/* * drivers/cpufreq/cpufreq_ondemand.c * * Copyright (C) 2001 Russell King * (C) 2003 Venkatesh Pallipadi . * Jun Nakajima * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include "cpufreq_governor.h" /* On-demand governor macros */ #define DEF_FREQUENCY_UP_THRESHOLD (80) #define DEF_SAMPLING_DOWN_FACTOR (1) #define MAX_SAMPLING_DOWN_FACTOR (100000) #define MICRO_FREQUENCY_UP_THRESHOLD (95) #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) #define MIN_FREQUENCY_UP_THRESHOLD (11) #define MAX_FREQUENCY_UP_THRESHOLD (100) static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info); static struct od_ops od_ops; static unsigned int default_powersave_bias; static void ondemand_powersave_bias_init_cpu(int cpu) { struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); dbs_info->freq_table = cpufreq_frequency_get_table(cpu); dbs_info->freq_lo = 0; } /* * Not all CPUs want IO time to be accounted as busy; this depends on how * efficient idling at a higher frequency/voltage is. * Pavel Machek says this is not so for various generations of AMD and old * Intel systems. * Mike Chan (android.com) claims this is also not true for ARM. * Because of this, whitelist specific known (series) of CPUs by default, and * leave all others up to the user. */ static int should_io_be_busy(void) { #if defined(CONFIG_X86) /* * For Intel, Core 2 (model 15) and later have an efficient idle. */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model >= 15) return 1; #endif return 0; } /* * Find right freq to be set now with powersave_bias on. * Returns the freq_hi to be used right now and will set freq_hi_jiffies, * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. */ static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy, unsigned int freq_next, unsigned int relation) { unsigned int freq_req, freq_reduc, freq_avg; unsigned int freq_hi, freq_lo; unsigned int index = 0; unsigned int jiffies_total, jiffies_hi, jiffies_lo; struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; struct od_dbs_tuners *od_tuners = dbs_data->tuners; if (!dbs_info->freq_table) { dbs_info->freq_lo = 0; dbs_info->freq_lo_jiffies = 0; return freq_next; } cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, relation, &index); freq_req = dbs_info->freq_table[index].frequency; freq_reduc = freq_req * od_tuners->powersave_bias / 1000; freq_avg = freq_req - freq_reduc; /* Find freq bounds for freq_avg in freq_table */ index = 0; cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, CPUFREQ_RELATION_H, &index); freq_lo = dbs_info->freq_table[index].frequency; index = 0; cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, CPUFREQ_RELATION_L, &index); freq_hi = dbs_info->freq_table[index].frequency; /* Find out how long we have to be in hi and lo freqs */ if (freq_hi == freq_lo) { dbs_info->freq_lo = 0; dbs_info->freq_lo_jiffies = 0; return freq_lo; } jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate); jiffies_hi = (freq_avg - freq_lo) * jiffies_total; jiffies_hi += ((freq_hi - freq_lo) / 2); jiffies_hi /= (freq_hi - freq_lo); jiffies_lo = jiffies_total - jiffies_hi; dbs_info->freq_lo = freq_lo; dbs_info->freq_lo_jiffies = jiffies_lo; dbs_info->freq_hi_jiffies = jiffies_hi; return freq_hi; } static void ondemand_powersave_bias_init(void) { int i; for_each_online_cpu(i) { ondemand_powersave_bias_init_cpu(i); } } static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq) { struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; struct od_dbs_tuners *od_tuners = dbs_data->tuners; if (od_tuners->powersave_bias) freq = od_ops.powersave_bias_target(policy, freq, CPUFREQ_RELATION_H); else if (policy->cur == policy->max) return; __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ? CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); } /* * Every sampling_rate, we check, if current idle time is less than 20% * (default), then we try to increase frequency. Else, we adjust the frequency * proportional to load. */ static void od_check_cpu(int cpu, unsigned int load) { struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); struct policy_dbs_info *policy_dbs = dbs_info->cdbs.policy_dbs; struct cpufreq_policy *policy = policy_dbs->policy; struct dbs_data *dbs_data = policy_dbs->dbs_data; struct od_dbs_tuners *od_tuners = dbs_data->tuners; dbs_info->freq_lo = 0; /* Check for frequency increase */ if (load > od_tuners->up_threshold) { /* If switching to max speed, apply sampling_down_factor */ if (policy->cur < policy->max) dbs_info->rate_mult = od_tuners->sampling_down_factor; dbs_freq_increase(policy, policy->max); } else { /* Calculate the next frequency proportional to load */ unsigned int freq_next, min_f, max_f; min_f = policy->cpuinfo.min_freq; max_f = policy->cpuinfo.max_freq; freq_next = min_f + load * (max_f - min_f) / 100; /* No longer fully busy, reset rate_mult */ dbs_info->rate_mult = 1; if (!od_tuners->powersave_bias) { __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C); return; } freq_next = od_ops.powersave_bias_target(policy, freq_next, CPUFREQ_RELATION_L); __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C); } } static unsigned int od_dbs_timer(struct cpufreq_policy *policy) { struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); struct od_dbs_tuners *od_tuners = dbs_data->tuners; int delay = 0, sample_type = dbs_info->sample_type; /* Common NORMAL_SAMPLE setup */ dbs_info->sample_type = OD_NORMAL_SAMPLE; if (sample_type == OD_SUB_SAMPLE) { delay = dbs_info->freq_lo_jiffies; __cpufreq_driver_target(policy, dbs_info->freq_lo, CPUFREQ_RELATION_H); } else { dbs_check_cpu(policy); if (dbs_info->freq_lo) { /* Setup timer for SUB_SAMPLE */ dbs_info->sample_type = OD_SUB_SAMPLE; delay = dbs_info->freq_hi_jiffies; } } if (!delay) delay = delay_for_sampling_rate(od_tuners->sampling_rate * dbs_info->rate_mult); return delay; } /************************** sysfs interface ************************/ static struct dbs_governor od_dbs_gov; /** * update_sampling_rate - update sampling rate effective immediately if needed. * @new_rate: new sampling rate * * If new rate is smaller than the old, simply updating * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the * original sampling_rate was 1 second and the requested new sampling rate is 10 * ms because the user needs immediate reaction from ondemand governor, but not * sure if higher frequency will be required or not, then, the governor may * change the sampling rate too late; up to 1 second later. Thus, if we are * reducing the sampling rate, we need to make the new value effective * immediately. */ static void update_sampling_rate(struct dbs_data *dbs_data, unsigned int new_rate) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; struct cpumask cpumask; int cpu; od_tuners->sampling_rate = new_rate = max(new_rate, dbs_data->min_sampling_rate); /* * Lock governor so that governor start/stop can't execute in parallel. */ mutex_lock(&dbs_data_mutex); cpumask_copy(&cpumask, cpu_online_mask); for_each_cpu(cpu, &cpumask) { struct cpufreq_policy *policy; struct od_cpu_dbs_info_s *dbs_info; struct cpu_dbs_info *cdbs; struct policy_dbs_info *policy_dbs; dbs_info = &per_cpu(od_cpu_dbs_info, cpu); cdbs = &dbs_info->cdbs; policy_dbs = cdbs->policy_dbs; /* * A valid policy_dbs and policy_dbs->policy means governor * hasn't stopped or exited yet. */ if (!policy_dbs || !policy_dbs->policy) continue; policy = policy_dbs->policy; /* clear all CPUs of this policy */ cpumask_andnot(&cpumask, &cpumask, policy->cpus); /* * Update sampling rate for CPUs whose policy is governed by * dbs_data. In case of governor_per_policy, only a single * policy will be governed by dbs_data, otherwise there can be * multiple policies that are governed by the same dbs_data. */ if (dbs_data == policy_dbs->dbs_data) { mutex_lock(&policy_dbs->timer_mutex); /* * On 32-bit architectures this may race with the * sample_delay_ns read in dbs_update_util_handler(), * but that really doesn't matter. If the read returns * a value that's too big, the sample will be skipped, * but the next invocation of dbs_update_util_handler() * (when the update has been completed) will take a * sample. If the returned value is too small, the * sample will be taken immediately, but that isn't a * problem, as we want the new rate to take effect * immediately anyway. * * If this runs in parallel with dbs_work_handler(), we * may end up overwriting the sample_delay_ns value that * it has just written, but the difference should not be * too big and it will be corrected next time a sample * is taken, so it shouldn't be significant. */ gov_update_sample_delay(policy_dbs, new_rate); mutex_unlock(&policy_dbs->timer_mutex); } } mutex_unlock(&dbs_data_mutex); } static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; update_sampling_rate(dbs_data, input); return count; } static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf, size_t count) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; unsigned int input; int ret; unsigned int j; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; od_tuners->io_is_busy = !!input; /* we need to re-evaluate prev_cpu_idle */ for_each_online_cpu(j) { struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, j); dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); } return count; } static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf, size_t count) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || input < MIN_FREQUENCY_UP_THRESHOLD) { return -EINVAL; } od_tuners->up_threshold = input; return count; } static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data, const char *buf, size_t count) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; unsigned int input, j; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) return -EINVAL; od_tuners->sampling_down_factor = input; /* Reset down sampling multiplier in case it was active */ for_each_online_cpu(j) { struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, j); dbs_info->rate_mult = 1; } return count; } static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data, const char *buf, size_t count) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; unsigned int input; int ret; unsigned int j; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 1) input = 1; if (input == od_tuners->ignore_nice_load) { /* nothing to do */ return count; } od_tuners->ignore_nice_load = input; /* we need to re-evaluate prev_cpu_idle */ for_each_online_cpu(j) { struct od_cpu_dbs_info_s *dbs_info; dbs_info = &per_cpu(od_cpu_dbs_info, j); dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); if (od_tuners->ignore_nice_load) dbs_info->cdbs.prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; } return count; } static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf, size_t count) { struct od_dbs_tuners *od_tuners = dbs_data->tuners; unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 1000) input = 1000; od_tuners->powersave_bias = input; ondemand_powersave_bias_init(); return count; } show_store_one(od, sampling_rate); show_store_one(od, io_is_busy); show_store_one(od, up_threshold); show_store_one(od, sampling_down_factor); show_store_one(od, ignore_nice_load); show_store_one(od, powersave_bias); show_one_common(od, min_sampling_rate); gov_sys_pol_attr_rw(sampling_rate); gov_sys_pol_attr_rw(io_is_busy); gov_sys_pol_attr_rw(up_threshold); gov_sys_pol_attr_rw(sampling_down_factor); gov_sys_pol_attr_rw(ignore_nice_load); gov_sys_pol_attr_rw(powersave_bias); gov_sys_pol_attr_ro(min_sampling_rate); static struct attribute *dbs_attributes_gov_sys[] = { &min_sampling_rate_gov_sys.attr, &sampling_rate_gov_sys.attr, &up_threshold_gov_sys.attr, &sampling_down_factor_gov_sys.attr, &ignore_nice_load_gov_sys.attr, &powersave_bias_gov_sys.attr, &io_is_busy_gov_sys.attr, NULL }; static struct attribute_group od_attr_group_gov_sys = { .attrs = dbs_attributes_gov_sys, .name = "ondemand", }; static struct attribute *dbs_attributes_gov_pol[] = { &min_sampling_rate_gov_pol.attr, &sampling_rate_gov_pol.attr, &up_threshold_gov_pol.attr, &sampling_down_factor_gov_pol.attr, &ignore_nice_load_gov_pol.attr, &powersave_bias_gov_pol.attr, &io_is_busy_gov_pol.attr, NULL }; static struct attribute_group od_attr_group_gov_pol = { .attrs = dbs_attributes_gov_pol, .name = "ondemand", }; /************************** sysfs end ************************/ static int od_init(struct dbs_data *dbs_data, bool notify) { struct od_dbs_tuners *tuners; u64 idle_time; int cpu; tuners = kzalloc(sizeof(*tuners), GFP_KERNEL); if (!tuners) { pr_err("%s: kzalloc failed\n", __func__); return -ENOMEM; } cpu = get_cpu(); idle_time = get_cpu_idle_time_us(cpu, NULL); put_cpu(); if (idle_time != -1ULL) { /* Idle micro accounting is supported. Use finer thresholds */ tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; /* * In nohz/micro accounting case we set the minimum frequency * not depending on HZ, but fixed (very low). The deferred * timer might skip some samples if idle/sleeping as needed. */ dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; } else { tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD; /* For correct statistics, we need 10 ticks for each measure */ dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); } tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR; tuners->ignore_nice_load = 0; tuners->powersave_bias = default_powersave_bias; tuners->io_is_busy = should_io_be_busy(); dbs_data->tuners = tuners; return 0; } static void od_exit(struct dbs_data *dbs_data, bool notify) { kfree(dbs_data->tuners); } define_get_cpu_dbs_routines(od_cpu_dbs_info); static struct od_ops od_ops = { .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu, .powersave_bias_target = generic_powersave_bias_target, .freq_increase = dbs_freq_increase, }; static struct dbs_governor od_dbs_gov = { .gov = { .name = "ondemand", .governor = cpufreq_governor_dbs, .max_transition_latency = TRANSITION_LATENCY_LIMIT, .owner = THIS_MODULE, }, .governor = GOV_ONDEMAND, .attr_group_gov_sys = &od_attr_group_gov_sys, .attr_group_gov_pol = &od_attr_group_gov_pol, .get_cpu_cdbs = get_cpu_cdbs, .get_cpu_dbs_info_s = get_cpu_dbs_info_s, .gov_dbs_timer = od_dbs_timer, .gov_check_cpu = od_check_cpu, .gov_ops = &od_ops, .init = od_init, .exit = od_exit, }; #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov) static void od_set_powersave_bias(unsigned int powersave_bias) { struct cpufreq_policy *policy; struct dbs_data *dbs_data; struct od_dbs_tuners *od_tuners; unsigned int cpu; cpumask_t done; default_powersave_bias = powersave_bias; cpumask_clear(&done); get_online_cpus(); for_each_online_cpu(cpu) { struct policy_dbs_info *policy_dbs; if (cpumask_test_cpu(cpu, &done)) continue; policy_dbs = per_cpu(od_cpu_dbs_info, cpu).cdbs.policy_dbs; if (!policy_dbs) continue; policy = policy_dbs->policy; cpumask_or(&done, &done, policy->cpus); if (policy->governor != CPU_FREQ_GOV_ONDEMAND) continue; dbs_data = policy_dbs->dbs_data; od_tuners = dbs_data->tuners; od_tuners->powersave_bias = default_powersave_bias; } put_online_cpus(); } void od_register_powersave_bias_handler(unsigned int (*f) (struct cpufreq_policy *, unsigned int, unsigned int), unsigned int powersave_bias) { od_ops.powersave_bias_target = f; od_set_powersave_bias(powersave_bias); } EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler); void od_unregister_powersave_bias_handler(void) { od_ops.powersave_bias_target = generic_powersave_bias_target; od_set_powersave_bias(0); } EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler); static int __init cpufreq_gov_dbs_init(void) { return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND); } static void __exit cpufreq_gov_dbs_exit(void) { cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND); } MODULE_AUTHOR("Venkatesh Pallipadi "); MODULE_AUTHOR("Alexey Starikovskiy "); MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " "Low Latency Frequency Transition capable processors"); MODULE_LICENSE("GPL"); #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND struct cpufreq_governor *cpufreq_default_governor(void) { return CPU_FREQ_GOV_ONDEMAND; } fs_initcall(cpufreq_gov_dbs_init); #else module_init(cpufreq_gov_dbs_init); #endif module_exit(cpufreq_gov_dbs_exit);