device = pd; pch->dmac = pl330; pch->dir = DMA_NONE; /* Add the channel to the DMAC list */ list_add_tail(&pch->chan.device_node, &pd->channels); } dma_cap_set(DMA_MEMCPY, pd->cap_mask); if (pcfg->num_peri) { dma_cap_set(DMA_SLAVE, pd->cap_mask); dma_cap_set(DMA_CYCLIC, pd->cap_mask); dma_cap_set(DMA_PRIVATE, pd->cap_mask); } pd->device_alloc_chan_resources = pl330_alloc_chan_resources; pd->device_free_chan_resources = pl330_free_chan_resources; pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; pd->device_tx_status = pl330_tx_status; pd->device_prep_slave_sg = pl330_prep_slave_sg; pd->device_config = pl330_config; pd->device_pause = pl330_pause; pd->device_terminate_all = pl330_terminate_all; pd->device_issue_pending = pl330_issue_pending; pd->src_addr_widths = PL330_DMA_BUSWIDTHS; pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; pd->max_burst = PL330_MAX_BURST; ret = dma_async_device_register(pd); if (ret) { dev_err(&adev->dev, "unable to register DMAC\n"); goto probe_err3; } if (adev->dev.of_node) { ret = of_dma_controller_register(adev->dev.of_node, of_dma_pl330_xlate, pl330); if (ret) { dev_err(&adev->dev, "unable to register DMA to the generic DT DMA helpers\n"); } } adev->dev.dma_parms = &pl330->dma_parms; /* * This is the limit for transfers with a buswidth of 1, larger * buswidths will have larger limits. */ ret = dma_set_max_seg_size(&adev->dev, 1900800); if (ret) dev_err(&adev->dev, "unable to set the seg size\n"); init_pl330_debugfs(pl330); dev_info(&adev->dev, "Loaded driver for PL330 DMAC-%x\n", adev->periphid); dev_info(&adev->dev, "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, pcfg->num_peri, pcfg->num_events); pm_runtime_irq_safe(&adev->dev); pm_runtime_use_autosuspend(&adev->dev); pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); pm_runtime_mark_last_busy(&adev->dev); pm_runtime_put_autosuspend(&adev->dev); return 0; probe_err3: /* Idle the DMAC */ list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, chan.device_node) { /* Remove the channel */ list_del(&pch->chan.device_node); /* Flush the channel */ if (pch->thread) { pl330_terminate_all(&pch->chan); pl330_free_chan_resources(&pch->chan); } } probe_err2: pl330_del(pl330); if (pl330->rstc_ocp) reset_control_assert(pl330->rstc_ocp); if (pl330->rstc) reset_control_assert(pl330->rstc); return ret; } static int pl330_remove(struct amba_device *adev) { struct pl330_dmac *pl330 = amba_get_drvdata(adev); struct dma_pl330_chan *pch, *_p; int i, irq; pm_runtime_get_noresume(pl330->ddma.dev); if (adev->dev.of_node) of_dma_controller_free(adev->dev.of_node); for (i = 0; i < AMBA_NR_IRQS; i++) { irq = adev->irq[i]; if (irq) devm_free_irq(&adev->dev, irq, pl330); } dma_async_device_unregister(&pl330->ddma); /* Idle the DMAC */ list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, chan.device_node) { /* Remove the channel */ list_del(&pch->chan.device_node); /* Flush the channel */ if (pch->thread) { pl330_terminate_all(&pch->chan); pl330_free_chan_resources(&pch->chan); } } pl330_del(pl330); if (pl330->rstc_ocp) reset_control_assert(pl330->rstc_ocp); if (pl330->rstc) reset_control_assert(pl330->rstc); return 0; } static const struct amba_id pl330_ids[] = { { .id = 0x00041330, .mask = 0x000fffff, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, pl330_ids); static struct amba_driver pl330_driver = { .drv = { .owner = THIS_MODULE, .name = "dma-pl330", .pm = &pl330_pm, }, .id_table = pl330_ids, .probe = pl330_probe, .remove = pl330_remove, }; module_amba_driver(pl330_driver); MODULE_AUTHOR("Jaswinder Singh "); MODULE_DESCRIPTION("API Driver for PL330 DMAC"); MODULE_LICENSE("GPL");